organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro­acetyl-2,6-bis­­(2-chloro­phen­yl)-3,5-di­methyl­piperidin-4-one oxime

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 11 April 2010; accepted 18 May 2010; online 29 May 2010)

In the title compound, C21H21Cl3N2O2, the piperidine ring adopts a distorted boat conformation. One of the chloro­phenyl rings is almost perpendicular to the best plane through piperidine ring, making a dihedral angle of 88.7 (1)°, whereas the other ring is twisted by 71.8 (1)°. The crystal packing is stabilized by inter­molecular C—H⋯O, C—H⋯Cl and O—H⋯O inter­actions.

Related literature

For general background to piperidine derivatives, see: Perumal et al. (2001[Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]); Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santhos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]); Ravindran et al. (1991[Ravindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. J. (1991). J. Org. Chem. 56, 4833-4840.]); Senthilkumar et al. (1992[Senthilkumar, U. P., Jeyaraman, R., Murray, R. W. & Singh, M. J. (1992). J. Org. Chem. 57, 6006-6014.]). For the synthesis of the title compound, see: Aridoss et al. (2007[Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007). Spectrochim. Acta Part A, 68, 1153-1163.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21Cl3N2O2

  • Mr = 439.75

  • Monoclinic, C c

  • a = 9.8147 (6) Å

  • b = 15.5929 (11) Å

  • c = 13.9498 (9) Å

  • β = 93.529 (4)°

  • V = 2130.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 293 K

  • 0.23 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.903, Tmax = 0.927

  • 10047 measured reflections

  • 4689 independent reflections

  • 4181 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.076

  • S = 1.03

  • 4689 reflections

  • 255 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2045 Friedel pairs

  • Flack parameter: 0.04 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 2.01 2.7515 (18) 150
C12—H12⋯Cl2ii 0.93 2.68 3.485 (3) 145
C20—H20⋯O1iii 0.93 2.42 3.158 (3) 136
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine derivatives are the valued heterocyclic compounds in the field of medicinal chemistry. Piperidin-4-ones are reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anti-cancer and anti-microbial activities (Perumal et al. 2001; Dimmock et al., 2001). However, introduction of certain heteroconjugate groups such as –NO, –CHO, –COCH3, –COC6H5, etc., at the ring nitrogen of 2,6-disubstituted piperidine ring system have reported to cause a major change in ring conformation, chemical shifts of carbons and associated protons in addition to the orientation of substituents (Ravindran et al., 1991; Senthilkumar et al., 1992). The crystallographic study of the title compound has been carried out to establish the molecular structure.

The piperidine ring in the molecule (Fig. 1) adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2 = 0.673 (2) Å, q3 = 0.080 (2) Å, φ2 = 70.2 (2)° and Δs(C2 & C5)= 10.5 (2)°. One of the chlorophenyl rings is almost perpendicular to the best plane of piperidine ring with a dihedral angle of 88.7 (1)°, whereas the other ring is twisted by 71.8 (1)°. The sum of the bond angles around the atom N1 (357.4°) of the piperidine ring in the molecule is in accordance with sp2 hybridized state. The chloro-acetyl group adpots a twist conformation which can be seen from the torsion angle of 91.1 (2)° [N1—C7—C8—Cl1].

The crystal packing is controlled by C—H···O, C—H···Cl and O—H···O types of intermolecular interactions, which form a three dimensional network. Atoms O2 and C20 of the molecule at (x, y, z) donate a proton to bifurcated acceptor atom O1 of the molecule at (1/2+x, 1/2-y, -1/2+z & 1/2+x, -1/2+y, z), forming two different C(9) and C(8) chains (Bernstein et al., 1995) running along the ac diagonal and b-axis, respectively, as shown in Fig. 2.

Related literature top

For general background to piperidine derivatives, see: Perumal et al. (2001); Dimmock et al. (2001); Ravindran et al. (1991); Senthilkumar et al. (1992). For the synthesis of the title compound, see: Aridoss et al. (2007). For asymmetry parameters, see: Nardelli (1983). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of N-chloroacetyl-3,5-dimethyl-2,6-bis(o-chlorophenyl piperridin-4-one1 (50 mmol), sodiumacetate trihydrate (150 mmol), hydroxylamine hydrochloride (60 mmol) and 50 ml of ethanol were taken in a RB flask. The reaction mixture was refluxed for about half an hour. The progress of the reaction was monitored by TLC. After the usual workup, the oxime was purified by column chromatography and the single crystals were grwon by slow evaporation using ethanol as solvent (Aridoss et al., 2007).

Refinement top

H atoms were positioned geometrically (C—H = 0.93 - 0.98 Å, O—H = 0.82Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl, 1.5eq(O) for oxygen H and 1.2 Ueq(C) for other H atoms.

Structure description top

Piperidine derivatives are the valued heterocyclic compounds in the field of medicinal chemistry. Piperidin-4-ones are reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anti-cancer and anti-microbial activities (Perumal et al. 2001; Dimmock et al., 2001). However, introduction of certain heteroconjugate groups such as –NO, –CHO, –COCH3, –COC6H5, etc., at the ring nitrogen of 2,6-disubstituted piperidine ring system have reported to cause a major change in ring conformation, chemical shifts of carbons and associated protons in addition to the orientation of substituents (Ravindran et al., 1991; Senthilkumar et al., 1992). The crystallographic study of the title compound has been carried out to establish the molecular structure.

The piperidine ring in the molecule (Fig. 1) adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2 = 0.673 (2) Å, q3 = 0.080 (2) Å, φ2 = 70.2 (2)° and Δs(C2 & C5)= 10.5 (2)°. One of the chlorophenyl rings is almost perpendicular to the best plane of piperidine ring with a dihedral angle of 88.7 (1)°, whereas the other ring is twisted by 71.8 (1)°. The sum of the bond angles around the atom N1 (357.4°) of the piperidine ring in the molecule is in accordance with sp2 hybridized state. The chloro-acetyl group adpots a twist conformation which can be seen from the torsion angle of 91.1 (2)° [N1—C7—C8—Cl1].

The crystal packing is controlled by C—H···O, C—H···Cl and O—H···O types of intermolecular interactions, which form a three dimensional network. Atoms O2 and C20 of the molecule at (x, y, z) donate a proton to bifurcated acceptor atom O1 of the molecule at (1/2+x, 1/2-y, -1/2+z & 1/2+x, -1/2+y, z), forming two different C(9) and C(8) chains (Bernstein et al., 1995) running along the ac diagonal and b-axis, respectively, as shown in Fig. 2.

For general background to piperidine derivatives, see: Perumal et al. (2001); Dimmock et al. (2001); Ravindran et al. (1991); Senthilkumar et al. (1992). For the synthesis of the title compound, see: Aridoss et al. (2007). For asymmetry parameters, see: Nardelli (1983). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the thermal ellipsoids are drawn at 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down a–axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-chloroacetyl-2,6-bis(2-chlorophenyl)-3,5-dimethyl-piperidin-4-one oxime top
Crystal data top
C21H21Cl3N2O2F(000) = 912
Mr = 439.75Dx = 1.371 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1231 reflections
a = 9.8147 (6) Åθ = 2.5–28.3°
b = 15.5929 (11) ŵ = 0.45 mm1
c = 13.9498 (9) ÅT = 293 K
β = 93.529 (4)°Block, colorless
V = 2130.8 (2) Å30.23 × 0.19 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4689 independent reflections
Radiation source: fine-focus sealed tube4181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω and φ scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.903, Tmax = 0.927k = 2020
10047 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.6047P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4689 reflectionsΔρmax = 0.20 e Å3
255 parametersΔρmin = 0.18 e Å3
2 restraintsAbsolute structure: Flack (1983), 2045 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (4)
Crystal data top
C21H21Cl3N2O2V = 2130.8 (2) Å3
Mr = 439.75Z = 4
Monoclinic, CcMo Kα radiation
a = 9.8147 (6) ŵ = 0.45 mm1
b = 15.5929 (11) ÅT = 293 K
c = 13.9498 (9) Å0.23 × 0.19 × 0.17 mm
β = 93.529 (4)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4689 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4181 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.927Rint = 0.019
10047 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.20 e Å3
S = 1.03Δρmin = 0.18 e Å3
4689 reflectionsAbsolute structure: Flack (1983), 2045 Friedel pairs
255 parametersAbsolute structure parameter: 0.04 (4)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.88541 (8)0.18026 (6)0.71303 (5)0.0929 (3)
Cl20.40087 (5)0.06564 (4)0.47110 (4)0.05560 (15)
Cl31.07034 (7)0.00744 (6)0.60948 (5)0.0826 (2)
O10.57421 (15)0.18007 (9)0.60868 (9)0.0470 (3)
O20.91903 (18)0.31451 (10)0.26625 (12)0.0605 (4)
H2A0.97460.33230.22950.091*
N10.71338 (13)0.12798 (9)0.49843 (9)0.0296 (3)
C20.64401 (17)0.18068 (11)0.42143 (12)0.0328 (3)
H20.57400.21410.45190.039*
C30.74830 (19)0.24562 (13)0.38710 (13)0.0400 (4)
H30.70490.27790.33320.048*
C40.87049 (17)0.19941 (13)0.35168 (12)0.0372 (4)
C50.89159 (17)0.10640 (13)0.37891 (12)0.0365 (4)
H50.83380.07250.33340.044*
C60.84595 (16)0.08546 (12)0.48021 (11)0.0326 (4)
H60.91570.10720.52740.039*
C70.67616 (17)0.13972 (11)0.58982 (12)0.0334 (4)
C80.7634 (2)0.10242 (15)0.67283 (13)0.0480 (5)
H8A0.80930.05110.65230.058*
H8B0.70660.08700.72470.058*
C90.56989 (17)0.12926 (12)0.34100 (11)0.0343 (4)
C100.45857 (18)0.07723 (13)0.35647 (13)0.0403 (4)
C110.3877 (2)0.03212 (19)0.28473 (16)0.0584 (6)
H110.31460.00270.29870.070*
C120.4266 (2)0.0394 (2)0.19198 (18)0.0749 (8)
H120.37980.00940.14270.090*
C130.5331 (2)0.0905 (2)0.17247 (14)0.0668 (7)
H130.55850.09560.10960.080*
C140.6050 (2)0.13518 (15)0.24530 (13)0.0467 (5)
H140.67790.16980.23030.056*
C150.7918 (3)0.30940 (15)0.46641 (19)0.0625 (6)
H15A0.83600.27920.51960.094*
H15B0.71270.33860.48730.094*
H15C0.85390.35040.44210.094*
N160.95359 (17)0.23024 (11)0.29455 (11)0.0465 (4)
C171.0382 (2)0.07602 (18)0.36986 (17)0.0626 (7)
H17A1.06630.08940.30690.094*
H17B1.04300.01520.37990.094*
H17C1.09740.10440.41720.094*
C180.83630 (18)0.01119 (13)0.49265 (12)0.0383 (4)
C190.9322 (2)0.05775 (16)0.54924 (15)0.0545 (6)
C200.9212 (3)0.14576 (19)0.5596 (2)0.0722 (8)
H200.98460.17540.59930.087*
C210.8168 (3)0.18886 (17)0.5115 (2)0.0773 (9)
H210.80930.24790.51860.093*
C220.7226 (3)0.14545 (15)0.4525 (2)0.0633 (6)
H220.65280.17510.41870.076*
C230.7326 (2)0.05725 (13)0.44401 (14)0.0442 (4)
H230.66820.02810.40470.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0956 (5)0.1161 (7)0.0641 (4)0.0307 (5)0.0182 (3)0.0161 (4)
Cl20.0480 (2)0.0744 (4)0.0455 (2)0.0132 (3)0.01178 (18)0.0075 (3)
Cl30.0570 (3)0.1203 (6)0.0682 (4)0.0274 (4)0.0150 (3)0.0165 (4)
O10.0603 (8)0.0469 (8)0.0361 (6)0.0160 (7)0.0201 (6)0.0008 (6)
O20.0812 (10)0.0457 (9)0.0588 (9)0.0093 (8)0.0375 (8)0.0098 (7)
N10.0321 (6)0.0311 (7)0.0265 (6)0.0048 (6)0.0077 (5)0.0017 (6)
C20.0351 (7)0.0332 (9)0.0312 (7)0.0075 (7)0.0108 (6)0.0053 (8)
C30.0492 (9)0.0333 (9)0.0389 (8)0.0022 (8)0.0157 (7)0.0065 (8)
C40.0406 (9)0.0426 (10)0.0291 (7)0.0039 (8)0.0081 (6)0.0013 (8)
C50.0358 (8)0.0445 (11)0.0302 (7)0.0046 (8)0.0108 (6)0.0025 (8)
C60.0299 (7)0.0418 (10)0.0267 (7)0.0050 (7)0.0059 (6)0.0018 (7)
C70.0424 (9)0.0309 (9)0.0280 (7)0.0008 (8)0.0104 (6)0.0002 (7)
C80.0569 (11)0.0593 (14)0.0278 (8)0.0018 (10)0.0043 (7)0.0017 (9)
C90.0350 (8)0.0384 (10)0.0297 (7)0.0113 (8)0.0043 (6)0.0045 (8)
C100.0354 (8)0.0479 (12)0.0376 (8)0.0073 (8)0.0037 (7)0.0014 (9)
C110.0411 (10)0.0771 (17)0.0569 (12)0.0041 (11)0.0015 (9)0.0111 (12)
C120.0513 (12)0.121 (2)0.0518 (12)0.0018 (15)0.0036 (10)0.0304 (15)
C130.0527 (12)0.113 (2)0.0341 (10)0.0121 (14)0.0031 (9)0.0081 (12)
C140.0440 (9)0.0632 (14)0.0332 (9)0.0088 (9)0.0047 (7)0.0068 (9)
C150.0833 (16)0.0416 (12)0.0662 (14)0.0151 (12)0.0334 (12)0.0112 (11)
N160.0512 (9)0.0489 (10)0.0408 (8)0.0070 (8)0.0159 (7)0.0031 (8)
C170.0455 (11)0.0840 (18)0.0611 (12)0.0212 (12)0.0255 (10)0.0193 (13)
C180.0403 (8)0.0427 (10)0.0332 (8)0.0137 (9)0.0121 (7)0.0077 (8)
C190.0533 (11)0.0663 (15)0.0452 (10)0.0238 (11)0.0137 (9)0.0159 (11)
C200.0852 (19)0.0641 (17)0.0700 (16)0.0433 (16)0.0252 (14)0.0256 (14)
C210.100 (2)0.0420 (14)0.095 (2)0.0247 (15)0.0457 (18)0.0173 (15)
C220.0753 (15)0.0421 (13)0.0755 (15)0.0036 (12)0.0277 (13)0.0037 (12)
C230.0492 (10)0.0376 (11)0.0473 (10)0.0089 (9)0.0137 (8)0.0043 (9)
Geometric parameters (Å, º) top
Cl1—C81.772 (2)C9—C141.402 (2)
Cl2—C101.7383 (18)C10—C111.377 (3)
Cl3—C191.738 (3)C11—C121.376 (3)
O1—C71.224 (2)C11—H110.9300
O2—N161.408 (2)C12—C131.355 (4)
O2—H2A0.8200C12—H120.9300
N1—C71.360 (2)C13—C141.388 (3)
N1—C21.484 (2)C13—H130.9300
N1—C61.496 (2)C14—H140.9300
C2—C91.527 (3)C15—H15A0.9600
C2—C31.537 (2)C15—H15B0.9600
C2—H20.9800C15—H15C0.9600
C3—C41.508 (2)C17—H17A0.9600
C3—C151.529 (3)C17—H17B0.9600
C3—H30.9800C17—H17C0.9600
C4—N161.269 (2)C18—C231.388 (3)
C4—C51.510 (3)C18—C191.394 (3)
C5—C171.527 (3)C19—C201.385 (4)
C5—C61.543 (2)C20—C211.367 (4)
C5—H50.9800C20—H200.9300
C6—C181.521 (3)C21—C221.377 (4)
C6—H60.9800C21—H210.9300
C7—C81.513 (3)C22—C231.384 (3)
C8—H8A0.9700C22—H220.9300
C8—H8B0.9700C23—H230.9300
C9—C101.388 (3)
N16—O2—H2A109.5C9—C10—Cl2120.52 (14)
C7—N1—C2117.79 (13)C12—C11—C10118.9 (2)
C7—N1—C6120.37 (13)C12—C11—H11120.5
C2—N1—C6119.18 (12)C10—C11—H11120.5
N1—C2—C9114.70 (14)C13—C12—C11120.0 (2)
N1—C2—C3107.79 (14)C13—C12—H12120.0
C9—C2—C3114.42 (14)C11—C12—H12120.0
N1—C2—H2106.4C12—C13—C14120.8 (2)
C9—C2—H2106.4C12—C13—H13119.6
C3—C2—H2106.4C14—C13—H13119.6
C4—C3—C15110.84 (17)C13—C14—C9121.3 (2)
C4—C3—C2110.21 (15)C13—C14—H14119.3
C15—C3—C2111.38 (15)C9—C14—H14119.3
C4—C3—H3108.1C3—C15—H15A109.5
C15—C3—H3108.1C3—C15—H15B109.5
C2—C3—H3108.1H15A—C15—H15B109.5
N16—C4—C3125.40 (18)C3—C15—H15C109.5
N16—C4—C5115.98 (16)H15A—C15—H15C109.5
C3—C4—C5118.42 (14)H15B—C15—H15C109.5
C4—C5—C17113.10 (16)C4—N16—O2112.12 (16)
C4—C5—C6112.98 (14)C5—C17—H17A109.5
C17—C5—C6109.75 (15)C5—C17—H17B109.5
C4—C5—H5106.9H17A—C17—H17B109.5
C17—C5—H5106.9C5—C17—H17C109.5
C6—C5—H5106.9H17A—C17—H17C109.5
N1—C6—C18111.03 (13)H17B—C17—H17C109.5
N1—C6—C5111.49 (13)C23—C18—C19117.14 (19)
C18—C6—C5109.74 (14)C23—C18—C6120.39 (16)
N1—C6—H6108.2C19—C18—C6122.42 (19)
C18—C6—H6108.2C20—C19—C18121.4 (2)
C5—C6—H6108.2C20—C19—Cl3117.39 (19)
O1—C7—N1122.74 (16)C18—C19—Cl3121.19 (18)
O1—C7—C8117.68 (15)C21—C20—C19119.8 (2)
N1—C7—C8119.57 (15)C21—C20—H20120.1
C7—C8—Cl1108.57 (15)C19—C20—H20120.1
C7—C8—H8A110.0C20—C21—C22120.5 (2)
Cl1—C8—H8A110.0C20—C21—H21119.8
C7—C8—H8B110.0C22—C21—H21119.8
Cl1—C8—H8B110.0C21—C22—C23119.4 (3)
H8A—C8—H8B108.4C21—C22—H22120.3
C10—C9—C14115.36 (17)C23—C22—H22120.3
C10—C9—C2122.45 (14)C22—C23—C18121.7 (2)
C14—C9—C2122.10 (17)C22—C23—H23119.1
C11—C10—C9123.57 (17)C18—C23—H23119.1
C11—C10—Cl2115.90 (15)
C7—N1—C2—C9121.63 (16)C3—C2—C9—C10170.16 (16)
C6—N1—C2—C976.79 (18)N1—C2—C9—C14119.16 (18)
C7—N1—C2—C3109.65 (16)C3—C2—C9—C146.2 (2)
C6—N1—C2—C351.92 (19)C14—C9—C10—C111.6 (3)
N1—C2—C3—C458.14 (18)C2—C9—C10—C11178.1 (2)
C9—C2—C3—C470.73 (19)C14—C9—C10—Cl2178.56 (15)
N1—C2—C3—C1565.3 (2)C2—C9—C10—Cl22.0 (2)
C9—C2—C3—C15165.81 (17)C9—C10—C11—C121.1 (4)
C15—C3—C4—N1677.9 (2)Cl2—C10—C11—C12179.0 (2)
C2—C3—C4—N16158.32 (18)C10—C11—C12—C130.0 (4)
C15—C3—C4—C5107.4 (2)C11—C12—C13—C140.6 (4)
C2—C3—C4—C516.4 (2)C12—C13—C14—C90.1 (4)
N16—C4—C5—C1724.7 (2)C10—C9—C14—C131.0 (3)
C3—C4—C5—C17160.10 (18)C2—C9—C14—C13177.52 (19)
N16—C4—C5—C6150.15 (16)C3—C4—N16—O20.2 (3)
C3—C4—C5—C634.6 (2)C5—C4—N16—O2174.59 (16)
C7—N1—C6—C1877.29 (19)N1—C6—C18—C2352.7 (2)
C2—N1—C6—C18121.62 (16)C5—C6—C18—C2371.05 (19)
C7—N1—C6—C5160.01 (15)N1—C6—C18—C19129.93 (16)
C2—N1—C6—C51.1 (2)C5—C6—C18—C19106.36 (18)
C4—C5—C6—N142.4 (2)C23—C18—C19—C202.6 (3)
C17—C5—C6—N1169.59 (18)C6—C18—C19—C20179.90 (18)
C4—C5—C6—C18165.79 (15)C23—C18—C19—Cl3177.34 (14)
C17—C5—C6—C1867.0 (2)C6—C18—C19—Cl30.2 (2)
C2—N1—C7—O112.7 (2)C18—C19—C20—C211.9 (3)
C6—N1—C7—O1174.07 (17)Cl3—C19—C20—C21178.02 (19)
C2—N1—C7—C8166.86 (16)C19—C20—C21—C220.2 (4)
C6—N1—C7—C85.5 (2)C20—C21—C22—C231.5 (4)
O1—C7—C8—Cl188.46 (18)C21—C22—C23—C180.7 (3)
N1—C7—C8—Cl191.14 (18)C19—C18—C23—C221.3 (3)
N1—C2—C9—C1064.5 (2)C6—C18—C23—C22178.83 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.822.012.7515 (18)150
C12—H12···Cl2ii0.932.683.485 (3)145
C20—H20···O1iii0.932.423.158 (3)136
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y, z1/2; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC21H21Cl3N2O2
Mr439.75
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)9.8147 (6), 15.5929 (11), 13.9498 (9)
β (°) 93.529 (4)
V3)2130.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.23 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.903, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
10047, 4689, 4181
Rint0.019
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 1.03
No. of reflections4689
No. of parameters255
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18
Absolute structureFlack (1983), 2045 Friedel pairs
Absolute structure parameter0.04 (4)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.822.012.7515 (18)150.3
C12—H12···Cl2ii0.932.683.485 (3)144.8
C20—H20···O1iii0.932.423.158 (3)136.3
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y, z1/2; (iii) x+1/2, y1/2, z.
 

Acknowledgements

KR thanks the TBI Consultancy, University of Madras, India, for the data collection and the management of Kandaswami Kandar's College, Velur, Namakkal, Tamilnadu, India, for the encouragement to pursue the programme.

References

First citationAridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007). Spectrochim. Acta Part A, 68, 1153–1163.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santhos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationRavindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. J. (1991). J. Org. Chem. 56, 4833–4840.  CrossRef CAS Web of Science Google Scholar
First citationSenthilkumar, U. P., Jeyaraman, R., Murray, R. W. & Singh, M. J. (1992). J. Org. Chem. 57, 6006–6014.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds