metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-methyl­quinolin-8-olato-κ2N,O)­lead(II)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 5 April 2010; accepted 6 April 2010; online 17 April 2010)

The PbII atom in the title compound, [Pb(C10H8NO)2], is chelated by two oxine (2-methyl­quinolin-8-olate) anions in a Ψ-trigonal–bipyramidal geometry; the N atoms occupy the axial sites. The mol­ecule lies about a twofold rotation axis.

Related literature

For the crystal structure of bis­(quinolin-8-olato)lead(II), see: Zhu et al. (2005[Zhu, L.-H., Zeng, M.-H. & Ng, S. W. (2005). Acta Cryst. E61, m1082-m1084.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C10H8NO)2]

  • Mr = 523.54

  • Monoclinic, C 2/c

  • a = 22.439 (2) Å

  • b = 4.7636 (5) Å

  • c = 15.7139 (15) Å

  • β = 101.167 (1)°

  • V = 1647.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.25 mm−1

  • T = 223 K

  • 0.30 × 0.06 × 0.04 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.149, Tmax = 0.685

  • 7405 measured reflections

  • 1890 independent reflections

  • 1765 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.063

  • S = 1.02

  • 1890 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 1.69 e Å−3

  • Δρmin = −1.50 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pb1—O1 2.262 (3)
Pb1—N1 2.507 (3)
O1—Pb1—O1i 93.6 (2)
N1—Pb1—N1i 135.6 (1)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Bis(quinolin-8-olato)lead(II) exists as a centrosymmetric dinuclear entity in which one of the two oxygen atoms also functions as a bridge. As adjacent molecules are linked by a weaker Pb···O interaction to generate a chain motif, the metal atom is regarded as being six-coordinate in a Ψ-pentagonal bipyramidal geometry, the lone pair electrons occupying an axial site (Zhu et al., 2005). In the present methyl-substituted analogue, the substituent is able to block the approach of neighboring potentially coordinating atoms so that the compound is only four-coordinate (Scheme I, Fig. 1). The coordination polyhedron is a Ψ-trigonal bipyramid and the lone pair electrons occupy an equatorial site. The axial sites are occupied by the nitrogen atoms and the oxygen atoms occupy the other equatorial sites. The lone pair compresses the O–Pb–O angle (Table 1).

Related literature top

For the crystal structure of bis(quinolin-8-olato)lead(II), see: Zhu et al. (2005).

Experimental top

Lead (II) acetate trihydrate (1 mmol, 0.38 g), 2-methyl-8-hydroxyquinoline (1 mmol, 0.16 g) and sodium azide (1 mmol, 0.13 g) were loaded in to a convection tube; the tube was filled with 2:1 methanol/water and kept at 333 K. Crystals were collected after 1 week (m.p. > 543 K).

Refinement top

H-atoms were placed in calculated positions (C—H 0.94 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The final difference Fourier map had a large peak/deep hole in the vicinity of the lead atom.

Structure description top

Bis(quinolin-8-olato)lead(II) exists as a centrosymmetric dinuclear entity in which one of the two oxygen atoms also functions as a bridge. As adjacent molecules are linked by a weaker Pb···O interaction to generate a chain motif, the metal atom is regarded as being six-coordinate in a Ψ-pentagonal bipyramidal geometry, the lone pair electrons occupying an axial site (Zhu et al., 2005). In the present methyl-substituted analogue, the substituent is able to block the approach of neighboring potentially coordinating atoms so that the compound is only four-coordinate (Scheme I, Fig. 1). The coordination polyhedron is a Ψ-trigonal bipyramid and the lone pair electrons occupy an equatorial site. The axial sites are occupied by the nitrogen atoms and the oxygen atoms occupy the other equatorial sites. The lone pair compresses the O–Pb–O angle (Table 1).

For the crystal structure of bis(quinolin-8-olato)lead(II), see: Zhu et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound; ellipsoids are drawn at the 50% probability level and H atoms are of arbitrary radius.
Bis(2-methylquinolin-8-olato-κ2N,O)lead(II) top
Crystal data top
[Pb(C10H8NO)2]F(000) = 992
Mr = 523.54Dx = 2.110 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2952 reflections
a = 22.439 (2) Åθ = 2.6–25.2°
b = 4.7636 (5) ŵ = 10.25 mm1
c = 15.7139 (15) ÅT = 223 K
β = 101.167 (1)°Prism, yellow
V = 1647.9 (3) Å30.30 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1890 independent reflections
Radiation source: fine-focus sealed tube1765 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2828
Tmin = 0.149, Tmax = 0.685k = 66
7405 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
1890 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 1.69 e Å3
0 restraintsΔρmin = 1.50 e Å3
Crystal data top
[Pb(C10H8NO)2]V = 1647.9 (3) Å3
Mr = 523.54Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.439 (2) ŵ = 10.25 mm1
b = 4.7636 (5) ÅT = 223 K
c = 15.7139 (15) Å0.30 × 0.06 × 0.04 mm
β = 101.167 (1)°
Data collection top
Bruker SMART APEX
diffractometer
1890 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1765 reflections with I > 2σ(I)
Tmin = 0.149, Tmax = 0.685Rint = 0.053
7405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.02Δρmax = 1.69 e Å3
1890 reflectionsΔρmin = 1.50 e Å3
115 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.50000.67661 (5)0.75000.02578 (9)
O10.55706 (16)0.3516 (7)0.6978 (2)0.0336 (8)
N10.57862 (15)0.4778 (8)0.8701 (2)0.0226 (7)
C10.6024 (2)0.2268 (10)0.7500 (3)0.0278 (10)
C20.6392 (2)0.0290 (11)0.7206 (3)0.0344 (11)
H20.63210.01690.66130.041*
C30.6864 (2)0.1029 (11)0.7771 (4)0.0393 (13)
H30.71040.23510.75470.047*
C40.6991 (2)0.0466 (10)0.8640 (4)0.0355 (11)
H40.73120.13880.90080.043*
C50.6632 (2)0.1522 (9)0.8974 (3)0.0286 (10)
C60.6149 (2)0.2861 (9)0.8407 (3)0.0237 (9)
C70.6717 (2)0.2286 (11)0.9859 (3)0.0333 (11)
H70.70270.14351.02660.040*
C80.6349 (2)0.4264 (11)1.0127 (3)0.0326 (11)
H80.64140.48031.07130.039*
C90.5878 (2)0.5476 (10)0.9526 (3)0.0263 (9)
C100.5462 (2)0.7635 (10)0.9794 (3)0.0317 (11)
H10A0.50480.72670.95010.048*
H10B0.55830.94900.96370.048*
H10C0.54870.75421.04170.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.02798 (15)0.02687 (14)0.02138 (14)0.0000.00204 (10)0.000
O10.0356 (19)0.0411 (19)0.0233 (18)0.0073 (15)0.0033 (15)0.0031 (14)
N10.0225 (18)0.0247 (18)0.0207 (18)0.0014 (15)0.0039 (14)0.0012 (15)
C10.030 (3)0.030 (2)0.025 (2)0.0004 (19)0.008 (2)0.0019 (19)
C20.034 (3)0.037 (3)0.034 (3)0.002 (2)0.012 (2)0.006 (2)
C30.032 (3)0.034 (3)0.056 (4)0.004 (2)0.019 (3)0.006 (2)
C40.025 (2)0.031 (2)0.050 (3)0.004 (2)0.007 (2)0.004 (2)
C50.021 (2)0.028 (2)0.035 (3)0.0044 (18)0.003 (2)0.0039 (19)
C60.020 (2)0.027 (2)0.025 (2)0.0052 (17)0.0053 (18)0.0028 (18)
C70.028 (3)0.039 (3)0.030 (3)0.004 (2)0.003 (2)0.010 (2)
C80.036 (3)0.040 (3)0.021 (2)0.005 (2)0.004 (2)0.000 (2)
C90.027 (2)0.028 (2)0.024 (2)0.0103 (19)0.0062 (18)0.0040 (19)
C100.036 (3)0.036 (2)0.026 (3)0.007 (2)0.012 (2)0.008 (2)
Geometric parameters (Å, º) top
Pb1—O1i2.262 (3)C4—C51.409 (7)
Pb1—O12.262 (3)C4—H40.9400
Pb1—N1i2.507 (3)C5—C71.414 (8)
Pb1—N12.507 (3)C5—C61.416 (7)
O1—C11.318 (6)C7—C81.371 (8)
N1—C91.316 (5)C7—H70.9400
N1—C61.363 (6)C8—C91.399 (7)
C1—C21.390 (7)C8—H80.9400
C1—C61.426 (7)C9—C101.501 (7)
C2—C31.393 (8)C10—H10A0.9700
C2—H20.9400C10—H10B0.9700
C3—C41.366 (8)C10—H10C0.9700
C3—H30.9400
O1—Pb1—O1i93.6 (2)C4—C5—C7124.2 (5)
O1i—Pb1—N1i69.46 (12)C4—C5—C6119.4 (5)
O1—Pb1—N1i80.42 (12)C7—C5—C6116.4 (4)
O1i—Pb1—N180.42 (12)N1—C6—C5121.5 (4)
O1—Pb1—N169.46 (12)N1—C6—C1117.2 (4)
N1—Pb1—N1i135.6 (1)C5—C6—C1121.3 (4)
C1—O1—Pb1120.4 (3)C8—C7—C5120.3 (5)
C9—N1—C6121.0 (4)C8—C7—H7119.9
C9—N1—Pb1126.8 (3)C5—C7—H7119.9
C6—N1—Pb1112.1 (3)C7—C8—C9119.9 (4)
O1—C1—C2122.4 (5)C7—C8—H8120.1
O1—C1—C6120.8 (4)C9—C8—H8120.1
C2—C1—C6116.8 (5)N1—C9—C8120.9 (4)
C1—C2—C3121.5 (5)N1—C9—C10117.5 (4)
C1—C2—H2119.3C8—C9—C10121.6 (4)
C3—C2—H2119.3C9—C10—H10A109.5
C4—C3—C2122.3 (5)C9—C10—H10B109.5
C4—C3—H3118.9H10A—C10—H10B109.5
C2—C3—H3118.9C9—C10—H10C109.5
C3—C4—C5118.8 (5)H10A—C10—H10C109.5
C3—C4—H4120.6H10B—C10—H10C109.5
C5—C4—H4120.6
O1i—Pb1—O1—C180.4 (3)C9—N1—C6—C1178.9 (4)
N1i—Pb1—O1—C1148.9 (4)Pb1—N1—C6—C11.1 (5)
N1—Pb1—O1—C12.0 (3)C4—C5—C6—N1179.4 (4)
O1i—Pb1—N1—C983.2 (4)C7—C5—C6—N10.1 (6)
O1—Pb1—N1—C9179.2 (4)C4—C5—C6—C10.9 (7)
N1i—Pb1—N1—C9130.3 (4)C7—C5—C6—C1179.6 (4)
O1i—Pb1—N1—C699.1 (3)O1—C1—C6—N10.7 (6)
O1—Pb1—N1—C61.6 (3)C2—C1—C6—N1179.4 (4)
N1i—Pb1—N1—C652.0 (3)O1—C1—C6—C5179.6 (4)
Pb1—O1—C1—C2179.0 (4)C2—C1—C6—C50.9 (7)
Pb1—O1—C1—C62.4 (6)C4—C5—C7—C8179.4 (5)
O1—C1—C2—C3179.2 (5)C6—C5—C7—C81.1 (7)
C6—C1—C2—C30.6 (7)C5—C7—C8—C91.7 (7)
C1—C2—C3—C40.2 (8)C6—N1—C9—C80.2 (6)
C2—C3—C4—C50.2 (8)Pb1—N1—C9—C8177.7 (3)
C3—C4—C5—C7180.0 (5)C6—N1—C9—C10179.2 (4)
C3—C4—C5—C60.5 (7)Pb1—N1—C9—C101.7 (6)
C9—N1—C6—C50.8 (6)C7—C8—C9—N11.0 (7)
Pb1—N1—C6—C5178.6 (3)C7—C8—C9—C10179.6 (5)
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Pb(C10H8NO)2]
Mr523.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)22.439 (2), 4.7636 (5), 15.7139 (15)
β (°) 101.167 (1)
V3)1647.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)10.25
Crystal size (mm)0.30 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.149, 0.685
No. of measured, independent and
observed [I > 2σ(I)] reflections
7405, 1890, 1765
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.063, 1.02
No. of reflections1890
No. of parameters115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.69, 1.50

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Pb1—O12.262 (3)Pb1—N12.507 (3)
O1—Pb1—O1i93.6 (2)N1—Pb1—N1i135.6 (1)
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

We thank the Graduate Study Council of Shahid Beheshti University (project No. 600/2097) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationZhu, L.-H., Zeng, M.-H. & Ng, S. W. (2005). Acta Cryst. E61, m1082–m1084.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds