organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-3-methyl-1H-imidazo[4,5-b]pyridin-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fés, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, Lille, France, cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 April 2010; accepted 6 April 2010; online 14 April 2010)

The title compound, C7H6BrN3O, was obtained from the reaction of 6-bromo-1H-imidazo[4,5-b]pyridin-2(3H)-one with methyl iodide. All non-H atoms lie in a common plane [r.m.s deviation = 0.017 (1) Å]. The amino group is a hydrogen-bond donor to the carbonyl group of an inversion-related mol­ecule, the pair of hydrogen bonds giving rise to a hydrogen-bonded dimer.

Related literature

For the synthesis of the title compound, see: Grivas & Lindström (1995[Grivas, S. & Lindström, S. (1995). J. Heterocycl. Chem. 32, 467-471.]); Smolyar et al. (2007[Smolyar, N. N., Lopatinskaya, Kh. Ya., Vasilechko, A. B., Lomov, D. A. & Yutilov, Yu. M. (2007). Russ. J. Org. Chem. 43, 417-421.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6BrN3O

  • Mr = 228.06

  • Triclinic, [P \overline 1]

  • a = 4.4151 (1) Å

  • b = 9.6004 (2) Å

  • c = 10.5330 (3) Å

  • α = 116.248 (1)°

  • β = 93.074 (2)°

  • γ = 91.687 (1)°

  • V = 399.14 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.10 mm−1

  • T = 293 K

  • 0.36 × 0.17 × 0.10 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.478, Tmax = 0.630

  • 4790 measured reflections

  • 1401 independent reflections

  • 1199 reflections with I > 2σ(I)

  • Rint = 0.027

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.077

  • S = 1.05

  • 1401 reflections

  • 114 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.86 (1) 1.95 (1) 2.804 (3) 176 (4)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

6-Bromo-1H-imidazo[4,5-b]pyridine-2(3H)-one reacts with organic compounds to form pharmaceutical active compounds. It is easily methylated; in this study, it is methylated by methyl iodide under catalytic conditions. The mono N-methylated compound (Scheme I) is planar [r.m.s 0.017 (1) Å]. The amino group is hydrogen-bond donor to the carbonyl group of an inversion-related molecule to generate a hydrogen-bonded dimer (Fig. 1).

Related literature top

For the synthesis of the title compound, see: Grivas & Lindström (1995); Smolyar et al. (2007).

Experimental top

6-Bromo-1H-imidazo[4,5-b]pyridine-2(3H)-thione (1 mmol), potassium carbonate (4 mmol), tetra-n-butylammonium bromide (0.1 mmol) and methyl iodide (2.5 mmol) in DMF (15 ml) were stirred for 48 hours. After completion of reaction (as monitored by TLC), the salt was filtered and the solvent removed under reduced pressure. The resulting residue was purified by column chromatography on silica gel using ethyl acetate/hexane (1/2) as eluent. Yellow crystals was isolated when the solvent was allowed to evaporate.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino H atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of N—H = 0.86 (1) Å.

Structure description top

6-Bromo-1H-imidazo[4,5-b]pyridine-2(3H)-one reacts with organic compounds to form pharmaceutical active compounds. It is easily methylated; in this study, it is methylated by methyl iodide under catalytic conditions. The mono N-methylated compound (Scheme I) is planar [r.m.s 0.017 (1) Å]. The amino group is hydrogen-bond donor to the carbonyl group of an inversion-related molecule to generate a hydrogen-bonded dimer (Fig. 1).

For the synthesis of the title compound, see: Grivas & Lindström (1995); Smolyar et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound forming a centrosymmetric dimer at the 50% probability level; H atoms are drawn as spheres of arbitrary radii.
6-Bromo-3-methyl-1H-imidazo[4,5-b]pyridin-2(3H)-one top
Crystal data top
C7H6BrN3OZ = 2
Mr = 228.06F(000) = 224
Triclinic, P1Dx = 1.898 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.4151 (1) ÅCell parameters from 2054 reflections
b = 9.6004 (2) Åθ = 2.4–24.1°
c = 10.5330 (3) ŵ = 5.10 mm1
α = 116.248 (1)°T = 293 K
β = 93.074 (2)°Prism, yellow
γ = 91.687 (1)°0.36 × 0.17 × 0.10 mm
V = 399.14 (2) Å3
Data collection top
Bruker X8 APEXII
diffractometer
1401 independent reflections
Radiation source: fine-focus sealed tube1199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 24.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 54
Tmin = 0.478, Tmax = 0.630k = 1111
4790 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.0118P]
where P = (Fo2 + 2Fc2)/3
1401 reflections(Δ/σ)max = 0.001
114 parametersΔρmax = 0.52 e Å3
1 restraintΔρmin = 0.32 e Å3
Crystal data top
C7H6BrN3Oγ = 91.687 (1)°
Mr = 228.06V = 399.14 (2) Å3
Triclinic, P1Z = 2
a = 4.4151 (1) ÅMo Kα radiation
b = 9.6004 (2) ŵ = 5.10 mm1
c = 10.5330 (3) ÅT = 293 K
α = 116.248 (1)°0.36 × 0.17 × 0.10 mm
β = 93.074 (2)°
Data collection top
Bruker X8 APEXII
diffractometer
1401 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1199 reflections with I > 2σ(I)
Tmin = 0.478, Tmax = 0.630Rint = 0.027
4790 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.52 e Å3
1401 reflectionsΔρmin = 0.32 e Å3
114 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.91934 (8)0.96903 (4)0.29671 (4)0.04832 (17)
O10.0726 (5)0.3085 (3)0.3562 (3)0.0478 (6)
N10.7410 (6)0.4941 (3)0.1298 (3)0.0393 (6)
N20.4091 (6)0.3574 (3)0.2169 (3)0.0368 (6)
N30.2638 (6)0.5575 (3)0.4045 (3)0.0373 (6)
H30.165 (7)0.603 (4)0.478 (2)0.052 (11)*
C10.8436 (8)0.6389 (4)0.1562 (3)0.0395 (8)
H10.97370.65060.09460.047*
C20.7621 (7)0.7715 (4)0.2724 (3)0.0362 (7)
C30.5682 (7)0.7635 (3)0.3680 (3)0.0357 (7)
H3A0.51570.85170.44620.043*
C40.4584 (7)0.6171 (4)0.3399 (3)0.0332 (7)
C50.5521 (7)0.4890 (4)0.2200 (3)0.0326 (7)
C60.2306 (7)0.3988 (4)0.3293 (3)0.0359 (7)
C70.4409 (9)0.1982 (4)0.1123 (4)0.0532 (10)
H7A0.61410.15770.14060.080*
H7B0.46810.19600.02160.080*
H7C0.26130.13570.10550.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0551 (3)0.0388 (2)0.0537 (3)0.00649 (16)0.00846 (17)0.02302 (18)
O10.0560 (15)0.0356 (12)0.0502 (14)0.0057 (11)0.0173 (12)0.0168 (11)
N10.0399 (15)0.0385 (15)0.0382 (15)0.0040 (12)0.0119 (12)0.0146 (13)
N20.0420 (15)0.0298 (13)0.0356 (14)0.0018 (11)0.0087 (12)0.0112 (11)
N30.0406 (16)0.0336 (14)0.0361 (15)0.0011 (12)0.0140 (13)0.0131 (12)
C10.0404 (18)0.0410 (18)0.0380 (18)0.0024 (14)0.0119 (15)0.0175 (16)
C20.0372 (17)0.0328 (16)0.0416 (19)0.0016 (13)0.0022 (15)0.0194 (15)
C30.0367 (17)0.0305 (16)0.0381 (17)0.0040 (13)0.0074 (14)0.0131 (14)
C40.0294 (16)0.0336 (16)0.0353 (17)0.0032 (13)0.0029 (13)0.0139 (14)
C50.0305 (16)0.0308 (15)0.0344 (16)0.0030 (13)0.0015 (13)0.0126 (13)
C60.0349 (17)0.0367 (17)0.0357 (17)0.0011 (14)0.0064 (14)0.0155 (14)
C70.067 (3)0.0341 (18)0.049 (2)0.0033 (17)0.0166 (19)0.0079 (16)
Geometric parameters (Å, º) top
Br1—C21.902 (3)C1—C21.394 (5)
O1—C61.233 (4)C1—H10.9300
N1—C51.313 (4)C2—C31.382 (4)
N1—C11.349 (4)C3—C41.369 (4)
N2—C61.373 (4)C3—H3A0.9300
N2—C51.382 (4)C4—C51.411 (4)
N2—C71.452 (4)C7—H7A0.9600
N3—C61.370 (4)C7—H7B0.9600
N3—C41.381 (4)C7—H7C0.9600
N3—H30.856 (10)
C5—N1—C1114.5 (3)C3—C4—N3134.7 (3)
C6—N2—C5109.8 (2)C3—C4—C5118.7 (3)
C6—N2—C7124.2 (3)N3—C4—C5106.6 (3)
C5—N2—C7126.1 (3)N1—C5—N2126.7 (3)
C6—N3—C4110.0 (3)N1—C5—C4126.5 (3)
C6—N3—H3119 (3)N2—C5—C4106.7 (3)
C4—N3—H3131 (3)O1—C6—N3127.3 (3)
N1—C1—C2122.5 (3)O1—C6—N2125.8 (3)
N1—C1—H1118.7N3—C6—N2106.9 (3)
C2—C1—H1118.7N2—C7—H7A109.5
C3—C2—C1122.1 (3)N2—C7—H7B109.5
C3—C2—Br1119.5 (2)H7A—C7—H7B109.5
C1—C2—Br1118.4 (2)N2—C7—H7C109.5
C4—C3—C2115.6 (3)H7A—C7—H7C109.5
C4—C3—H3A122.2H7B—C7—H7C109.5
C2—C3—H3A122.2
C5—N1—C1—C21.8 (5)C6—N2—C5—C40.2 (3)
N1—C1—C2—C30.5 (5)C7—N2—C5—C4179.4 (3)
N1—C1—C2—Br1179.4 (2)C3—C4—C5—N10.6 (5)
C1—C2—C3—C40.9 (5)N3—C4—C5—N1179.2 (3)
Br1—C2—C3—C4178.0 (2)C3—C4—C5—N2179.9 (3)
C2—C3—C4—N3179.4 (3)N3—C4—C5—N20.3 (3)
C2—C3—C4—C50.8 (4)C4—N3—C6—O1179.5 (3)
C6—N3—C4—C3179.6 (3)C4—N3—C6—N20.7 (4)
C6—N3—C4—C50.6 (3)C5—N2—C6—O1179.7 (3)
C1—N1—C5—N2178.8 (3)C7—N2—C6—O10.8 (5)
C1—N1—C5—C41.9 (5)C5—N2—C6—N30.5 (3)
C6—N2—C5—N1179.6 (3)C7—N2—C6—N3179.0 (3)
C7—N2—C5—N10.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.86 (1)1.95 (1)2.804 (3)176 (4)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H6BrN3O
Mr228.06
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)4.4151 (1), 9.6004 (2), 10.5330 (3)
α, β, γ (°)116.248 (1), 93.074 (2), 91.687 (1)
V3)399.14 (2)
Z2
Radiation typeMo Kα
µ (mm1)5.10
Crystal size (mm)0.36 × 0.17 × 0.10
Data collection
DiffractometerBruker X8 APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.478, 0.630
No. of measured, independent and
observed [I > 2σ(I)] reflections
4790, 1401, 1199
Rint0.027
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.05
No. of reflections1401
No. of parameters114
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.32

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.86 (1)1.95 (1)2.804 (3)176 (4)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors thank the University Sidi Mohammed Ben Abdallah, the Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrivas, S. & Lindström, S. (1995). J. Heterocycl. Chem. 32, 467-471.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmolyar, N. N., Lopatinskaya, Kh. Ya., Vasilechko, A. B., Lomov, D. A. & Yutilov, Yu. M. (2007). Russ. J. Org. Chem. 43, 417–421.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds