organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2,3-di-O-acetyl-4-O-levulinoyl-1-O-(2,2,2-tri­chloro-2-imino­ethyl)-L-ido­pyran­osiduronate

aResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
*Correspondence e-mail: wgh@rcees.ac.cn

(Received 4 March 2010; accepted 23 March 2010; online 27 March 2010)

In the title compound, C18H22Cl3NO11, a novel derivative of L-idopyran­osiduronic acid, the six-membered ring adopts a chair conformation.

Related literature

For background to L-iduronic acids, see: Capila & Linhardt (2002[Capila, I. & Linhardt, R. J. (2002). Angew. Chem. Int. Ed. 41, 390-412.]); Jobron & Jacquinet (1998[Jobron, L. R. & Jacquinet, J. C. (1998). Carbohydr. Res. 305, 181-191.]); Lee et al. (2004[Lee, J. C., Lu, X. A., Kulkarni, S. S., Wen, Y. S. & Hung, S. C. (2004). J. Am. Chem. Soc. 126, 476-477.]). For the synthesis of iduronic acid derivatives, see: Yu et al. (2004[Yu, H. N., Furukawa, J. I., Ikeda, T. & Wong, C. H. (2004). Org. Lett. 6, 723-726.]); Sanjoy et al. (2001[Sanjoy, K. D., Jean-Maurice, M., Jacques, E., Pierre-Alexandre, D., Philippe, D., Philippe, S., Jean-Pascal, H., Jean-Marc, H., Maurice, P. & Pierre, S. (2001). Chem. Eur. J. 7, 4821-4834.]); Lubineau et al. (2000[Lubineau, A., Gavard, O., Alais, J. & Bonnaffe, D. (2000). Tetrahedron Lett. 41, 307-311.]); Lohman et al. (2003[Lohman, G. J. S., Hunt, D. K., Hogermeier, J. A. & Seeberger, P. H. (2003). J. Org. Chem. 68, 7559-7561.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22Cl3NO11

  • Mr = 534.72

  • Orthorhombic, P 21 21 21

  • a = 9.0498 (10) Å

  • b = 9.7560 (11) Å

  • c = 26.570 (3) Å

  • V = 2345.8 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.07 mm−1

  • T = 173 K

  • 0.41 × 0.30 × 0.28 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.286, Tmax = 0.395

  • 16340 measured reflections

  • 4259 independent reflections

  • 3893 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.100

  • S = 1.09

  • 4259 reflections

  • 302 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1804 Friedel pairs

  • Flack parameter: 0.023 (18)

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

L-iduronic acids are key components of numerous biologically potent oligosaccharides and glycopeptides (Capila & Linhardt, 2002). For example, heparin, heparan sulfate (Jobron & Jacquinet, 1998), dermatan sulfate (Lee et al., 2004). This series of glycosaminoglycans plays an important role in a diverse set of biological processes which all contain L-idopyranosiduronic acids. To study the structure-activity relationship of such polymers, there is a need for chemically pure oligosaccharide sequences which can be prepared by organic syntheses.

Since iduronic acid itself is not commercially available, syntheses of iduronic acid derivatives (Yu et al., 2004) from a variety of starting materials, including idose, glucose, glycals,and glucuronic acid have been developed (Lubineau et al., 2000 & Lohman et al., 2003). Herein, we have explored a novel and efficient route toward the synthesis of L-idopyranosiduronate trichloroacetimidate which will be used as a key building block to synthesize dermatan sulfate.

Related literature top

For background to L-iduronic acids, see: Capila & Linhardt (2002); Jobron & Jacquinet (1998); Lee et al. (2004). For the synthesis of iduronic acid derivatives, see: Yu et al. (2004); Sanjoy et al. (2001); Lubineau et al. (2000); Lohman et al. (2003).

Experimental top

The title compound was prepared in 76.8% yield by treatment with trichloroaceonitrile and DBU at 0 °C. The reaction was stirred for 30 min then allowed to warm to room temperature. Solvent was evaporated and the residue purified by Flash silica gel column chromatography (silica quenched with 1% NEt3) afford the title compound as syrupy.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95—1.00 Å and Uiso(H) = 1.2—1.5Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, displacement ellipsoids are at the 50% level.
[Figure 2] Fig. 2. A packing diagram of the title compound.
Methyl 2,3-di-O-acetyl-4-O-levulinoyl-1-O-(2,2,2-trichloro- 2-iminoethyl)-L-idopyranosiduronate top
Crystal data top
C18H22Cl3NO11Dx = 1.514 Mg m3
Mr = 534.72Cu Kα radiation, λ = 1.54186 Å
Orthorhombic, P212121Cell parameters from 1098 reflections
a = 9.0498 (10) Åθ = 2.2–27.5°
b = 9.7560 (11) ŵ = 4.07 mm1
c = 26.570 (3) ÅT = 173 K
V = 2345.8 (4) Å3Block, colorless
Z = 40.41 × 0.30 × 0.28 mm
F(000) = 1104
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
4259 independent reflections
Radiation source: rotating anode3893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scans at fixed χ = 45°θmax = 68.2°, θmin = 3.3°
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.286, Tmax = 0.395k = 1111
16340 measured reflectionsl = 3231
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0268P)2 + 1.8534P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4259 reflectionsΔρmax = 0.45 e Å3
302 parametersΔρmin = 0.48 e Å3
0 restraintsAbsolute structure: Flack (1983), 1804 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.023 (18)
Crystal data top
C18H22Cl3NO11V = 2345.8 (4) Å3
Mr = 534.72Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.0498 (10) ŵ = 4.07 mm1
b = 9.7560 (11) ÅT = 173 K
c = 26.570 (3) Å0.41 × 0.30 × 0.28 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
4259 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
3893 reflections with I > 2σ(I)
Tmin = 0.286, Tmax = 0.395Rint = 0.047
16340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.45 e Å3
S = 1.09Δρmin = 0.48 e Å3
4259 reflectionsAbsolute structure: Flack (1983), 1804 Friedel pairs
302 parametersAbsolute structure parameter: 0.023 (18)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43622 (11)0.42769 (10)0.00915 (3)0.0470 (2)
Cl20.44529 (14)0.72085 (10)0.00601 (4)0.0578 (3)
Cl30.62102 (10)0.56765 (16)0.06361 (4)0.0664 (3)
O10.2587 (2)0.4459 (2)0.17647 (7)0.0275 (5)
O20.3250 (2)0.4443 (2)0.09152 (8)0.0329 (5)
O30.0181 (2)0.2548 (2)0.14357 (8)0.0332 (5)
O40.0977 (3)0.3313 (3)0.07477 (9)0.0527 (7)
O50.3933 (2)0.1578 (2)0.10987 (8)0.0320 (5)
O60.2917 (3)0.0176 (3)0.06774 (10)0.0488 (7)
O70.1922 (2)0.1967 (2)0.22751 (8)0.0285 (5)
O80.2316 (3)0.0295 (2)0.23558 (11)0.0493 (7)
O90.1750 (4)0.1508 (4)0.35252 (12)0.0780 (11)
O100.3492 (3)0.4899 (3)0.27135 (9)0.0462 (7)
O110.4850 (3)0.2966 (3)0.26989 (8)0.0402 (6)
N10.2424 (3)0.6658 (3)0.08223 (11)0.0411 (7)
H1A0.27610.73510.06300.049*
C10.2099 (3)0.4196 (4)0.12743 (10)0.0284 (7)
H1C0.12570.48270.11980.034*
C20.1588 (3)0.2725 (3)0.11851 (12)0.0280 (7)
H2A0.14700.25580.08160.034*
C30.2619 (3)0.1663 (3)0.14075 (11)0.0269 (7)
H3A0.21170.07510.14190.032*
C40.3162 (4)0.2048 (3)0.19295 (11)0.0260 (7)
H4A0.39710.14160.20380.031*
C50.3679 (4)0.3526 (3)0.19531 (11)0.0271 (7)
H5A0.46090.36280.17540.033*
C60.3286 (4)0.5705 (4)0.06991 (11)0.0315 (7)
C70.4526 (4)0.5722 (4)0.03110 (11)0.0352 (7)
C80.1037 (4)0.2905 (4)0.11727 (13)0.0366 (8)
C90.2403 (4)0.2721 (4)0.14798 (15)0.0458 (10)
H9A0.32710.29310.12730.069*
H9B0.23730.33410.17700.069*
H9C0.24610.17710.15980.069*
C100.3914 (4)0.0610 (4)0.07321 (11)0.0343 (7)
C110.5308 (4)0.0652 (4)0.04323 (13)0.0471 (9)
H11A0.50750.05430.00740.071*
H11B0.59620.00920.05400.071*
H11C0.58020.15350.04850.071*
C120.1578 (4)0.0694 (4)0.24437 (11)0.0323 (7)
C130.0114 (4)0.0687 (4)0.27120 (12)0.0350 (7)
H13A0.01080.00840.29540.042*
H13B0.06740.05110.24620.042*
C140.0258 (4)0.1992 (4)0.29934 (12)0.0349 (8)
H14A0.02910.27620.27510.042*
H14B0.12540.18980.31430.042*
C150.0820 (4)0.2329 (4)0.34006 (13)0.0434 (9)
C160.0726 (6)0.3724 (4)0.36322 (14)0.0572 (12)
H16A0.15190.38320.38810.086*
H16B0.02330.38320.37990.086*
H16C0.08320.44220.33690.086*
C170.3974 (4)0.3918 (3)0.24983 (12)0.0308 (7)
C180.5206 (4)0.3098 (4)0.32281 (13)0.0481 (10)
H18A0.58600.23460.33290.072*
H18B0.42950.30620.34270.072*
H18C0.57050.39750.32860.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0627 (6)0.0425 (5)0.0358 (4)0.0035 (5)0.0135 (4)0.0068 (4)
Cl20.0917 (8)0.0412 (5)0.0405 (5)0.0004 (5)0.0219 (5)0.0099 (4)
Cl30.0339 (5)0.1146 (10)0.0507 (5)0.0158 (6)0.0041 (4)0.0145 (7)
O10.0301 (11)0.0272 (12)0.0252 (10)0.0002 (10)0.0028 (9)0.0002 (9)
O20.0336 (12)0.0322 (13)0.0330 (11)0.0029 (11)0.0122 (10)0.0045 (10)
O30.0228 (12)0.0440 (14)0.0328 (11)0.0007 (11)0.0049 (10)0.0025 (10)
O40.0407 (15)0.079 (2)0.0381 (15)0.0149 (15)0.0022 (12)0.0001 (14)
O50.0287 (12)0.0353 (13)0.0321 (11)0.0007 (10)0.0113 (10)0.0070 (10)
O60.0489 (16)0.0484 (16)0.0492 (15)0.0084 (14)0.0079 (13)0.0188 (13)
O70.0303 (12)0.0276 (12)0.0276 (11)0.0022 (10)0.0105 (10)0.0035 (9)
O80.0546 (17)0.0269 (14)0.0664 (18)0.0040 (13)0.0261 (15)0.0048 (12)
O90.079 (2)0.089 (3)0.067 (2)0.029 (2)0.0329 (19)0.0091 (19)
O100.0583 (17)0.0445 (16)0.0359 (13)0.0033 (14)0.0002 (13)0.0117 (12)
O110.0410 (14)0.0437 (14)0.0358 (12)0.0008 (12)0.0087 (11)0.0005 (11)
N10.052 (2)0.0306 (16)0.0402 (16)0.0008 (16)0.0072 (15)0.0049 (13)
C10.0252 (15)0.0342 (17)0.0259 (14)0.0011 (15)0.0053 (12)0.0028 (15)
C20.0214 (15)0.0346 (18)0.0281 (16)0.0045 (15)0.0052 (13)0.0032 (14)
C30.0249 (16)0.0300 (17)0.0258 (15)0.0021 (14)0.0094 (13)0.0001 (13)
C40.0266 (16)0.0278 (17)0.0236 (15)0.0022 (14)0.0063 (13)0.0010 (13)
C50.0237 (16)0.0273 (16)0.0304 (16)0.0014 (14)0.0025 (14)0.0014 (13)
C60.0374 (17)0.0334 (18)0.0237 (15)0.0014 (17)0.0004 (13)0.0029 (15)
C70.0366 (18)0.0417 (19)0.0273 (15)0.0030 (18)0.0002 (14)0.0004 (15)
C80.0291 (18)0.043 (2)0.0373 (19)0.0020 (17)0.0018 (15)0.0103 (16)
C90.0248 (19)0.055 (2)0.058 (2)0.0024 (18)0.0058 (17)0.006 (2)
C100.0381 (18)0.0355 (18)0.0295 (16)0.0043 (18)0.0005 (14)0.0050 (15)
C110.050 (2)0.050 (2)0.0415 (19)0.002 (2)0.0182 (17)0.0085 (19)
C120.0360 (18)0.0289 (17)0.0319 (16)0.0055 (17)0.0062 (14)0.0035 (15)
C130.0318 (17)0.0350 (18)0.0383 (17)0.0042 (17)0.0068 (14)0.0049 (16)
C140.0305 (18)0.0380 (19)0.0363 (17)0.0014 (16)0.0072 (15)0.0054 (15)
C150.048 (2)0.055 (2)0.0276 (17)0.002 (2)0.0040 (17)0.0029 (17)
C160.075 (3)0.058 (3)0.039 (2)0.008 (2)0.007 (2)0.0088 (18)
C170.0275 (16)0.0347 (19)0.0301 (16)0.0089 (15)0.0022 (14)0.0008 (14)
C180.047 (2)0.065 (3)0.0320 (18)0.011 (2)0.0091 (17)0.0113 (18)
Geometric parameters (Å, º) top
Cl1—C71.776 (4)C4—C51.517 (4)
Cl2—C71.754 (4)C4—H4A1.0000
Cl3—C71.753 (3)C5—C171.522 (4)
O1—C11.399 (3)C5—H5A1.0000
O1—C51.433 (4)C6—C71.524 (4)
O2—C61.359 (4)C8—C91.492 (5)
O2—C11.433 (3)C9—H9A0.9800
O3—C81.351 (4)C9—H9B0.9800
O3—C21.447 (3)C9—H9C0.9800
O4—C81.199 (4)C10—C111.492 (4)
O5—C101.357 (4)C11—H11A0.9800
O5—C31.447 (3)C11—H11B0.9800
O6—C101.194 (4)C11—H11C0.9800
O7—C121.356 (4)C12—C131.504 (4)
O7—C41.452 (3)C13—C141.515 (5)
O8—C121.197 (4)C13—H13A0.9900
O9—C151.208 (5)C13—H13B0.9900
O10—C171.197 (4)C14—C151.493 (5)
O11—C171.333 (4)C14—H14A0.9900
O11—C181.448 (4)C14—H14B0.9900
N1—C61.256 (4)C15—C161.496 (5)
N1—H1A0.9001C16—H16A0.9800
C1—C21.527 (4)C16—H16B0.9800
C1—H1C1.0000C16—H16C0.9800
C2—C31.514 (4)C18—H18A0.9800
C2—H2A1.0000C18—H18B0.9800
C3—C41.518 (4)C18—H18C0.9800
C3—H3A1.0000
C1—O1—C5115.3 (2)C8—C9—H9A109.5
C6—O2—C1116.8 (2)C8—C9—H9B109.5
C8—O3—C2116.7 (2)H9A—C9—H9B109.5
C10—O5—C3115.9 (2)C8—C9—H9C109.5
C12—O7—C4115.9 (2)H9A—C9—H9C109.5
C17—O11—C18117.3 (3)H9B—C9—H9C109.5
C6—N1—H1A101.4O6—C10—O5123.0 (3)
O1—C1—O2111.1 (2)O6—C10—C11126.3 (3)
O1—C1—C2114.3 (3)O5—C10—C11110.7 (3)
O2—C1—C2105.9 (2)C10—C11—H11A109.5
O1—C1—H1C108.4C10—C11—H11B109.5
O2—C1—H1C108.4H11A—C11—H11B109.5
C2—C1—H1C108.4C10—C11—H11C109.5
O3—C2—C3106.3 (2)H11A—C11—H11C109.5
O3—C2—C1107.9 (2)H11B—C11—H11C109.5
C3—C2—C1113.3 (3)O8—C12—O7123.1 (3)
O3—C2—H2A109.7O8—C12—C13125.5 (3)
C3—C2—H2A109.7O7—C12—C13111.3 (3)
C1—C2—H2A109.7C12—C13—C14115.2 (3)
O5—C3—C2108.9 (2)C12—C13—H13A108.5
O5—C3—C4105.4 (2)C14—C13—H13A108.5
C2—C3—C4112.8 (3)C12—C13—H13B108.5
O5—C3—H3A109.9C14—C13—H13B108.5
C2—C3—H3A109.9H13A—C13—H13B107.5
C4—C3—H3A109.9C15—C14—C13113.4 (3)
O7—C4—C5105.3 (2)C15—C14—H14A108.9
O7—C4—C3108.3 (2)C13—C14—H14A108.9
C5—C4—C3111.9 (3)C15—C14—H14B108.9
O7—C4—H4A110.4C13—C14—H14B108.9
C5—C4—H4A110.4H14A—C14—H14B107.7
C3—C4—H4A110.4O9—C15—C14120.5 (4)
O1—C5—C4112.1 (3)O9—C15—C16122.0 (4)
O1—C5—C17107.1 (3)C14—C15—C16117.5 (4)
C4—C5—C17109.4 (3)C15—C16—H16A109.5
O1—C5—H5A109.4C15—C16—H16B109.5
C4—C5—H5A109.4H16A—C16—H16B109.5
C17—C5—H5A109.4C15—C16—H16C109.5
N1—C6—O2123.1 (3)H16A—C16—H16C109.5
N1—C6—C7128.7 (3)H16B—C16—H16C109.5
O2—C6—C7108.2 (3)O10—C17—O11125.6 (3)
C6—C7—Cl3107.9 (2)O10—C17—C5126.3 (3)
C6—C7—Cl2111.2 (3)O11—C17—C5108.1 (3)
Cl3—C7—Cl2109.31 (19)O11—C18—H18A109.5
C6—C7—Cl1109.7 (2)O11—C18—H18B109.5
Cl3—C7—Cl1110.4 (2)H18A—C18—H18B109.5
Cl2—C7—Cl1108.34 (16)O11—C18—H18C109.5
O4—C8—O3122.4 (3)H18A—C18—H18C109.5
O4—C8—C9126.3 (4)H18B—C18—H18C109.5
O3—C8—C9111.2 (3)
C5—O1—C1—O268.1 (3)C3—C4—C5—C17171.0 (3)
C5—O1—C1—C251.8 (3)C1—O2—C6—N14.3 (5)
C6—O2—C1—O194.0 (3)C1—O2—C6—C7176.8 (2)
C6—O2—C1—C2141.3 (3)N1—C6—C7—Cl3108.7 (4)
C8—O3—C2—C3151.7 (3)O2—C6—C7—Cl370.2 (3)
C8—O3—C2—C186.4 (3)N1—C6—C7—Cl211.1 (5)
O1—C1—C2—O372.9 (3)O2—C6—C7—Cl2170.0 (2)
O2—C1—C2—O3164.5 (2)N1—C6—C7—Cl1131.0 (3)
O1—C1—C2—C344.6 (3)O2—C6—C7—Cl150.2 (3)
O2—C1—C2—C378.1 (3)C2—O3—C8—O42.0 (5)
C10—O5—C3—C293.1 (3)C2—O3—C8—C9177.9 (3)
C10—O5—C3—C4145.6 (3)C3—O5—C10—O63.6 (5)
O3—C2—C3—O5167.4 (2)C3—O5—C10—C11178.4 (3)
C1—C2—C3—O574.3 (3)C4—O7—C12—O86.8 (5)
O3—C2—C3—C475.9 (3)C4—O7—C12—C13168.6 (3)
C1—C2—C3—C442.4 (3)O8—C12—C13—C14152.1 (4)
C12—O7—C4—C5159.4 (3)O7—C12—C13—C1432.6 (4)
C12—O7—C4—C380.8 (3)C12—C13—C14—C1561.0 (4)
O5—C3—C4—O7172.2 (2)C13—C14—C15—O99.9 (5)
C2—C3—C4—O769.0 (3)C13—C14—C15—C16168.3 (3)
O5—C3—C4—C572.1 (3)C18—O11—C17—O102.6 (5)
C2—C3—C4—C546.6 (3)C18—O11—C17—C5176.6 (3)
C1—O1—C5—C455.9 (3)O1—C5—C17—O106.6 (4)
C1—O1—C5—C17175.8 (2)C4—C5—C17—O10128.3 (4)
O7—C4—C5—O165.1 (3)O1—C5—C17—O11172.7 (2)
C3—C4—C5—O152.4 (3)C4—C5—C17—O1150.9 (3)
O7—C4—C5—C1753.6 (3)

Experimental details

Crystal data
Chemical formulaC18H22Cl3NO11
Mr534.72
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)9.0498 (10), 9.7560 (11), 26.570 (3)
V3)2345.8 (4)
Z4
Radiation typeCu Kα
µ (mm1)4.07
Crystal size (mm)0.41 × 0.30 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.286, 0.395
No. of measured, independent and
observed [I > 2σ(I)] reflections
16340, 4259, 3893
Rint0.047
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.100, 1.09
No. of reflections4259
No. of parameters302
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.48
Absolute structureFlack (1983), 1804 Friedel pairs
Absolute structure parameter0.023 (18)

Computer programs: RAPID-AUTO (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

 

Acknowledgements

The authors thank the NSFC for financial support.

References

First citationCapila, I. & Linhardt, R. J. (2002). Angew. Chem. Int. Ed. 41, 390–412.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJobron, L. R. & Jacquinet, J. C. (1998). Carbohydr. Res. 305, 181–191.  Google Scholar
First citationLee, J. C., Lu, X. A., Kulkarni, S. S., Wen, Y. S. & Hung, S. C. (2004). J. Am. Chem. Soc. 126, 476–477.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLohman, G. J. S., Hunt, D. K., Hogermeier, J. A. & Seeberger, P. H. (2003). J. Org. Chem. 68, 7559–7561.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLubineau, A., Gavard, O., Alais, J. & Bonnaffe, D. (2000). Tetrahedron Lett. 41, 307–311.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSanjoy, K. D., Jean-Maurice, M., Jacques, E., Pierre-Alexandre, D., Philippe, D., Philippe, S., Jean-Pascal, H., Jean-Marc, H., Maurice, P. & Pierre, S. (2001). Chem. Eur. J. 7, 4821–4834.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, H. N., Furukawa, J. I., Ikeda, T. & Wong, C. H. (2004). Org. Lett. 6, 723–726.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds