organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 6′-cyano-7′-(p-tol­yl)-1′,6′,7′,7a′-tetra­hydro-3′H-spiro­[indeno­[1,2-b]quinoxaline-11,5′-pyrrolo­[1,2-c]thia­zole]-6′-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Devanga Arts College, Aruppukottai 626101, Tamilnadu, India, bSchool of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India, cDepartment of Physics, University College of Engineering, Anna University, Nagercoil 629 004, Tamilnadu, India, and dDepartment of Physics, Thiagarajar College, Madurai 625 009, Tamilnadu, India
*Correspondence e-mail: athi81s@yahoo.co.in

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 17 December 2018; accepted 3 January 2019; online 15 January 2019)

The title compound, C31H26N4O2S, crystallizes in a triclinic centrosymmetric lattice with two mol­ecules in the unit cell. The five-membered thia­zole and pyrrolidine rings adopt twisted and envelope conformations, respectively. The meth­oxy­phenyl and indeno­quinoxaline planes are oriented with a dihedral angle of 88.1 (1)° to each other. The crystal structure features C—H⋯N, C—H⋯O and C—H⋯S inter­molecular inter­actions forming two R22(16) ring motifs and a C(11) and two C22(14) chain motifs. The –CH3 group of the ethyl side chain is disordered over two positions with site occupancies of 0.55 and 0.45.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The fusion of more heterocyclic rings, such as thia­zoles, pyrrolidines and quinoxalines, in a single compound is being investigated by many researchers around the world due to the versatile applications of such compounds in the biological and pharmaceutical industries (He et al., 2003[He, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097-3100.]; Swarnkar et al., 2007[Swarnkar, P. K., Kriplani, P., Gupta, G. N. & Ojha, K. G. (2007). E-J. Chem. 4, 14-20.]; Verma & Saraf, 2008[Verma, A. & Saraf, S. K. (2008). Eur. J. Med. Chem. 43, 897-905.]; Muralikrishnan et al., 2013[Muralikrishnan, S., Raveendrareddy, P., Ravindranath, L. K., Harikrishna, S. & Jagadeeswara, R. P. (2013). Der Pharma Chem. 5, 87-93.]). When such a fused heterocyclic compound has attached donor and acceptor groups, it leads to inter­molecular inter­actions which are normally weak hydrogen bonds. The introduction of a carboxyl­ate or cyanide group is of our inter­est in the present investigation, which not only affects the conformation of the mol­ecule but also the inter­molecular inter­action feasibility, along with a meth­oxy­phenyl group. The new conformation of the structure and its packing specificity through hydrogen-bonding motifs is described. The biological and pharmaceutical applications of this type of mol­ecule have already been discussed in previous three recent related publications (Muthuselvi et al., 2017[Muthuselvi, C., Muthu, M., Athimoolam, S., Ravikumar, B., Pandiarajan, S. & Krishnakumar, R. V. (2017). IUCrData, 2, x171305.], 2018a[Muthuselvi, C., Muthu, M., Athimoolam, S., Ravikumar, B., Pandiarajan, S. & Krishnakumar, R. V. (2018a). IUCrData, 3, x180238.],b[Muthuselvi, C., Athimoolam, S., Srinivasan, N., Ravikumar, B., Pandiarajan, S. & Krishnakumar, R. V. (2018b). IUCrData, 3, x181286.]).

The structure of title compound is shown in Fig. 1[link]. The five-membered thia­zole ring adopts a twisted conformation with the puckering parameters of q2 = 0.389 (3) Å and φ2 = 165.3 (4)° on the C24—S1 bond. The five-membered pyrrolidine ring has puckering values of q2 = 0.408 (3) Å and φ2 = 109.3 (3)° and an envelope conformation on C16. The mean planes of the meth­oxy­phenyl ring and the indeno­quinoxaline ring system are inclined to one another at an angle of 88.1 (1)°.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with atom-numbering scheme and 50% probability displacement ellipsoids. The –CH3 group (C20) is disordered over two positions with site occupancies of 0.55 and 0.45.

The packing of the mol­ecules in the centrosymmetric crystal lattice is shown in Fig. 2[link]. As there is lack of classical hydrogen bonds, the crystal packing features C—H⋯S, C—H⋯O and C—H⋯N inter­molecular inter­actions, Table 1[link]. C—H⋯S inter­actions connect the mol­ecules along the ab diagonal of the unit cell, leading to a C(11) chain motif as depicted in Fig. 3[link]. The mol­ecules are further connected about the inversion centre of the unit cell through C—H⋯N and C—H⋯O inter­molecular inter­actions, leading to two R22(16) ring motifs that are arranged adjacently, leading to two infinite C22(14) chain motifs running in opposite directions, as shown in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯S1i 0.93 3.01 3.881 (4) 156
C23—H23A⋯N2ii 0.97 2.70 3.610 (4) 156
C4—H4⋯O1iii 0.93 2.43 3.332 (3) 162
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines. The minor component of the disordered –CH3 group (C20 atom) is omitted for clarity.
[Figure 3]
Figure 3
C(11) chain motif extending along the ab-axis of the unit cell formed by a C—H⋯S inter­action. Hydrogen bonds are shown as dashed lines. The minor component of the disordered –CH3 group (C20 atom) is omitted for clarity.
[Figure 4]
Figure 4
Two centrosymmetrically related R22(16) ring motifs and two C22(14) chain motifs running in opposite directions formed by C—H⋯N and C—H⋯O inter­actions. Hydrogen bonds are shown as dashed lines. The minor component of the disordered –CH3 group (C20 atom) is omitted for clarity.

Synthesis and crystallization

Equimolar amounts of 1H-indeno­[1,2-b]quinoxalin-11-one and thia­zolidine-4-carb­oxy­lic acid were added to 20 ml of methanol and refluxed under a water bath for two minutes. An equimolar amount of propyl-(E)-2-cyano-3-(p-tol­yl) acrylate was added to the reaction mixture and refluxing was continued until the TLC analysis indicated that the reaction was completed (continued for 4 h). The precipitated solid was filtered and washed with methanol to obtain the title compound in good yield (94–98%). Colourless block-shaped crystals were obtained by slow evaporation after recrystallization from chloro­form solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The –CH3 group of the ethyl side chain (atom C20) is disordered over two positions with site occupancies of 0.55 and 0.45. The C—C distances involving the disordered methyl group were restrained to 1.500 (5) Å. The displacement parameters of the disordered atoms were restrained to be similar to those of the atom to which they are bonded.

Table 2
Experimental details

Crystal data
Chemical formula C31H26N4O2S
Mr 518.62
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 10.5467 (17), 11.6469 (19), 12.942 (2)
α, β, γ (°) 108.321 (3), 102.108 (3), 110.887 (3)
V3) 1313.9 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.21 × 0.18 × 0.16
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 12753, 4622, 3771
Rint 0.023
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.151, 1.07
No. of reflections 4622
No. of parameters 355
No. of restraints 22
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.26
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Ethyl 6'-cyano-7'-(p-tolyl)-1',6',7',7a'-tetrahydro-3'H-spiro[indeno[1,2-b]quinoxaline-11,5'-pyrrolo[1,2-c]thiazole]-6'-carboxylate top
Crystal data top
C31H26N4O2SZ = 2
Mr = 518.62F(000) = 544
Triclinic, P1Dx = 1.311 Mg m3
a = 10.5467 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6469 (19) ÅCell parameters from 2425 reflections
c = 12.942 (2) Åθ = 2.2–24.7°
α = 108.321 (3)°µ = 0.16 mm1
β = 102.108 (3)°T = 293 K
γ = 110.887 (3)°Block, colourless
V = 1313.9 (4) Å30.21 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.1°
ω scansh = 1212
12753 measured reflectionsk = 1313
4622 independent reflectionsl = 1515
3771 reflections with I > 2σ(I)
Refinement top
Refinement on F222 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0638P)2 + 0.7519P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4622 reflectionsΔρmax = 0.28 e Å3
355 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the H atoms were constrained and refined in the riding model approximation with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5 Ueq(parent carbon atom). The –CH3 group of the ethyl side chain (atom C20) is disordered two positions with site occupancies of 0.55 and 0.45. The C—C distances involving the disordered methyl group were restrained to 1.500 (5) Å. The displacement parameters of the disordered atoms were restrained to be similar as the one of the atom to which they are bonded.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5961 (2)0.9197 (2)0.2416 (2)0.0408 (6)
C20.5481 (3)0.8168 (2)0.1140 (2)0.0427 (6)
C30.4668 (3)0.6764 (2)0.0615 (2)0.0499 (6)
H30.43070.63060.10430.060*
C40.4402 (3)0.6057 (3)0.0548 (3)0.0574 (7)
H40.38620.51160.08990.069*
C50.4918 (3)0.6713 (3)0.1198 (3)0.0621 (8)
H50.47200.62140.19820.075*
C60.5729 (3)0.8109 (3)0.0695 (2)0.0591 (7)
H60.60810.85590.11310.071*
C70.6005 (3)0.8823 (3)0.0474 (2)0.0457 (6)
C80.6789 (3)1.0287 (2)0.1196 (2)0.0446 (6)
C90.6725 (2)1.0533 (2)0.2330 (2)0.0410 (6)
C100.7864 (3)1.2786 (2)0.2866 (2)0.0500 (6)
C110.8413 (3)1.4131 (3)0.3690 (3)0.0665 (8)
H110.83221.43010.44150.080*
C120.9078 (3)1.5189 (3)0.3436 (3)0.0737 (10)
H120.94491.60760.39920.088*
C130.9205 (3)1.4948 (3)0.2353 (4)0.0720 (10)
H130.96541.56800.21880.086*
C140.8685 (3)1.3663 (3)0.1527 (3)0.0642 (8)
H140.87891.35240.08080.077*
C150.7989 (3)1.2542 (3)0.1755 (3)0.0508 (7)
C160.6976 (2)0.8932 (2)0.3302 (2)0.0389 (5)
C170.7946 (3)1.0183 (2)0.4386 (2)0.0430 (6)
C180.7898 (3)0.8377 (3)0.2721 (2)0.0425 (6)
C210.5848 (3)0.7902 (2)0.3579 (2)0.0413 (6)
H210.53810.70270.28910.050*
C220.4708 (3)0.8422 (3)0.3620 (2)0.0471 (6)
H220.49560.90360.44310.057*
C230.3105 (3)0.7322 (3)0.3151 (3)0.0647 (8)
H23A0.26360.75650.36950.078*
H23B0.30720.64520.30630.078*
C240.3470 (3)0.8973 (3)0.2200 (3)0.0662 (8)
H24A0.35500.91210.15140.079*
H24B0.31430.95860.26250.079*
C250.6408 (3)0.7648 (2)0.4626 (2)0.0457 (6)
C260.5612 (4)0.7430 (5)0.5313 (3)0.0890 (12)
H260.47530.75110.51770.107*
C270.6058 (5)0.7094 (5)0.6206 (4)0.1080 (15)
H270.54770.69370.66470.130*
C280.7324 (4)0.6982 (4)0.6471 (3)0.0708 (9)
C290.8159 (4)0.7278 (4)0.5832 (3)0.0775 (10)
H290.90510.72590.60080.093*
C300.7719 (4)0.7604 (4)0.4930 (3)0.0724 (9)
H300.83230.78010.45140.087*
C310.7813 (5)0.6613 (5)0.7454 (4)0.1092 (15)
H31A0.84050.74260.81640.164*
H31B0.83690.61340.72660.164*
H31C0.69760.60450.75550.164*
N10.4856 (2)0.9211 (2)0.2931 (2)0.0479 (5)
N20.8697 (3)1.1096 (2)0.5250 (2)0.0624 (6)
N30.7420 (2)1.1249 (2)0.0893 (2)0.0533 (6)
N40.7208 (2)1.1737 (2)0.31545 (19)0.0483 (5)
O10.7654 (2)0.72191 (18)0.23620 (16)0.0570 (5)
O20.8942 (2)0.93702 (19)0.26587 (18)0.0579 (5)
C190.9941 (4)0.9032 (4)0.2154 (3)0.0799 (10)
H19A1.00830.83360.23470.096*0.55
H19B1.08780.98300.24860.096*0.55
H19C0.96440.80670.18870.096*0.45
H19D1.09150.95210.27410.096*0.45
S10.21886 (8)0.72141 (9)0.17723 (8)0.0703 (3)
C200.9376 (12)0.8542 (10)0.0874 (5)0.094 (3)0.55
H20A0.85560.76580.05310.141*0.55
H20B1.01260.84890.05790.141*0.55
H20C0.90780.91590.06790.141*0.55
C20'0.9945 (16)0.9404 (12)0.1157 (8)0.096 (4)0.45
H20D0.89910.88830.05590.144*0.45
H20E1.06360.92140.08470.144*0.45
H20F1.02101.03540.14190.144*0.45
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0386 (13)0.0321 (12)0.0492 (14)0.0161 (10)0.0146 (11)0.0155 (11)
C20.0356 (12)0.0390 (13)0.0489 (14)0.0191 (11)0.0073 (11)0.0158 (11)
C30.0458 (14)0.0377 (14)0.0531 (16)0.0168 (12)0.0067 (12)0.0137 (12)
C40.0505 (16)0.0403 (14)0.0597 (18)0.0202 (12)0.0016 (13)0.0078 (13)
C50.0635 (18)0.0623 (19)0.0468 (16)0.0320 (15)0.0090 (14)0.0100 (14)
C60.0608 (17)0.0638 (19)0.0512 (17)0.0312 (15)0.0154 (14)0.0226 (15)
C70.0402 (13)0.0455 (14)0.0480 (15)0.0213 (11)0.0100 (11)0.0179 (12)
C80.0396 (13)0.0438 (14)0.0535 (15)0.0209 (11)0.0130 (11)0.0247 (12)
C90.0349 (12)0.0346 (13)0.0517 (15)0.0161 (10)0.0119 (11)0.0185 (11)
C100.0416 (14)0.0368 (14)0.0659 (18)0.0155 (11)0.0098 (12)0.0242 (13)
C110.0645 (19)0.0407 (16)0.078 (2)0.0171 (14)0.0130 (16)0.0221 (15)
C120.0626 (19)0.0362 (16)0.099 (3)0.0111 (14)0.0108 (18)0.0257 (16)
C130.0464 (16)0.0534 (19)0.116 (3)0.0134 (14)0.0198 (18)0.053 (2)
C140.0520 (16)0.0614 (19)0.090 (2)0.0234 (15)0.0243 (16)0.0482 (18)
C150.0381 (13)0.0467 (15)0.0700 (18)0.0183 (12)0.0129 (12)0.0332 (14)
C160.0380 (12)0.0318 (12)0.0446 (13)0.0158 (10)0.0138 (10)0.0146 (10)
C170.0418 (13)0.0365 (13)0.0477 (15)0.0157 (11)0.0146 (12)0.0178 (12)
C180.0397 (13)0.0427 (15)0.0412 (13)0.0188 (11)0.0098 (11)0.0162 (11)
C210.0421 (13)0.0328 (12)0.0456 (13)0.0149 (10)0.0171 (11)0.0144 (10)
C220.0478 (14)0.0428 (14)0.0521 (15)0.0219 (12)0.0219 (12)0.0179 (12)
C230.0496 (16)0.0700 (19)0.089 (2)0.0272 (15)0.0326 (16)0.0456 (18)
C240.0500 (16)0.070 (2)0.101 (2)0.0348 (15)0.0330 (16)0.0515 (19)
C250.0498 (15)0.0369 (13)0.0495 (15)0.0179 (11)0.0195 (12)0.0184 (11)
C260.073 (2)0.154 (4)0.089 (2)0.066 (2)0.045 (2)0.082 (3)
C270.096 (3)0.189 (5)0.100 (3)0.078 (3)0.059 (2)0.103 (3)
C280.084 (2)0.083 (2)0.0649 (19)0.0458 (19)0.0302 (18)0.0444 (18)
C290.083 (2)0.105 (3)0.083 (2)0.064 (2)0.0364 (19)0.058 (2)
C300.075 (2)0.103 (3)0.084 (2)0.059 (2)0.0445 (18)0.063 (2)
C310.128 (4)0.151 (4)0.099 (3)0.083 (3)0.046 (3)0.087 (3)
N10.0409 (11)0.0403 (11)0.0696 (14)0.0215 (9)0.0232 (10)0.0265 (11)
N20.0628 (15)0.0466 (14)0.0539 (15)0.0163 (12)0.0083 (12)0.0115 (12)
N30.0512 (13)0.0526 (14)0.0619 (14)0.0235 (11)0.0195 (11)0.0322 (12)
N40.0470 (12)0.0355 (11)0.0569 (13)0.0172 (10)0.0131 (10)0.0185 (10)
O10.0612 (12)0.0411 (11)0.0619 (12)0.0269 (9)0.0211 (9)0.0107 (9)
O20.0519 (11)0.0607 (12)0.0831 (14)0.0326 (10)0.0390 (10)0.0394 (11)
C190.078 (2)0.107 (3)0.104 (3)0.063 (2)0.062 (2)0.062 (2)
S10.0417 (4)0.0768 (6)0.0791 (6)0.0151 (4)0.0168 (4)0.0345 (5)
C200.100 (8)0.143 (9)0.089 (5)0.091 (7)0.048 (5)0.059 (6)
C20'0.112 (10)0.141 (11)0.082 (6)0.084 (10)0.062 (6)0.056 (7)
Geometric parameters (Å, º) top
C1—N11.461 (3)C21—H210.9800
C1—C91.528 (3)C22—N11.461 (3)
C1—C21.546 (3)C22—C231.550 (4)
C1—C161.581 (3)C22—H220.9800
C2—C31.389 (3)C23—S11.784 (3)
C2—C71.393 (4)C23—H23A0.9700
C3—C41.378 (4)C23—H23B0.9700
C3—H30.9300C24—N11.440 (3)
C4—C51.375 (4)C24—S11.825 (3)
C4—H40.9300C24—H24A0.9700
C5—C61.381 (4)C24—H24B0.9700
C5—H50.9300C25—C261.366 (4)
C6—C71.385 (4)C25—C301.379 (4)
C6—H60.9300C26—C271.378 (5)
C7—C81.461 (3)C26—H260.9300
C8—N31.306 (3)C27—C281.370 (5)
C8—C91.425 (4)C27—H270.9300
C9—N41.299 (3)C28—C291.359 (5)
C10—N41.379 (3)C28—C311.516 (5)
C10—C111.404 (4)C29—C301.379 (4)
C10—C151.420 (4)C29—H290.9300
C11—C121.361 (4)C30—H300.9300
C11—H110.9300C31—H31A0.9600
C12—C131.386 (5)C31—H31B0.9600
C12—H120.9300C31—H31C0.9600
C13—C141.359 (5)O2—C191.454 (3)
C13—H130.9300C19—C201.474 (5)
C14—C151.408 (4)C19—C20'1.484 (5)
C14—H140.9300C19—H19A0.9700
C15—N31.374 (3)C19—H19B0.9700
C16—C171.479 (3)C19—H19C0.9700
C16—C181.542 (3)C19—H19D0.9700
C16—C211.553 (3)C20—H20A0.9600
C17—N21.135 (3)C20—H20B0.9600
C18—O11.188 (3)C20—H20C0.9600
C18—O21.320 (3)C20'—H20D0.9600
C21—C251.521 (3)C20'—H20E0.9600
C21—C221.531 (3)C20'—H20F0.9600
N1—C1—C9111.29 (18)C23—C22—H22108.4
N1—C1—C2119.08 (19)C22—C23—S1108.18 (19)
C9—C1—C2100.51 (19)C22—C23—H23A110.1
N1—C1—C16100.80 (19)S1—C23—H23A110.1
C9—C1—C16114.22 (18)C22—C23—H23B110.1
C2—C1—C16111.61 (18)S1—C23—H23B110.1
C3—C2—C7119.0 (2)H23A—C23—H23B108.4
C3—C2—C1130.0 (2)N1—C24—S1107.03 (19)
C7—C2—C1111.0 (2)N1—C24—H24A110.3
C4—C3—C2119.2 (3)S1—C24—H24A110.3
C4—C3—H3120.4N1—C24—H24B110.3
C2—C3—H3120.4S1—C24—H24B110.3
C5—C4—C3121.4 (3)H24A—C24—H24B108.6
C5—C4—H4119.3C26—C25—C30116.2 (3)
C3—C4—H4119.3C26—C25—C21121.0 (3)
C4—C5—C6120.5 (3)C30—C25—C21122.8 (2)
C4—C5—H5119.8C25—C26—C27121.2 (3)
C6—C5—H5119.8C25—C26—H26119.4
C5—C6—C7118.4 (3)C27—C26—H26119.4
C5—C6—H6120.8C28—C27—C26122.5 (3)
C7—C6—H6120.8C28—C27—H27118.7
C6—C7—C2121.6 (2)C26—C27—H27118.7
C6—C7—C8129.1 (3)C29—C28—C27116.2 (3)
C2—C7—C8109.3 (2)C29—C28—C31121.3 (3)
N3—C8—C9123.7 (2)C27—C28—C31122.4 (3)
N3—C8—C7128.1 (2)C28—C29—C30121.7 (3)
C9—C8—C7108.1 (2)C28—C29—H29119.1
N4—C9—C8123.8 (2)C30—C29—H29119.1
N4—C9—C1125.3 (2)C29—C30—C25121.9 (3)
C8—C9—C1110.8 (2)C29—C30—H30119.1
N4—C10—C11119.1 (3)C25—C30—H30119.1
N4—C10—C15121.8 (2)C28—C31—H31A109.5
C11—C10—C15119.1 (3)C28—C31—H31B109.5
C12—C11—C10120.6 (3)H31A—C31—H31B109.5
C12—C11—H11119.7C28—C31—H31C109.5
C10—C11—H11119.7H31A—C31—H31C109.5
C11—C12—C13120.2 (3)H31B—C31—H31C109.5
C11—C12—H12119.9C24—N1—C22112.6 (2)
C13—C12—H12119.9C24—N1—C1118.3 (2)
C14—C13—C12121.2 (3)C22—N1—C1112.25 (18)
C14—C13—H13119.4C8—N3—C15114.3 (2)
C12—C13—H13119.4C9—N4—C10114.4 (2)
C13—C14—C15120.3 (3)C18—O2—C19117.1 (2)
C13—C14—H14119.8O2—C19—C20111.1 (5)
C15—C14—H14119.8O2—C19—C20'109.8 (6)
N3—C15—C14119.5 (3)O2—C19—H19A109.4
N3—C15—C10121.9 (2)C20—C19—H19A109.4
C14—C15—C10118.6 (3)O2—C19—H19B109.4
C17—C16—C18109.64 (19)C20—C19—H19B109.4
C17—C16—C21109.5 (2)H19A—C19—H19B108.0
C18—C16—C21114.19 (19)O2—C19—H19C109.7
C17—C16—C1111.59 (18)C20'—C19—H19C109.7
C18—C16—C1109.77 (19)O2—C19—H19D109.7
C21—C16—C1101.94 (18)C20'—C19—H19D109.7
N2—C17—C16176.0 (3)H19C—C19—H19D108.2
O1—C18—O2126.5 (2)C23—S1—C2490.07 (14)
O1—C18—C16123.8 (2)C19—C20—H20A109.5
O2—C18—C16109.7 (2)C19—C20—H20B109.5
C25—C21—C22115.2 (2)H20A—C20—H20B109.5
C25—C21—C16117.8 (2)C19—C20—H20C109.5
C22—C21—C16102.65 (19)H20A—C20—H20C109.5
C25—C21—H21106.8H20B—C20—H20C109.5
C22—C21—H21106.8C19—C20'—H20D109.5
C16—C21—H21106.8C19—C20'—H20E109.5
N1—C22—C21105.81 (19)H20D—C20'—H20E109.5
N1—C22—C23109.4 (2)C19—C20'—H20F109.5
C21—C22—C23116.1 (2)H20D—C20'—H20F109.5
N1—C22—H22108.4H20E—C20'—H20F109.5
C21—C22—H22108.4
N1—C1—C2—C355.0 (3)C21—C16—C18—O2171.9 (2)
C9—C1—C2—C3176.7 (2)C1—C16—C18—O274.3 (2)
C16—C1—C2—C361.8 (3)C17—C16—C21—C2547.3 (3)
N1—C1—C2—C7126.1 (2)C18—C16—C21—C2576.1 (3)
C9—C1—C2—C74.4 (2)C1—C16—C21—C25165.60 (19)
C16—C1—C2—C7117.1 (2)C17—C16—C21—C2280.4 (2)
C7—C2—C3—C40.1 (4)C18—C16—C21—C22156.2 (2)
C1—C2—C3—C4178.7 (2)C1—C16—C21—C2237.9 (2)
C2—C3—C4—C50.4 (4)C25—C21—C22—N1152.5 (2)
C3—C4—C5—C60.3 (4)C16—C21—C22—N123.1 (2)
C4—C5—C6—C70.0 (4)C25—C21—C22—C2386.0 (3)
C5—C6—C7—C20.3 (4)C16—C21—C22—C23144.7 (2)
C5—C6—C7—C8178.2 (3)N1—C22—C23—S112.8 (3)
C3—C2—C7—C60.2 (4)C21—C22—C23—S1106.8 (2)
C1—C2—C7—C6179.3 (2)C22—C21—C25—C2622.1 (4)
C3—C2—C7—C8178.5 (2)C16—C21—C25—C26143.6 (3)
C1—C2—C7—C82.5 (3)C22—C21—C25—C30158.7 (3)
C6—C7—C8—N30.8 (4)C16—C21—C25—C3037.3 (4)
C2—C7—C8—N3178.9 (2)C30—C25—C26—C274.4 (6)
C6—C7—C8—C9177.3 (3)C21—C25—C26—C27174.8 (4)
C2—C7—C8—C90.8 (3)C25—C26—C27—C281.2 (7)
N3—C8—C9—N44.4 (4)C26—C27—C28—C292.7 (7)
C7—C8—C9—N4173.8 (2)C26—C27—C28—C31179.9 (4)
N3—C8—C9—C1178.0 (2)C27—C28—C29—C303.2 (6)
C7—C8—C9—C13.8 (3)C31—C28—C29—C30179.5 (4)
N1—C1—C9—N445.6 (3)C28—C29—C30—C250.1 (6)
C2—C1—C9—N4172.7 (2)C26—C25—C30—C293.9 (5)
C16—C1—C9—N467.7 (3)C21—C25—C30—C29175.3 (3)
N1—C1—C9—C8131.9 (2)S1—C24—N1—C2232.2 (3)
C2—C1—C9—C84.9 (2)S1—C24—N1—C1101.5 (2)
C16—C1—C9—C8114.8 (2)C21—C22—N1—C24138.6 (2)
N4—C10—C11—C12179.4 (3)C23—C22—N1—C2412.8 (3)
C15—C10—C11—C121.0 (4)C21—C22—N1—C12.1 (3)
C10—C11—C12—C130.8 (5)C23—C22—N1—C1123.7 (2)
C11—C12—C13—C140.6 (5)C9—C1—N1—C2479.0 (3)
C12—C13—C14—C150.6 (5)C2—C1—N1—C2437.2 (3)
C13—C14—C15—N3177.5 (3)C16—C1—N1—C24159.5 (2)
C13—C14—C15—C100.8 (4)C9—C1—N1—C22147.2 (2)
N4—C10—C15—N32.4 (4)C2—C1—N1—C2296.6 (3)
C11—C10—C15—N3177.2 (2)C16—C1—N1—C2225.7 (2)
N4—C10—C15—C14179.4 (2)C9—C8—N3—C151.9 (3)
C11—C10—C15—C141.0 (4)C7—C8—N3—C15175.9 (2)
N1—C1—C16—C1778.2 (2)C14—C15—N3—C8179.4 (2)
C9—C1—C16—C1741.2 (3)C10—C15—N3—C81.2 (3)
C2—C1—C16—C17154.3 (2)C8—C9—N4—C103.0 (3)
N1—C1—C16—C18160.00 (18)C1—C9—N4—C10179.8 (2)
C9—C1—C16—C1880.6 (2)C11—C10—N4—C9179.4 (2)
C2—C1—C16—C1832.6 (3)C15—C10—N4—C90.2 (3)
N1—C1—C16—C2138.6 (2)O1—C18—O2—C193.3 (4)
C9—C1—C16—C21158.01 (19)C16—C18—O2—C19178.7 (2)
C2—C1—C16—C2188.8 (2)C18—O2—C19—C2087.4 (5)
C17—C16—C18—O1133.3 (2)C18—O2—C19—C20'123.8 (6)
C21—C16—C18—O110.0 (3)C22—C23—S1—C2426.2 (2)
C1—C16—C18—O1103.7 (3)N1—C24—S1—C2333.7 (2)
C17—C16—C18—O248.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···S1i0.933.013.881 (4)156
C23—H23A···N2ii0.972.703.610 (4)156
C4—H4···O1iii0.932.433.332 (3)162
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z.
 

Acknowledgements

CM, BR and SP thank the management of Devanga Arts College, Aruppukkottai, for their constant support and encouragement.

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097–3100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuralikrishnan, S., Raveendrareddy, P., Ravindranath, L. K., Harikrishna, S. & Jagadeeswara, R. P. (2013). Der Pharma Chem. 5, 87–93.  Google Scholar
First citationMuthuselvi, C., Athimoolam, S., Srinivasan, N., Ravikumar, B., Pandiarajan, S. & Krishnakumar, R. V. (2018b). IUCrData, 3, x181286.  Google Scholar
First citationMuthuselvi, C., Muthu, M., Athimoolam, S., Ravikumar, B., Pandiarajan, S. & Krishnakumar, R. V. (2017). IUCrData, 2, x171305.  Google Scholar
First citationMuthuselvi, C., Muthu, M., Athimoolam, S., Ravikumar, B., Pandiarajan, S. & Krishnakumar, R. V. (2018a). IUCrData, 3, x180238.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwarnkar, P. K., Kriplani, P., Gupta, G. N. & Ojha, K. G. (2007). E-J. Chem. 4, 14–20.  CrossRef CAS Google Scholar
First citationVerma, A. & Saraf, S. K. (2008). Eur. J. Med. Chem. 43, 897–905.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds