organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Hydrazono­methyl)phenol

aSchool of Chemistry and Chemical Engineering, Nantong University, Nantong, JiangSu 226000, People's Republic of China, and bInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular, Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: shangyanfang@ntu.edu.cn

(Received 23 October 2009; accepted 29 October 2009; online 7 November 2009)

The conformation of the title compound, C7H8N2O, is stabilized by an intra­molecular O—H⋯N hydrogen bond. The crystal structure shows inter­molecular N—H⋯O hydrogen bonds.

Related literature

For Schiff bases as mixed-donor ligands in coordination chemistry, see: Lee et al. (2005[Lee, B. Y., Kwon, H. Y., Lee, S. Y., Na, S. J., Han, S. I., Yun, H., Lee, H. & Park, Y. W. (2005). J. Am. Chem. Soc. 127, 3031-3037.]). For the pharmaceutical and medicinal activity of Schiff bases, see: Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]); Hao (2009[Hao, Y.-M. (2009). Acta Cryst. E65, o2600.]); Bedia et al. (2006[Bedia, K. K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N2O

  • Mr = 136.15

  • Monoclinic, P 21 /c

  • a = 14.1010 (11) Å

  • b = 6.0062 (5) Å

  • c = 8.1979 (6) Å

  • β = 102.5250 (10)°

  • V = 677.78 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.46 × 0.45 × 0.35 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.968

  • 3351 measured reflections

  • 1203 independent reflections

  • 1081 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.110

  • S = 1.06

  • 1203 reflections

  • 93 parameters

  • .

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.56 3.3076 (17) 145
N2—H2B⋯O1ii 0.86 2.23 3.0530 (16) 160
O1—H1⋯N1 0.82 1.89 2.6109 (15) 147
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Schiff bases are one of the most prevalent and important mixed-donor ligand in coordination chemistry (Lee et al., 2005). Recently, the synthesis, structure and properties of Schiff base complexes have stimulated much more interest for their noteworthy contributions in pharmaceutical and medicinal activity (Sriram et al., 2006; Hao 2009; Bedia et al., 2006).

The X-ray structural analysis confirmed the assignment of the structure of the title compound(I). The molecular structure is depicted in Fig. 1, and the crystal packing of the title compound(I) is depicted in Fig. 2. In the crystal structure,intermolecular N—H···O, N—H···N and intramolecular O—H···N hydrogen bonds contribute to form the title compound(I).

Related literature top

For Schiff bases as mixed-donor ligands in coordination chemistry, see: Lee et al. (2005). For the pharmaceutical and medicinal activity of Schiff bases, see: Sriram et al. (2006); Hao (2009); Bedia et al. (2006).

Experimental top

35% of hydrazine hydrate (0.50 mL, 10 mmol) and salicylidence (0.52 mL, 5 mmol) were mixed in 50.0 mL ethanol and refluxed for 3 h. When the solution was cooled to room temperature, a light yellow solid was obtained, and light yellow block shaped crystals were formed from the filtrate by slow evaporation of the solution in air after a few days. The yield of the isolated yellow solid was 0.62 g.(90%).

Refinement top

H atoms attached to C were placed in geometrically idealized positions with Csp2—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms bonded to N and O were located in a difference map. They were refined using a riding model with O—H = 0.82 Å and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. A view of the title compound with displacement ellipsoids drawn at the 30% probability level. Dashed line indicates hydrogen bonding interactions.
[Figure 2] Fig. 2. Crystal packing of the title compound.
2-(Hydrazonomethyl)phenol top
Crystal data top
C7H8N2OF(000) = 288
Mr = 136.15Dx = 1.334 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2298 reflections
a = 14.1010 (11) Åθ = 3.0–28.4°
b = 6.0062 (5) ŵ = 0.09 mm1
c = 8.1979 (6) ÅT = 296 K
β = 102.525 (1)°Block, yellow
V = 677.78 (9) Å30.46 × 0.45 × 0.35 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1203 independent reflections
Radiation source: fine-focus sealed tube1081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 25.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1516
Tmin = 0.959, Tmax = 0.968k = 67
3351 measured reflectionsl = 98
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.1774P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.33 e Å3
1203 reflectionsΔρmin = 0.29 e Å3
93 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.129 (12)
Primary atom site location: structure-invariant direct methods
Crystal data top
C7H8N2OV = 677.78 (9) Å3
Mr = 136.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.1010 (11) ŵ = 0.09 mm1
b = 6.0062 (5) ÅT = 296 K
c = 8.1979 (6) Å0.46 × 0.45 × 0.35 mm
β = 102.525 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1203 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1081 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.968Rint = 0.013
3351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03693 parameters
wR(F2) = 0.1100 restraints
S = 1.06Δρmax = 0.33 e Å3
1203 reflectionsΔρmin = 0.29 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22022 (10)0.1162 (2)0.13139 (16)0.0374 (4)
C20.27892 (11)0.2576 (3)0.24310 (18)0.0462 (4)
H20.25540.39580.26700.055*
C30.37226 (12)0.1944 (3)0.3192 (2)0.0546 (5)
H30.41110.28980.39480.065*
C40.40836 (11)0.0097 (3)0.2837 (2)0.0568 (5)
H40.47150.05130.33390.068*
C50.34970 (11)0.1512 (3)0.17277 (19)0.0487 (4)
H50.37430.28810.14870.058*
C60.25465 (9)0.0945 (2)0.09582 (16)0.0372 (4)
C70.19290 (10)0.2536 (2)0.01248 (16)0.0392 (4)
H70.21900.38830.03760.047*
N10.10354 (8)0.21085 (19)0.07344 (14)0.0407 (3)
N20.04759 (9)0.3659 (2)0.17427 (15)0.0507 (4)
H2A0.06930.48890.20590.061*
H2B0.00890.34600.15300.061*
O10.12928 (7)0.18636 (16)0.05811 (13)0.0476 (3)
H10.09930.08400.00390.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0428 (8)0.0355 (7)0.0358 (7)0.0005 (6)0.0127 (6)0.0036 (5)
C20.0587 (9)0.0381 (8)0.0439 (8)0.0040 (6)0.0157 (7)0.0026 (6)
C30.0576 (10)0.0566 (10)0.0467 (9)0.0148 (8)0.0050 (7)0.0038 (7)
C40.0439 (8)0.0645 (11)0.0574 (10)0.0009 (8)0.0007 (7)0.0041 (8)
C50.0468 (8)0.0447 (8)0.0543 (9)0.0070 (6)0.0106 (7)0.0034 (7)
C60.0418 (7)0.0351 (7)0.0363 (7)0.0016 (6)0.0118 (5)0.0038 (5)
C70.0471 (8)0.0323 (7)0.0399 (7)0.0060 (6)0.0130 (6)0.0003 (6)
N10.0468 (7)0.0364 (6)0.0385 (6)0.0013 (5)0.0083 (5)0.0020 (5)
N20.0523 (8)0.0466 (8)0.0522 (8)0.0037 (6)0.0092 (6)0.0140 (6)
O10.0451 (6)0.0353 (6)0.0607 (7)0.0054 (4)0.0078 (5)0.0039 (5)
Geometric parameters (Å, º) top
C1—O11.3597 (16)C5—C61.3941 (19)
C1—C21.384 (2)C5—H50.9300
C1—C61.409 (2)C6—C71.4574 (19)
C2—C31.382 (2)C7—N11.2768 (18)
C2—H20.9300C7—H70.9300
C3—C41.382 (2)N1—N21.3749 (16)
C3—H30.9300N2—H2A0.8604
C4—C51.381 (2)N2—H2B0.8604
C4—H40.9300O1—H10.8200
O1—C1—C2118.26 (12)C4—C5—H5119.1
O1—C1—C6121.42 (12)C6—C5—H5119.1
C2—C1—C6120.32 (13)C5—C6—C1117.79 (13)
C3—C2—C1120.28 (14)C5—C6—C7120.29 (13)
C3—C2—H2119.9C1—C6—C7121.88 (12)
C1—C2—H2119.9N1—C7—C6121.00 (12)
C2—C3—C4120.46 (15)N1—C7—H7119.5
C2—C3—H3119.8C6—C7—H7119.5
C4—C3—H3119.8C7—N1—N2119.21 (12)
C5—C4—C3119.27 (15)N1—N2—H2A124.6
C5—C4—H4120.4N1—N2—H2B102.7
C3—C4—H4120.4H2A—N2—H2B125.9
C4—C5—C6121.86 (14)C1—O1—H1109.5
O1—C1—C2—C3179.29 (13)O1—C1—C6—C5178.27 (12)
C6—C1—C2—C30.8 (2)C2—C1—C6—C51.82 (19)
C1—C2—C3—C40.5 (2)O1—C1—C6—C74.02 (19)
C2—C3—C4—C50.8 (2)C2—C1—C6—C7175.89 (12)
C3—C4—C5—C60.3 (2)C5—C6—C7—N1174.54 (13)
C4—C5—C6—C11.6 (2)C1—C6—C7—N13.1 (2)
C4—C5—C6—C7176.17 (13)C6—C7—N1—N2179.61 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.563.3076 (17)145
N2—H2B···O1ii0.862.233.0530 (16)160
O1—H1···N10.821.892.6109 (15)147
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC7H8N2O
Mr136.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.1010 (11), 6.0062 (5), 8.1979 (6)
β (°) 102.525 (1)
V3)677.78 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.45 × 0.35
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.959, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
3351, 1203, 1081
Rint0.013
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.110, 1.06
No. of reflections1203
No. of parameters93
Δρmax, Δρmin (e Å3)0.33, 0.29

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.563.3076 (17)145.2
N2—H2B···O1ii0.862.233.0530 (16)159.8
O1—H1···N10.821.892.6109 (15)146.7
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z.
 

Acknowledgements

Y-FS acknowledges financial support from the Natural Science Foundation of Nantong University in China (grant No. 07z025).

References

First citationBedia, K. K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHao, Y.-M. (2009). Acta Cryst. E65, o2600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, B. Y., Kwon, H. Y., Lee, S. Y., Na, S. J., Han, S. I., Yun, H., Lee, H. & Park, Y. W. (2005). J. Am. Chem. Soc. 127, 3031–3037.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds