organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,8,13,13-Tetra­chloro-13H-dibenzo[a,i]fluorene cyclo­hexane hemisolvate

CROSSMARK_Color_square_no_text.svg

aUniversity of Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 12 February 2019; accepted 15 February 2019; online 22 February 2019)

In the crystal structure of the solvated penta­cyclic title compound, C21H10Cl4·0.5C6H12, the penta­cyclic chloro­aromatic rings are arranged in parallel layers, with the chlorine atoms protruding from these planes. Channels orthogonal to these layers are filled with disordered cyclo­hexane mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The penta­cyclic compound C21H20Cl4 (Fig. 1[link]) appeared as a new byproduct in the synthesis of the 13,13-di­chloro analogue, an inter­mediate for bis-(dibenzo[a.i])fluorenyl­idene (Bergmann et al., 1953[Bergmann, E. D., Fischer, E., Hirshberg, Y., Lavie, D., Sprinzak, Y. & Szmuszkovicz, J. (1953). Bull. Soc. Chim. Fr., 798-809.], Franzen & Joschek, 1961[Franzen, V. & Joschek, H. I. (1961). Justus Liebigs Ann. Chem. 648, 63-68.]), a biradical still under discussion (Kanawati et al., 2012[Kanawati, B., Genest, A., Schmitt-Kopplin, P. & Lenoir, D. (2012). J. Molec. Model. 18, 63-68.]; Wentrup et al., 2016[Wentrup, C., Regimbald-Krnel, M. J., Müller, D. & Comba, P. (2016). Angew. Chem. Int. Ed. 55, 14600-14605.]). Eight identical mol­ecules fill the unit cell, these aromatic compounds are essentially planar, the largest deviation from the mean plane being 0.0164 (18) Å at C8. With a bond angle of 107.26 (9)°, the Cl1—C1—Cl2 unit makes an angle of 89.97 (11)° to the aromatic plane. In the crystal, the mol­ecules are arranged in layers parallel to the ac plane with an inter­layer spacing of 3.28 Å. Channels along the b-axis direction (Fig. 2[link]) are filled with one disordered cyclo­hexane mol­ecule per two dibenzofluorene molecules.

[Figure 1]
Figure 1
Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Only one component of the disordered cyclo­hexane solvent mol­ecule is shown.
[Figure 2]
Figure 2
Part of the packing diagram. View along the b axis.

Synthesis and crystallization

Bis-α-naphthyl­ketone (10.0 g), prepared from α-cyanona­phthalene according to Blicke (1927[Blicke, F. F. (1927). J. Am. Chem. Soc. 49, 2843-2849.]), was added to PCl5 (13.0 g) and the mixture was heated to 423 K for 5 h. Following the procedure of Magidson (1925[Magidson, O. I. (1925). Ber. Dtsch. Chem. Ges. A/B, 58, 433-442.]), additional PCl5 (13.0 g) was added, and after 5 h at 423 K, cooled to ambient temperature and the residue washed with light petroleum. The yield after threefold recrystallization from toluene solution was 0.6 g of a yellow solid with m.p. = 505–509 K. Single crystals were grown by slow evaporation of a solution in chloro­form/cyclo­hexane (1/2). IR (KBr): 3420, 3072, 1620, 1566, 1518, 1421, 1376, 1344, 1288, 1261, 1195, 1161, 1072, 1029, 956, 930, 853, 795, 764, 728, 623, 584, 533, 519, 501, 429. 1H NMR (400 MHz, CDCl3): 8.77 (dd, 2H, 6-H), 8.41 (d, 2 H, 3-H), 7.91 (2, 2 H, 1-H), 7.80 (m, 2 H, 5-H), 7.69 (m, 2 H, 4-H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The solvent mol­ecule (cyclo­hexa­ne) is highly disordered and was refined using split positions. The s.o.f. were kept fixed due to the imposed symmetry. The displacement parameters of the solvent atoms were restrained to approximate isotropic behaviour. Equivalent bond lengths and angles involving the disordered atoms were restrained to be equal.

Table 1
Experimental details

Crystal data
Chemical formula C21H10Cl4·0.5C6H12
Mr 446.17
Crystal system, space group Monoclinic, I2/c
Temperature (K) 120
a, b, c (Å) 13.7822 (6), 10.7752 (4), 27.0787 (13)
β (°) 99.901 (4)
V3) 3961.5 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.61
Crystal size (mm) 0.90 × 0.37 × 0.08
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (X-RED and X-AREA; Stoe & Cie, 1996[Stoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.736, 0.952
No. of measured, independent and observed [I > 2σ(I)] reflections 11344, 4935, 4194
Rint 0.018
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.05
No. of reflections 4935
No. of parameters 290
No. of restraints 66
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.51
Computer programs: X-RED and X-AREA (Stoe & Cie, 1996[Stoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SIR2004 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: X-RED and X-AREA (Stoe & Cie, 1996); cell refinement: X-RED and X-AREA (Stoe & Cie, 1996); data reduction: X-RED and X-AREA (Stoe & Cie, 1996); program(s) used to solve structure: SIR2004 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009).

5,8,13,13-Tetrachloro-13H-dibenzo[a,i]fluorene cyclohexane hemisolvate top
Crystal data top
C21H10Cl4·0.5C6H12F(000) = 1824
Mr = 446.17Dx = 1.496 Mg m3
Monoclinic, I2/cMo Kα radiation, λ = 0.71073 Å
a = 13.7822 (6) ÅCell parameters from 17812 reflections
b = 10.7752 (4) Åθ = 2.0–28.6°
c = 27.0787 (13) ŵ = 0.61 mm1
β = 99.901 (4)°T = 120 K
V = 3961.5 (3) Å3Plate, colourless
Z = 80.90 × 0.37 × 0.08 mm
Data collection top
Stoe IPDS 2T
diffractometer
4935 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus4194 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.018
rotation method scansθmax = 28.4°, θmin = 2.0°
Absorption correction: integration
(X-RED and X-AREA; Stoe & Cie, 1996)
h = 1818
Tmin = 0.736, Tmax = 0.952k = 1414
11344 measured reflectionsl = 3336
Refinement top
Refinement on F266 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.047P)2 + 6.8104P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
4935 reflectionsΔρmax = 0.51 e Å3
290 parametersΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the riding-model approximation with isotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.74520 (3)0.24458 (4)0.60278 (2)0.02905 (11)
Cl20.53125 (3)0.23873 (4)0.58942 (2)0.02864 (11)
Cl30.63077 (3)0.87411 (4)0.59660 (2)0.03174 (12)
Cl40.61148 (4)0.43078 (5)0.35395 (2)0.03516 (13)
C10.63442 (12)0.32199 (16)0.57254 (6)0.0221 (3)
C20.63383 (12)0.45706 (16)0.58782 (7)0.0217 (3)
C30.63784 (13)0.51050 (17)0.63570 (7)0.0244 (3)
C40.64182 (15)0.44129 (19)0.68067 (7)0.0307 (4)
H40.6425790.3531880.6794650.037*
C50.64455 (17)0.4998 (2)0.72553 (8)0.0387 (5)
H50.6462380.4520340.7551590.046*
C60.64488 (18)0.6299 (2)0.72840 (8)0.0403 (5)
H60.6472200.6694470.7599360.048*
C70.64187 (16)0.6999 (2)0.68613 (8)0.0340 (4)
H70.6427750.7878690.6886470.041*
C80.63741 (13)0.64337 (17)0.63870 (7)0.0254 (4)
C90.63181 (12)0.71300 (17)0.59358 (7)0.0247 (4)
C100.62704 (12)0.65911 (17)0.54760 (7)0.0242 (3)
H100.6228330.7080190.5181240.029*
C110.62854 (12)0.52906 (16)0.54535 (6)0.0215 (3)
C120.62551 (12)0.44863 (16)0.50131 (7)0.0221 (3)
C130.62051 (12)0.48153 (17)0.45073 (7)0.0248 (4)
H130.6183900.5660950.4406770.030*
C140.61879 (12)0.38833 (19)0.41650 (7)0.0257 (4)
C150.62220 (12)0.26011 (18)0.42978 (7)0.0249 (4)
C160.62121 (13)0.1634 (2)0.39421 (7)0.0294 (4)
H160.6183680.1832590.3598170.035*
C170.62430 (14)0.0420 (2)0.40878 (8)0.0331 (4)
H170.6233630.0217150.3844550.040*
C180.62885 (14)0.01062 (19)0.45940 (8)0.0315 (4)
H180.6310650.0742670.4690000.038*
C190.63012 (13)0.10069 (17)0.49512 (7)0.0272 (4)
H190.6329700.0778430.5292240.033*
C200.62723 (12)0.22794 (17)0.48156 (7)0.0237 (3)
C210.62889 (12)0.32607 (16)0.51631 (6)0.0224 (3)
C1L0.5000000.0571 (8)0.7500000.053 (2)0.5
H1L10.5301010.1112100.7780390.063*0.25
H1L20.4698970.1112060.7219600.063*0.25
C2L0.5837 (6)0.0253 (8)0.7298 (4)0.098 (3)0.5
H2L10.6464420.0212330.7331300.117*0.5
H2L20.5623140.0474550.6940630.117*0.5
C3L0.5967 (4)0.1440 (5)0.7630 (2)0.0488 (11)0.5
H3L10.6096800.1216360.7989530.059*0.5
H3L20.6522360.1948080.7554640.059*0.5
C4L0.5000000.2150 (7)0.7500000.0497 (19)0.5
H4L10.4931610.2694900.7786290.060*0.25
H4L20.5068410.2694880.7213710.060*0.25
C1M0.4912 (6)0.0506 (8)0.7717 (3)0.0326 (17)0.25
H1M10.4929580.1363700.7578130.039*0.25
H1M20.4798210.0558420.8067700.039*0.25
C2M0.5902 (3)0.0093 (4)0.76390 (19)0.0419 (10)0.5
H2M10.6206980.0293830.7988090.050*0.5
H2M20.6342400.0496930.7504610.050*0.5
C3M0.5827 (7)0.1294 (8)0.7328 (4)0.094 (2)0.5
H3M10.5958330.1077380.6989940.112*0.5
H3M20.6358430.1863380.7481220.112*0.5
C4M0.4818 (7)0.2036 (8)0.7269 (4)0.0376 (19)0.25
H4M10.4475750.1997680.6916910.045*0.25
H4M20.4933630.2916400.7365960.045*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0292 (2)0.0266 (2)0.0289 (2)0.00530 (16)0.00196 (17)0.00312 (17)
Cl20.0305 (2)0.0274 (2)0.0290 (2)0.00694 (16)0.00791 (17)0.00400 (17)
Cl30.0293 (2)0.0222 (2)0.0446 (3)0.00073 (16)0.00885 (19)0.00088 (18)
Cl40.0333 (2)0.0510 (3)0.0216 (2)0.0015 (2)0.00606 (17)0.0058 (2)
C10.0207 (8)0.0226 (8)0.0227 (8)0.0010 (6)0.0029 (6)0.0036 (6)
C20.0179 (7)0.0224 (8)0.0246 (8)0.0006 (6)0.0036 (6)0.0016 (6)
C30.0215 (8)0.0261 (8)0.0255 (8)0.0015 (6)0.0038 (6)0.0025 (7)
C40.0364 (10)0.0289 (9)0.0268 (9)0.0042 (8)0.0058 (8)0.0025 (7)
C50.0519 (13)0.0398 (11)0.0250 (9)0.0052 (10)0.0086 (9)0.0034 (9)
C60.0541 (13)0.0402 (12)0.0275 (10)0.0079 (10)0.0098 (9)0.0065 (9)
C70.0385 (11)0.0307 (10)0.0333 (10)0.0060 (8)0.0080 (8)0.0051 (8)
C80.0215 (8)0.0261 (8)0.0290 (9)0.0025 (7)0.0052 (7)0.0006 (7)
C90.0178 (7)0.0223 (8)0.0343 (9)0.0009 (6)0.0051 (7)0.0010 (7)
C100.0182 (8)0.0254 (8)0.0294 (9)0.0007 (6)0.0049 (7)0.0067 (7)
C110.0157 (7)0.0244 (8)0.0246 (8)0.0002 (6)0.0036 (6)0.0033 (6)
C120.0164 (7)0.0258 (8)0.0240 (8)0.0004 (6)0.0031 (6)0.0034 (7)
C130.0189 (8)0.0286 (9)0.0272 (9)0.0004 (6)0.0048 (6)0.0071 (7)
C140.0177 (8)0.0391 (10)0.0203 (8)0.0003 (7)0.0035 (6)0.0042 (7)
C150.0163 (7)0.0335 (9)0.0246 (8)0.0004 (6)0.0029 (6)0.0005 (7)
C160.0206 (8)0.0415 (11)0.0255 (9)0.0002 (7)0.0029 (7)0.0059 (8)
C170.0229 (9)0.0390 (11)0.0364 (10)0.0001 (8)0.0017 (8)0.0123 (9)
C180.0248 (9)0.0283 (9)0.0399 (11)0.0002 (7)0.0012 (8)0.0045 (8)
C190.0235 (8)0.0271 (9)0.0300 (9)0.0005 (7)0.0018 (7)0.0002 (7)
C200.0168 (7)0.0281 (8)0.0257 (8)0.0001 (6)0.0019 (6)0.0001 (7)
C210.0180 (7)0.0253 (8)0.0236 (8)0.0005 (6)0.0030 (6)0.0033 (7)
C1L0.055 (3)0.049 (3)0.055 (3)0.0000.0094 (19)0.000
C2L0.096 (3)0.096 (3)0.101 (3)0.0071 (19)0.0155 (19)0.0107 (19)
C3L0.0497 (18)0.0403 (17)0.0541 (19)0.0057 (15)0.0023 (15)0.0018 (15)
C4L0.051 (2)0.046 (2)0.052 (2)0.0000.0086 (18)0.000
C1M0.034 (2)0.032 (2)0.032 (2)0.0033 (17)0.0066 (18)0.0050 (18)
C2M0.0451 (17)0.0398 (17)0.0400 (17)0.0001 (14)0.0049 (14)0.0038 (14)
C3M0.094 (3)0.092 (3)0.097 (3)0.0002 (19)0.0210 (19)0.0097 (19)
C4M0.042 (2)0.035 (2)0.037 (3)0.0017 (18)0.0076 (18)0.0019 (19)
Geometric parameters (Å, º) top
Cl1—C11.8077 (17)C17—H170.9500
Cl2—C11.8052 (17)C18—C191.368 (3)
Cl3—C91.7380 (19)C18—H180.9500
Cl4—C141.7407 (18)C19—C201.418 (3)
C1—C211.512 (2)C19—H190.9500
C1—C21.513 (2)C20—C211.413 (3)
C2—C111.379 (2)C1L—C2Li1.624 (9)
C2—C31.411 (2)C1L—C2L1.624 (9)
C3—C41.421 (3)C1L—H1L10.9900
C3—C81.434 (3)C1L—H1L20.9900
C4—C51.363 (3)C2L—C3L1.556 (8)
C4—H40.9500C2L—H2L10.9900
C5—C61.404 (3)C2L—H2L20.9900
C5—H50.9500C3L—C4L1.524 (6)
C6—C71.366 (3)C3L—H3L10.9900
C6—H60.9500C3L—H3L20.9900
C7—C81.414 (3)C4L—H4L10.9900
C7—H70.9500C4L—H4L20.9900
C8—C91.424 (3)C1M—C1Mi1.241 (18)
C9—C101.365 (3)C1M—C2Mi1.495 (10)
C10—C111.403 (2)C1M—C2M1.556 (8)
C10—H100.9500C1M—H1M11.0003
C11—C121.469 (2)C1M—H1M20.9900
C12—C211.380 (2)C2M—C3M1.539 (8)
C12—C131.405 (2)C2M—H2M10.9900
C13—C141.364 (3)C2M—H2M20.9900
C13—H130.9500C3M—C4M1.588 (10)
C14—C151.426 (3)C3M—C4Mi1.719 (13)
C15—C161.418 (3)C3M—H3M10.9900
C15—C201.435 (2)C3M—H3M20.9900
C16—C171.364 (3)C4M—C4Mi1.264 (19)
C16—H160.9500C4M—H4M10.9900
C17—C181.403 (3)C4M—H4M20.9900
C21—C1—C2104.22 (14)C20—C21—C1129.87 (16)
C21—C1—Cl2111.34 (12)C2Li—C1L—C2L113.7 (7)
C2—C1—Cl2111.54 (12)C2Li—C1L—H1L1107.0
C21—C1—Cl1111.22 (12)C2L—C1L—H1L1110.6
C2—C1—Cl1111.32 (12)C2Li—C1L—H1L2110.6
Cl2—C1—Cl1107.26 (9)C2L—C1L—H1L2106.9
C11—C2—C3121.66 (16)H1L1—C1L—H1L2107.9
C11—C2—C1108.36 (15)C3L—C2L—C1L105.8 (6)
C3—C2—C1129.98 (16)C3L—C2L—H2L1110.6
C2—C3—C4124.26 (17)C1L—C2L—H2L1110.6
C2—C3—C8117.35 (16)C3L—C2L—H2L2110.6
C4—C3—C8118.39 (17)C1L—C2L—H2L2110.6
C5—C4—C3120.80 (19)H2L1—C2L—H2L2108.7
C5—C4—H4119.6C4L—C3L—C2L105.7 (5)
C3—C4—H4119.6C4L—C3L—H3L1110.6
C4—C5—C6120.7 (2)C2L—C3L—H3L1110.6
C4—C5—H5119.7C4L—C3L—H3L2110.6
C6—C5—H5119.7C2L—C3L—H3L2110.6
C7—C6—C5120.4 (2)H3L1—C3L—H3L2108.7
C7—C6—H6119.8C3L—C4L—C3Li119.8 (6)
C5—C6—H6119.8C3L—C4L—H4L1108.3
C6—C7—C8120.9 (2)C3Li—C4L—H4L1106.3
C6—C7—H7119.5C3L—C4L—H4L2106.3
C8—C7—H7119.5C3Li—C4L—H4L2108.3
C7—C8—C9122.67 (18)H4L1—C4L—H4L2107.2
C7—C8—C3118.80 (17)C1Mi—C1M—C2M63.4 (6)
C9—C8—C3118.53 (17)C2Mi—C1M—C2M108.2 (6)
C10—C9—C8123.03 (17)C1Mi—C1M—H1M167.8
C10—C9—Cl3117.92 (14)C2Mi—C1M—H1M1102.7
C8—C9—Cl3119.05 (14)C2M—C1M—H1M1104.7
C9—C10—C11117.76 (17)C1Mi—C1M—H1M2176.1
C9—C10—H10121.1C2Mi—C1M—H1M2114.7
C11—C10—H10121.1C2M—C1M—H1M2116.2
C2—C11—C10121.66 (17)H1M1—C1M—H1M2109.0
C2—C11—C12109.59 (15)H1L1i—C1M—H1L2i82.1
C10—C11—C12128.75 (16)C1Mi—C2M—C3M92.1 (6)
C21—C12—C13121.45 (17)C1Mi—C2M—C1M47.9 (7)
C21—C12—C11109.32 (15)C3M—C2M—C1M116.4 (5)
C13—C12—C11129.22 (16)C1Mi—C2M—H2M1149.1
C14—C13—C12117.96 (17)C3M—C2M—H2M1108.5
C14—C13—H13121.0C1M—C2M—H2M1101.4
C12—C13—H13121.0C1Mi—C2M—H2M285.7
C13—C14—C15123.09 (16)C3M—C2M—H2M2109.1
C13—C14—Cl4117.32 (15)C1M—C2M—H2M2113.0
C15—C14—Cl4119.58 (14)H2M1—C2M—H2M2107.8
C16—C15—C14123.03 (17)C2M—C3M—C4M116.9 (7)
C16—C15—C20118.65 (17)C2M—C3M—C4Mi92.1 (6)
C14—C15—C20118.31 (16)C4M—C3M—C4Mi44.7 (7)
C17—C16—C15120.81 (18)C2M—C3M—H3M1107.6
C17—C16—H16119.6C4M—C3M—H3M1108.8
C15—C16—H16119.6C4Mi—C3M—H3M1153.2
C16—C17—C18120.50 (18)C2M—C3M—H3M2108.4
C16—C17—H17119.8C4M—C3M—H3M2107.6
C18—C17—H17119.8C4Mi—C3M—H3M282.6
C19—C18—C17120.85 (19)H3M1—C3M—H3M2107.2
C19—C18—H18119.6C4Mi—C4M—C3M73.1 (8)
C17—C18—H18119.6C4Mi—C4M—H4M1174.5
C18—C19—C20120.42 (18)C3M—C4M—H4M1109.8
C18—C19—H19119.8C3Mi—C4M—H4M1112.3
C20—C19—H19119.8C4Mi—C4M—H4M273.8
C21—C20—C19123.69 (17)C3M—C4M—H4M2110.9
C21—C20—C15117.56 (16)C3Mi—C4M—H4M2110.8
C19—C20—C15118.76 (17)H4M1—C4M—H4M2108.8
C12—C21—C20121.63 (16)H4L1i—C4M—H4L2i77.7
C12—C21—C1108.50 (15)
C21—C1—C2—C110.04 (18)Cl4—C14—C15—C160.8 (2)
Cl2—C1—C2—C11120.21 (13)C13—C14—C15—C200.3 (3)
Cl1—C1—C2—C11120.02 (13)Cl4—C14—C15—C20179.39 (12)
C21—C1—C2—C3179.87 (17)C14—C15—C16—C17179.80 (17)
Cl2—C1—C2—C359.9 (2)C20—C15—C16—C170.4 (3)
Cl1—C1—C2—C359.9 (2)C15—C16—C17—C180.2 (3)
C11—C2—C3—C4178.98 (17)C16—C17—C18—C190.1 (3)
C1—C2—C3—C41.1 (3)C17—C18—C19—C200.2 (3)
C11—C2—C3—C80.7 (2)C18—C19—C20—C21179.61 (17)
C1—C2—C3—C8179.16 (16)C18—C19—C20—C150.5 (3)
C2—C3—C4—C5179.32 (19)C16—C15—C20—C21179.52 (15)
C8—C3—C4—C50.4 (3)C14—C15—C20—C210.3 (2)
C3—C4—C5—C60.9 (3)C16—C15—C20—C190.6 (2)
C4—C5—C6—C70.4 (4)C14—C15—C20—C19179.67 (16)
C5—C6—C7—C80.6 (4)C13—C12—C21—C200.2 (3)
C6—C7—C8—C9178.47 (19)C11—C12—C21—C20179.88 (15)
C6—C7—C8—C31.1 (3)C13—C12—C21—C1179.72 (15)
C2—C3—C8—C7179.68 (16)C11—C12—C21—C10.01 (19)
C4—C3—C8—C70.6 (3)C19—C20—C21—C12179.72 (16)
C2—C3—C8—C90.7 (2)C15—C20—C21—C120.2 (2)
C4—C3—C8—C9178.99 (16)C19—C20—C21—C10.4 (3)
C7—C8—C9—C10179.69 (17)C15—C20—C21—C1179.66 (16)
C3—C8—C9—C100.1 (3)C2—C1—C21—C120.03 (18)
C7—C8—C9—Cl30.2 (2)Cl2—C1—C21—C12120.35 (13)
C3—C8—C9—Cl3179.77 (13)Cl1—C1—C21—C12120.08 (13)
C8—C9—C10—C110.5 (3)C2—C1—C21—C20179.85 (17)
Cl3—C9—C10—C11179.60 (12)Cl2—C1—C21—C2059.8 (2)
C3—C2—C11—C100.1 (3)Cl1—C1—C21—C2059.8 (2)
C1—C2—C11—C10179.81 (15)C2Li—C1L—C2L—C3L33.3 (4)
C3—C2—C11—C12179.88 (15)C1L—C2L—C3L—C4L66.8 (7)
C1—C2—C11—C120.03 (19)C2L—C3L—C4L—C3Li34.5 (4)
C9—C10—C11—C20.5 (3)C2Mi—C1M—C2M—C1Mi53.6 (7)
C9—C10—C11—C12179.21 (16)C1Mi—C1M—C2M—C3M66.9 (6)
C2—C11—C12—C210.02 (19)C2Mi—C1M—C2M—C3M13.3 (9)
C10—C11—C12—C21179.78 (16)C1Mi—C2M—C3M—C4M62.5 (9)
C2—C11—C12—C13179.67 (16)C1M—C2M—C3M—C4M19.4 (11)
C10—C11—C12—C130.1 (3)C1Mi—C2M—C3M—C4Mi101.3 (6)
C21—C12—C13—C140.2 (2)C1M—C2M—C3M—C4Mi58.2 (8)
C11—C12—C13—C14179.83 (16)C2M—C3M—C4M—C4Mi62.9 (8)
C12—C13—C14—C150.2 (3)C2M—C3M—C4M—C3Mi8.3 (10)
C12—C13—C14—Cl4179.44 (12)C4Mi—C3M—C4M—C3Mi54.6 (6)
C13—C14—C15—C16179.47 (17)
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

The authors are grateful to M. Prenzel for the synthesis of this compound.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBergmann, E. D., Fischer, E., Hirshberg, Y., Lavie, D., Sprinzak, Y. & Szmuszkovicz, J. (1953). Bull. Soc. Chim. Fr., 798–809.  Google Scholar
First citationBlicke, F. F. (1927). J. Am. Chem. Soc. 49, 2843–2849.  CrossRef CAS Google Scholar
First citationFranzen, V. & Joschek, H. I. (1961). Justus Liebigs Ann. Chem. 648, 63–68.  CrossRef CAS Google Scholar
First citationKanawati, B., Genest, A., Schmitt-Kopplin, P. & Lenoir, D. (2012). J. Molec. Model. 18, 63–68.  CrossRef Google Scholar
First citationMagidson, O. I. (1925). Ber. Dtsch. Chem. Ges. A/B, 58, 433–442.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWentrup, C., Regimbald-Krnel, M. J., Müller, D. & Comba, P. (2016). Angew. Chem. Int. Ed. 55, 14600–14605.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds