metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[5-methyl-2,3-bis­­(thio­phen-2-yl)quinoxaline-κN1](nitrato-κ2O,O′)silver(I)

crossmark logo

aDepartment of Chemistry & Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 17 March 2023; accepted 20 March 2023; online 23 March 2023)

The crystal structure of the title silver(I) complex, [Ag(NO3)(C17H12N2S2)2], has monoclinic (C2/c) symmetry, with the silver(I) atom and the nitrate group sitting on a twofold rotation axis. The complex also exhibits a thienyl-ring flip disorder, which is common for unsubstituted thio­phene rings.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The central silver(I) atom and the nitrate anion sit on a twofold rotation axis. The two thienyl rings make dihedral angles of 17.14 (9) and 77.55 (6)° with respect to the quinoxaline moiety. The latter thienyl ring also has a flip disorder of 64.7 (4)%, which is common for unsubstituted thienyl rings (Crundwell et al., 2003[Crundwell, G., Sullivan, J., Pelto, R. & Kantardjieff, K. (2003). J. Chem. Crystallogr. 33, 239-244.]). The nitrate anion bonds to the silver via two O atoms. As seen with similar bis-dithienylquinoxaline silver nitrate complexes (Crundwell et al., 2014[Crundwell, G., Cantalupo, S., D. C. Foss, P., McBurney, B., Kopp, K., L. Westcott, B., Updegraff III, J., Zeller, M. & Hunter, A. D. (2014). Open J. Inorg. Chem. 04, 10-17.]), the N—Ag—N angle is correlated to the nitrate anion bonding to the metal in a bidentate fashion (Table 1[link], Fig. 1[link]).

Table 1
Selected geometric parameters (Å, °)

Ag1—O1 2.533 (2) Ag1—N1 2.2619 (17)
Ag1—O1i 2.533 (2) O1—N3 1.232 (3)
Ag1—N1i 2.2619 (17) O2—N3 1.224 (4)
       
O1i—Ag1—O1 49.30 (9) N1i—Ag1—O1i 103.14 (7)
N1i—Ag1—O1 109.40 (7) N1—Ag1—O1 103.14 (7)
N1—Ag1—O1i 109.41 (7) N1—Ag1—N1i 144.14 (9)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Only symmetry-independent atoms are labeled. H atoms and the minor occupied sites of the disordered thienyl ring are omitted.

Synthesis and crystallization

Crystals were grown by combining warmed methano­lic solutions of AgNO3 and 5-methyl-2,3-(di­thio­phen-2-yl)-quinoxaline in a 1:2 molar ratio. The combined solution was pipetted into test tubes, which were then placed into amber vials and loosely sealed until small colorless crystals were observed. Crystals were harvested and used immediately since the silver salts deteriorate in light within days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Positional restraints and displace­ment parameter constraints were used in order to refine the amount of flip disorder, which was 64.7 (4)% for one of the thienyl rings (C14–C17, S2).

Table 2
Experimental details

Crystal data
Chemical formula [Ag(NO3)(C17H12N2S2)2]
Mr 786.69
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 18.9246 (10), 8.9789 (4), 22.2776 (13)
β (°) 120.967 (7)
V3) 3245.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.92
Crystal size (mm) 0.38 × 0.35 × 0.20
 
Data collection
Diffractometer Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abington, England.])
Tmin, Tmax 0.886, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11880, 5743, 3896
Rint 0.024
(sin θ/λ)max−1) 0.777
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.04
No. of reflections 5743
No. of parameters 228
No. of restraints 30
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.46
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abington, England.]), CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abington, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Bis[5-methyl-2,3-bis(thiophen-2-yl)quinoxaline-κN1](nitrato-κ2O,O')silver(I) top
Crystal data top
[Ag(NO3)(C17H12N2S2)2]F(000) = 1592
Mr = 786.69Dx = 1.610 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.9246 (10) ÅCell parameters from 3173 reflections
b = 8.9789 (4) Åθ = 4.5–31.7°
c = 22.2776 (13) ŵ = 0.92 mm1
β = 120.967 (7)°T = 293 K
V = 3245.9 (3) Å3Block, colorless
Z = 40.38 × 0.35 × 0.20 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
5743 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.1790 pixels mm-1θmax = 33.5°, θmin = 4.1°
ω scansh = 2528
Absorption correction: multi-scan
(CrysAlisPro; Oxford Diffraction, 2009)
k = 139
Tmin = 0.886, Tmax = 1.000l = 3419
11880 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.044P)2 + 0.9845P]
where P = (Fo2 + 2Fc2)/3
5743 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.32 e Å3
30 restraintsΔρmin = 0.46 e Å3
Special details top

Experimental. Hydrogen atoms on sp2 carbons were included in calculated positions with a C-H distance of 0.93 Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom and hydrogen atoms on sp3 carbons were included in calculated positions with a C-H distance of 0.96 Å and were included in the refinement in riding motion approximation with Uiso = 1.5Ueq of the carrier atom.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.50000.28104 (3)0.75000.05147 (10)
O10.47816 (15)0.5374 (2)0.78512 (12)0.0785 (6)
O20.50000.7444 (4)0.75000.0920 (11)
N10.37028 (10)0.2035 (2)0.67321 (9)0.0397 (4)
N20.21614 (10)0.0848 (2)0.57801 (9)0.0404 (4)
N30.50000.6080 (4)0.75000.0537 (7)
C10.27757 (12)0.0778 (2)0.56570 (10)0.0386 (4)
C20.35742 (12)0.1362 (2)0.61561 (10)0.0378 (4)
C30.30625 (13)0.2174 (2)0.68498 (11)0.0396 (4)
C40.31805 (15)0.2932 (3)0.74494 (12)0.0517 (6)
H40.36860.33660.77610.062*
C50.25366 (16)0.3015 (3)0.75613 (13)0.0531 (6)
H50.26080.35110.79550.064*
C60.17693 (15)0.2370 (3)0.70951 (13)0.0467 (5)
H60.13480.24350.71920.056*
C70.16241 (12)0.1645 (2)0.64991 (11)0.0406 (4)
C80.22894 (12)0.1547 (2)0.63735 (10)0.0367 (4)
C90.08016 (14)0.0988 (3)0.59912 (13)0.0571 (6)
H9A0.08700.00360.59060.086*
H9B0.05580.15320.55590.086*
H9C0.04490.10450.61820.086*
C100.25759 (13)0.0051 (3)0.49975 (11)0.0431 (5)
C110.29678 (16)0.0086 (3)0.46086 (12)0.0536 (6)
H110.34520.06000.47390.064*
C120.25216 (19)0.0774 (3)0.39869 (14)0.0667 (7)
H120.26880.08870.36630.080*
C130.18427 (16)0.1403 (3)0.39128 (13)0.0619 (7)
H130.14900.20000.35340.074*
S10.16912 (4)0.10019 (8)0.45797 (3)0.06093 (18)
C140.42926 (12)0.1231 (2)0.60653 (11)0.0405 (4)0.647 (4)
C150.4616 (7)0.2282 (9)0.5845 (7)0.0562 (8)0.647 (4)
H150.44230.32550.57390.067*0.647 (4)
C160.529 (2)0.173 (2)0.579 (3)0.0586 (11)0.647 (4)
H160.55630.22730.56140.070*0.647 (4)
C170.5493 (8)0.0331 (15)0.6030 (10)0.061 (2)0.647 (4)
H170.59460.01810.60760.073*0.647 (4)
S20.48188 (14)0.03878 (19)0.62341 (13)0.0742 (5)0.647 (4)
C14B0.42926 (12)0.1231 (2)0.60653 (11)0.0405 (4)0.353 (4)
C15B0.4753 (11)0.0013 (15)0.6156 (11)0.0742 (5)0.353 (4)
H15B0.46990.09080.63390.089*0.353 (4)
C16B0.5332 (17)0.024 (3)0.593 (2)0.061 (2)0.353 (4)
H16B0.56540.05030.59020.073*0.353 (4)
C17B0.536 (4)0.167 (4)0.577 (5)0.0586 (11)0.353 (4)
H17B0.57460.20620.56800.070*0.353 (4)
S2B0.4599 (3)0.2654 (4)0.5764 (3)0.0562 (8)0.353 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03173 (12)0.0712 (2)0.04456 (14)0.0000.01473 (10)0.000
O10.0970 (16)0.0848 (14)0.0859 (15)0.0033 (12)0.0700 (14)0.0022 (11)
O20.093 (3)0.061 (2)0.092 (2)0.0000.026 (2)0.000
N10.0327 (8)0.0489 (10)0.0362 (8)0.0001 (7)0.0168 (7)0.0003 (7)
N20.0359 (8)0.0433 (10)0.0414 (9)0.0012 (7)0.0195 (7)0.0022 (7)
N30.0424 (14)0.065 (2)0.0481 (15)0.0000.0195 (12)0.000
C10.0357 (10)0.0393 (11)0.0386 (10)0.0009 (8)0.0175 (8)0.0012 (8)
C20.0332 (9)0.0411 (11)0.0384 (10)0.0015 (8)0.0180 (8)0.0027 (8)
C30.0347 (9)0.0469 (11)0.0375 (9)0.0015 (9)0.0188 (8)0.0006 (9)
C40.0449 (12)0.0678 (16)0.0446 (11)0.0105 (11)0.0246 (10)0.0127 (11)
C50.0558 (14)0.0644 (16)0.0489 (12)0.0041 (12)0.0340 (11)0.0090 (11)
C60.0461 (12)0.0529 (13)0.0517 (12)0.0041 (10)0.0328 (11)0.0064 (10)
C70.0357 (10)0.0422 (11)0.0454 (11)0.0016 (8)0.0219 (9)0.0064 (9)
C80.0345 (9)0.0369 (10)0.0382 (9)0.0015 (8)0.0184 (8)0.0040 (8)
C90.0414 (12)0.0742 (17)0.0593 (14)0.0112 (11)0.0284 (11)0.0076 (13)
C100.0390 (10)0.0451 (12)0.0404 (10)0.0034 (9)0.0169 (9)0.0024 (8)
C110.0591 (14)0.0626 (15)0.0425 (12)0.0111 (12)0.0287 (11)0.0110 (11)
C120.0739 (19)0.0817 (19)0.0456 (13)0.0012 (15)0.0314 (13)0.0095 (13)
C130.0509 (14)0.0680 (17)0.0461 (12)0.0061 (13)0.0102 (11)0.0152 (12)
S10.0405 (3)0.0738 (4)0.0590 (4)0.0038 (3)0.0189 (3)0.0197 (3)
C140.0351 (10)0.0472 (12)0.0405 (10)0.0025 (8)0.0203 (8)0.0002 (9)
C150.0572 (9)0.043 (2)0.0860 (17)0.0055 (13)0.0495 (10)0.0135 (13)
C160.053 (5)0.066 (2)0.073 (3)0.0032 (16)0.043 (3)0.003 (3)
C170.043 (5)0.068 (2)0.081 (6)0.014 (3)0.038 (6)0.005 (3)
S20.0757 (8)0.0617 (11)0.1139 (11)0.0299 (7)0.0693 (9)0.0374 (8)
C14B0.0351 (10)0.0472 (12)0.0405 (10)0.0025 (8)0.0203 (8)0.0002 (9)
C15B0.0757 (8)0.0617 (11)0.1139 (11)0.0299 (7)0.0693 (9)0.0374 (8)
C16B0.043 (5)0.068 (2)0.081 (6)0.014 (3)0.038 (6)0.005 (3)
C17B0.053 (5)0.066 (2)0.073 (3)0.0032 (16)0.043 (3)0.003 (3)
S2B0.0572 (9)0.043 (2)0.0860 (17)0.0055 (13)0.0495 (10)0.0135 (13)
Geometric parameters (Å, º) top
Ag1—O12.533 (2)C9—H9B0.9600
Ag1—O1i2.533 (2)C9—H9C0.9600
Ag1—N1i2.2619 (17)C10—C111.401 (3)
Ag1—N12.2619 (17)C10—S11.720 (2)
O1—N31.232 (3)C11—H110.9300
O2—N31.224 (4)C11—C121.423 (3)
N1—C21.323 (3)C12—H120.9300
N1—C31.371 (3)C12—C131.334 (4)
N2—C11.326 (3)C13—H130.9300
N2—C81.367 (3)C13—S11.690 (3)
N3—O1i1.232 (3)C14—C151.348 (8)
C1—C21.437 (3)C14—S21.692 (2)
C1—C101.468 (3)C15—H150.9300
C2—C141.479 (3)C15—C161.437 (11)
C3—C41.411 (3)C16—H160.9300
C3—C81.409 (3)C16—C171.337 (9)
C4—H40.9300C17—H170.9300
C4—C51.366 (3)C17—S21.688 (10)
C5—H50.9300C15B—H15B0.9300
C5—C61.404 (4)C15B—C16B1.437 (16)
C6—H60.9300C16B—H16B0.9300
C6—C71.373 (3)C16B—C17B1.335 (14)
C7—C81.426 (3)C17B—H17B0.9300
C7—C91.496 (3)C17B—S2B1.679 (16)
C9—H9A0.9600
O1i—Ag1—O149.30 (9)C7—C9—H9B109.5
N1i—Ag1—O1109.40 (7)C7—C9—H9C109.5
N1—Ag1—O1i109.41 (7)H9A—C9—H9B109.5
N1i—Ag1—O1i103.14 (7)H9A—C9—H9C109.5
N1—Ag1—O1103.14 (7)H9B—C9—H9C109.5
N1—Ag1—N1i144.14 (9)C1—C10—S1117.63 (16)
N3—O1—Ag196.32 (18)C11—C10—C1131.5 (2)
C2—N1—Ag1117.43 (13)C11—C10—S1110.81 (16)
C2—N1—C3119.18 (17)C10—C11—H11124.7
C3—N1—Ag1123.33 (13)C10—C11—C12110.6 (2)
C1—N2—C8118.92 (17)C12—C11—H11124.7
O1i—N3—O1118.1 (3)C11—C12—H12123.2
O2—N3—O1i120.97 (17)C13—C12—C11113.7 (2)
O2—N3—O1120.97 (17)C13—C12—H12123.2
N2—C1—C2120.49 (18)C12—C13—H13123.5
N2—C1—C10115.22 (18)C12—C13—S1112.9 (2)
C2—C1—C10124.28 (18)S1—C13—H13123.5
N1—C2—C1120.83 (18)C13—S1—C1091.99 (13)
N1—C2—C14116.47 (17)C2—C14—S2121.03 (17)
C1—C2—C14122.69 (18)C15—C14—C2128.1 (5)
N1—C3—C4120.00 (19)C15—C14—S2110.9 (4)
N1—C3—C8119.80 (18)C14—C15—H15123.8
C8—C3—C4120.20 (19)C14—C15—C16112.3 (8)
C3—C4—H4120.7C16—C15—H15123.8
C5—C4—C3118.5 (2)C15—C16—H16124.0
C5—C4—H4120.7C17—C16—C15112.0 (10)
C4—C5—H5119.2C17—C16—H16124.0
C4—C5—C6121.5 (2)C16—C17—H17124.2
C6—C5—H5119.2C16—C17—S2111.6 (8)
C5—C6—H6119.1S2—C17—H17124.2
C7—C6—C5121.8 (2)C17—S2—C1493.0 (4)
C7—C6—H6119.1C16B—C15B—H15B124.4
C6—C7—C8117.46 (19)C15B—C16B—H16B123.7
C6—C7—C9122.07 (19)C17B—C16B—C15B112.6 (18)
C8—C7—C9120.47 (19)C17B—C16B—H16B123.7
N2—C8—C3120.67 (17)C16B—C17B—H17B124.4
N2—C8—C7118.87 (18)C16B—C17B—S2B111.1 (17)
C3—C8—C7120.46 (18)S2B—C17B—H17B124.4
C7—C9—H9A109.5
Ag1—O1—N3—O1i0.002 (2)C2—C1—C10—C1119.4 (4)
Ag1—O1—N3—O2180.000 (2)C2—C1—C10—S1163.24 (17)
Ag1—N1—C2—C1177.25 (14)C2—C14—C15—C16177 (2)
Ag1—N1—C2—C141.9 (2)C2—C14—S2—C17179.4 (7)
Ag1—N1—C3—C45.0 (3)C3—N1—C2—C10.1 (3)
Ag1—N1—C3—C8174.50 (14)C3—N1—C2—C14179.20 (18)
O1i—Ag1—O1—N30.001 (2)C3—C4—C5—C60.1 (4)
O1i—Ag1—N1—C285.90 (16)C4—C3—C8—N2178.0 (2)
O1—Ag1—N1—C2137.02 (15)C4—C3—C8—C71.3 (3)
O1i—Ag1—N1—C396.90 (16)C4—C5—C6—C71.0 (4)
O1—Ag1—N1—C345.79 (17)C5—C6—C7—C81.0 (3)
N1i—Ag1—O1—N390.85 (13)C5—C6—C7—C9178.4 (2)
N1—Ag1—O1—N3104.43 (13)C6—C7—C8—N2179.2 (2)
N1i—Ag1—N1—C268.10 (14)C6—C7—C8—C30.2 (3)
N1i—Ag1—N1—C3109.09 (16)C8—N2—C1—C23.0 (3)
N1—C2—C14—C1579.2 (8)C8—N2—C1—C10178.15 (18)
N1—C2—C14—S2101.6 (2)C8—C3—C4—C51.3 (4)
N1—C3—C4—C5178.2 (2)C9—C7—C8—N20.3 (3)
N1—C3—C8—N22.5 (3)C9—C7—C8—C3179.6 (2)
N1—C3—C8—C7178.19 (19)C10—C1—C2—N1178.41 (19)
N2—C1—C2—N12.9 (3)C10—C1—C2—C142.5 (3)
N2—C1—C2—C14176.19 (19)C10—C11—C12—C130.3 (4)
N2—C1—C10—C11161.8 (2)C11—C10—S1—C130.7 (2)
N2—C1—C10—S115.5 (3)C11—C12—C13—S10.2 (3)
C1—N2—C8—C30.4 (3)C12—C13—S1—C100.5 (2)
C1—N2—C8—C7178.89 (19)S1—C10—C11—C120.6 (3)
C1—C2—C14—C15101.7 (8)C14—C15—C16—C175 (4)
C1—C2—C14—S277.6 (3)C15—C14—S2—C171.2 (9)
C1—C10—C11—C12178.1 (2)C15—C16—C17—S26 (4)
C1—C10—S1—C13178.55 (18)C16—C17—S2—C144 (3)
C2—N1—C3—C4177.9 (2)S2—C14—C15—C162 (2)
C2—N1—C3—C82.6 (3)C15B—C16B—C17B—S2B9 (7)
Symmetry code: (i) x+1, y, z+3/2.
 

Funding information

Funding for this research was provided by: CSU-AAUP Research Grant .

References

First citationCrundwell, G., Sullivan, J., Pelto, R. & Kantardjieff, K. (2003). J. Chem. Crystallogr. 33, 239–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrundwell, G., Cantalupo, S., D. C. Foss, P., McBurney, B., Kopp, K., L. Westcott, B., Updegraff III, J., Zeller, M. & Hunter, A. D. (2014). Open J. Inorg. Chem. 04, 10–17.  CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abington, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146