organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3Z,3′Z)-3,3′-(Ethane-1,2-diyl­­idene)­bis­[isobenzo­furan-1(3H)-one]

aDepartment of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan, and bInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
*Correspondence e-mail: ono.katsuhiko@nitech.ac.jp

(Received 3 August 2009; accepted 4 August 2009; online 8 August 2009)

The title compound, C18H10O4, has been isolated as an impurity in commercially available 6,11-dihydr­oxy-5,12-naphth­acenedione. The title compound exhibits yellow fluorescence in the solid state. The mol­ecule has crystallographic inversion symmetry and is planar, with an r.m.s. deviation of 0.031 (1) Å. The crystal structure is stabilized by C—H⋯O hydrogen bonds and ππ stacking inter­actions between 3-methyl­eneisobenzofuran-1(3H)-one units [inter­planar distance 3.43 (1) Å].

Related literature

For the crystallographic analysis and functionalization of 6,11-dihydr­oxy-5,12-naphthacenedione, see: Tomura et al. (2008[Tomura, M., Yamaguchi, H., Ono, K. & Saito, K. (2008). Acta Cryst. E64, o172-o173.]); Ono et al. (2009[Ono, K., Yamaguchi, H., Taga, K., Saito, K., Nishida, J. & Yamashita, Y. (2009). Org. Lett. 11, 149-152.]). For the synthesis of the title compound, see: Ji et al. (2006[Ji, Q., Cheng, K.-G., Li, Y.-X., Pang, M.-L., Han, J., Ma, Y.-X. & Meng, J.-B. (2006). J. Chem. Res. pp. 716-718.]).

[Scheme 1]

Experimental

Crystal data
  • C18H10O4

  • Mr = 290.26

  • Triclinic, [P \overline 1]

  • a = 6.9030 (13) Å

  • b = 7.0374 (16) Å

  • c = 7.7792 (13) Å

  • α = 112.190 (5)°

  • β = 95.696 (2)°

  • γ = 107.239 (8)°

  • V = 324.53 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 1.00 × 0.50 × 0.40 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: none

  • 2656 measured reflections

  • 1661 independent reflections

  • 1323 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.176

  • S = 0.97

  • 1661 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.95 2.70 3.459 (2) 137
C5—H5⋯O1ii 0.95 2.66 3.406 (2) 136
C6—H6⋯O2iii 0.95 2.71 3.4700 (19) 138
C9—H9⋯O2iii 0.95 2.55 3.3209 (18) 139
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) x, y, z+1; (iii) x, y-1, z.

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Through the study of the crystallographic analysis and functionalities of 6,11-dihydroxy-5,12-naphthacenedione (Tomura et al., 2008; Ono et al., 2009), we found the existence of a yellow fluorescent compound as a by-product in the commercially available chemical reagent. After the separation of the by-product, the structure was determined to be the title compound, (I). Although the synthesis of (I) was already reported (Ji et al., 2006), the characterization has not been performed. In this paper, we report the separation, spectral data, and molecular and crystal structures of (I).

The molecular structure of (I) is shown in Fig. 1. The molecule is centrosymmetric and planar with an r.m.s. deviation of 0.031 (1) Å. The distances of the C9—C9 (-x + 1, -y, -z + 1) and C8—C9 bonds are 1.433 (3) and 1.345 (2) Å, respectively, indicating a butadiene skeleton. The bond length of C1—O2 [1.201 (2) Å] is reasonable for carbonyl group. Further, the O1—C1 and O1—C8 bonds result in O—C single bonds with a bond distance of 1.394 (2) Å. These bond distances support the molecular structure of (I).

In the crystal structure, the molecules are linked to each other through intermolecular C—H···O interactions (Table 1). The molecular arrangements shown in Figs. 2 and 3 run stepwise along the b and c axes, respectively. Fig. 4 also exhibits a stepwise arrangement along the (021) direction with C—H···O contacts. Furthermore, the 3-methyleneisobenzofuran-1(3H)-one rings overlap each other to form a π-stacking structure with an interplanar distance of 3.43 Å, as shown in Fig. 5.

Related literature top

For the crystallographic analysis and functionalization of 6,11-dihydroxy-5,12-naphthacenedione, see: Tomura et al. (2008); Ono et al. (2009). For the synthesis of the title compound, see: Ji et al. (2006).

Experimental top

The commercially available 6,11-dihydroxy-5,12-naphthacenedione (100 mg, Aldrich) was recrystallized from ethyl acetate (280 ml) to afford pure red crystals of 6,11-dihydroxy-5,12-naphthacenedione (70 mg). The filtrate containing the title compound, (I) was concentrated, and the residue (25 mg) was dissolved in toluene (100 ml). The solution was washed with 1 M NaOH solutions (100 ml) ten times over until the NaOH solution was colorless. The organic solution was dried over Na2SO4 and concentrated to provide a yellow solid of (I) (ca 9% yield). Yellow prisms of the title compound, suitable for X-ray analysis were grown from a dichloromethane solution.

Refinement top

All H atoms were placed in geometrically calculated positions, with C—H = 0.95 (aromatic) Å and Uiso(H) = 1.2Ueq(C) (aromatic), and refined using a riding model.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Aggregation along the b axis with C—H···O contacts.
[Figure 3] Fig. 3. Aggregation along the c axis with C—H···O contacts.
[Figure 4] Fig. 4. Aggregation along the (021) direction with C—H···O contacts.
[Figure 5] Fig. 5. π-Stacking structure with an interplanar distance of 3.43 Å.
(3Z,3'Z)-3,3'-(Ethane-1,2-diylidene)bis[isobenzofuran-1(3H)-one] top
Crystal data top
C18H10O4Z = 1
Mr = 290.26F(000) = 150
Triclinic, P1Dx = 1.485 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9030 (13) ÅCell parameters from 1131 reflections
b = 7.0374 (16) Åθ = 4.8–30.8°
c = 7.7792 (13) ŵ = 0.11 mm1
α = 112.190 (5)°T = 173 K
β = 95.696 (2)°Prism, yellow
γ = 107.239 (8)°1.00 × 0.50 × 0.40 mm
V = 324.53 (11) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
1323 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.044
Graphite Monochromator monochromatorθmax = 30.8°, θmin = 3.7°
Detector resolution: 14.62 pixels mm-1h = 99
ϕ and ω scansk = 95
2656 measured reflectionsl = 710
1661 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.1211P)2]
where P = (Fo2 + 2Fc2)/3
1661 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C18H10O4γ = 107.239 (8)°
Mr = 290.26V = 324.53 (11) Å3
Triclinic, P1Z = 1
a = 6.9030 (13) ÅMo Kα radiation
b = 7.0374 (16) ŵ = 0.11 mm1
c = 7.7792 (13) ÅT = 173 K
α = 112.190 (5)°1.00 × 0.50 × 0.40 mm
β = 95.696 (2)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
1323 reflections with I > 2σ(I)
2656 measured reflectionsRint = 0.044
1661 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 0.97Δρmax = 0.35 e Å3
1661 reflectionsΔρmin = 0.28 e Å3
100 parameters
Special details top

Experimental. IR (KBr, cm-1): 1784, 1645, 1472, 1343, 1281, 1073, 974, 766, 689; 1H NMR (CDCl3, δ p.p.m.): 6.86 (s, 2H), 7.60 (t, J = 7.6 Hz, 2H), 7.77 (t, J = 7.6 Hz, 2H), 7.81 (d, J = 7.6 Hz, 2H), 7.96 (d, J = 7.6 Hz, 2H); MS (EI): m/z 290 (M+), 104; UV-vis (CH2Cl2, nm): 406, 383.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7382 (2)0.6230 (2)0.8120 (2)0.0242 (4)
C20.7695 (2)0.5873 (2)0.9849 (2)0.0216 (4)
C30.8463 (2)0.7402 (2)1.1749 (2)0.0285 (4)
H30.88980.89391.21000.034*
C40.8568 (2)0.6597 (3)1.3105 (2)0.0320 (4)
H40.90490.75931.44210.038*
C50.7974 (2)0.4324 (3)1.2568 (2)0.0310 (4)
H50.80790.38141.35310.037*
C60.7236 (2)0.2804 (2)1.0665 (2)0.0267 (4)
H60.68590.12711.03080.032*
C70.7070 (2)0.3616 (2)0.9299 (2)0.0204 (3)
C80.6284 (2)0.2534 (2)0.7233 (2)0.0207 (3)
C90.5404 (2)0.0392 (2)0.6005 (2)0.0223 (4)
H90.53130.06680.65010.027*
O10.65059 (16)0.41594 (15)0.65779 (15)0.0248 (3)
O20.77382 (19)0.78743 (17)0.78771 (18)0.0364 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0231 (7)0.0198 (7)0.0242 (8)0.0061 (6)0.0010 (6)0.0061 (6)
C20.0187 (6)0.0193 (7)0.0207 (7)0.0044 (5)0.0025 (5)0.0046 (5)
C30.0263 (8)0.0231 (7)0.0245 (8)0.0056 (6)0.0027 (6)0.0016 (6)
C40.0296 (8)0.0343 (9)0.0180 (8)0.0048 (7)0.0024 (6)0.0027 (6)
C50.0287 (8)0.0389 (9)0.0197 (8)0.0053 (7)0.0045 (6)0.0125 (7)
C60.0252 (7)0.0270 (7)0.0234 (8)0.0050 (6)0.0038 (6)0.0101 (6)
C70.0176 (7)0.0207 (7)0.0188 (7)0.0050 (5)0.0031 (5)0.0059 (5)
C80.0209 (7)0.0205 (7)0.0185 (7)0.0070 (5)0.0017 (5)0.0072 (5)
C90.0221 (7)0.0197 (7)0.0208 (8)0.0058 (5)0.0009 (5)0.0066 (6)
O10.0294 (6)0.0188 (5)0.0205 (6)0.0055 (4)0.0005 (4)0.0063 (4)
O20.0436 (7)0.0221 (6)0.0382 (7)0.0073 (5)0.0006 (5)0.0136 (5)
Geometric parameters (Å, º) top
C1—O21.2007 (18)C5—C61.388 (2)
C1—O11.3935 (17)C5—H50.9500
C1—C21.465 (2)C6—C71.393 (2)
C2—C31.389 (2)C6—H60.9500
C2—C71.3914 (18)C7—C81.4543 (19)
C3—C41.378 (2)C8—C91.3447 (19)
C3—H30.9500C8—O11.3944 (17)
C4—C51.405 (2)C9—C9i1.433 (3)
C4—H40.9500C9—H90.9500
O2—C1—O1120.77 (15)C4—C5—H5119.2
O2—C1—C2132.22 (15)C5—C6—C7117.42 (14)
O1—C1—C2107.01 (12)C5—C6—H6121.3
C3—C2—C7122.43 (14)C7—C6—H6121.3
C3—C2—C1129.48 (14)C2—C7—C6120.35 (14)
C7—C2—C1108.08 (13)C2—C7—C8107.24 (13)
C4—C3—C2117.22 (14)C6—C7—C8132.40 (13)
C4—C3—H3121.4C9—C8—O1120.45 (13)
C2—C3—H3121.4C9—C8—C7131.48 (13)
C3—C4—C5120.95 (14)O1—C8—C7108.04 (11)
C3—C4—H4119.5C8—C9—C9i124.02 (16)
C5—C4—H4119.5C8—C9—H9118.0
C6—C5—C4121.59 (15)C9i—C9—H9118.0
C6—C5—H5119.2C1—O1—C8109.58 (12)
O2—C1—C2—C32.1 (3)C5—C6—C7—C22.1 (2)
O1—C1—C2—C3177.95 (14)C5—C6—C7—C8176.59 (13)
O2—C1—C2—C7177.93 (16)C2—C7—C8—C9176.24 (14)
O1—C1—C2—C72.00 (15)C6—C7—C8—C92.6 (3)
C7—C2—C3—C40.7 (2)C2—C7—C8—O11.63 (15)
C1—C2—C3—C4179.22 (13)C6—C7—C8—O1179.57 (13)
C2—C3—C4—C51.7 (2)O1—C8—C9—C9i1.6 (3)
C3—C4—C5—C60.8 (2)C7—C8—C9—C9i176.07 (16)
C4—C5—C6—C71.1 (2)O2—C1—O1—C8178.96 (12)
C3—C2—C7—C61.2 (2)C2—C1—O1—C80.98 (16)
C1—C2—C7—C6178.83 (12)C9—C8—O1—C1177.79 (11)
C3—C2—C7—C8177.76 (13)C7—C8—O1—C10.36 (16)
C1—C2—C7—C82.20 (15)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2ii0.952.703.459 (2)137
C5—H5···O1iii0.952.663.406 (2)136
C6—H6···O2iv0.952.713.4700 (19)138
C9—H9···O2iv0.952.553.3209 (18)139
Symmetry codes: (ii) x+2, y+2, z+2; (iii) x, y, z+1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H10O4
Mr290.26
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.9030 (13), 7.0374 (16), 7.7792 (13)
α, β, γ (°)112.190 (5), 95.696 (2), 107.239 (8)
V3)324.53 (11)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)1.00 × 0.50 × 0.40
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2656, 1661, 1323
Rint0.044
(sin θ/λ)max1)0.719
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.176, 0.97
No. of reflections1661
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.28

Computer programs: CrystalClear (Rigaku/MSC, 2006), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.703.459 (2)137.2
C5—H5···O1ii0.952.663.406 (2)135.5
C6—H6···O2iii0.952.713.4700 (19)137.7
C9—H9···O2iii0.952.553.3209 (18)138.6
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y, z+1; (iii) x, y1, z.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (grant No. 20550037) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJi, Q., Cheng, K.-G., Li, Y.-X., Pang, M.-L., Han, J., Ma, Y.-X. & Meng, J.-B. (2006). J. Chem. Res. pp. 716–718.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOno, K., Yamaguchi, H., Taga, K., Saito, K., Nishida, J. & Yamashita, Y. (2009). Org. Lett. 11, 149–152.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomura, M., Yamaguchi, H., Ono, K. & Saito, K. (2008). Acta Cryst. E64, o172–o173.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds