organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

rac-1,1,1,6,6,6-Hexa­chloro­hex-3-yne-2,5-diol hemihydrate

CROSSMARK_Color_square_no_text.svg

aUniversity of Mainz, Institut of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 25 August 2017; accepted 25 August 2017; online 30 August 2017)

The asymmetric unit of the title compound, C6H4Cl6O2·0.5H2O, contains one mol­ecule of 1,1,1,6,6,6-hexa­chloro­hex-3-yne-2,5-diol and half a water mol­ecule located on a twofold rotation axis. In the crystal, pairs of hexa­chloro­hexynediol molecules form centrosymmetric dimers connected via pairwise O—H⋯O hydrogen bonds. These dimers are connected by water mol­ecules, resulting in layers parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Highly chlorinated compounds are of current inter­est because they are inter­mediates in the formation of environmental pollutants (Taylor et al., 2000[Taylor, P. H., Wehrmeier, A., Sidhu, S. S., Lenoir, D., Schramm, K. W. & Kettrup, A. (2000). Chemosphere, 40, 1297-1303.]) and they are useful as chemical substrates (Rahimi et al., 2009[Rahimi, A., Gjikai, M. & Schmidt, A. (2009). Synlett, pp. 2583-2588.]; Schmidt et al., 2009[Schmidt, A., Rahimi, A. & Gjikai, M. (2009). Synlett, pp. 2371-2378.]). Furthermore, their rearrangements (McIntosh et al., 2014[McIntosh, G. J. & Russell, D. K. (2014). J. Phys. Chem. A, 118, 8644-8663.]; Schollmeyer & Detert, 2017[Schollmeyer, D. & Detert, H. (2017). Tetrahedron Lett. 58, 843-846.]; Detert et al., 2009[Detert, H., Lenoir, D. & Zipse, H. (2009). Eur. J. Org. Chem. pp. 1181-1190.]) are a topic in its own right. The monoclinic unit cell contains four centrosymmetric dimers composed of one mol­ecule with an R,R-configuration, one with an S,S-configuration and four water mol­ecules, the latter is located on a twofold rotation axis.

In the monoclinic crystal, the hexa­chloro­hexynediol molecules adopt a gauche conformation [C1—C2⋯C5—C6 = 30.4 (2)°] with a nonperfect C2 symmetry (Fig. 1[link]). The C—Cl bonds of the tri­chloro­methyl groups vary between 1.756 (3) (C6—Cl4) and 1.776 (3) Å (C1—Cl2). With bond angles of 176.9 (3) and 175.8 (3)° and a torsion angle of 3 (10)°, the alkyne unit is not perfectly linear. An R,R- and an S,S-configured diole are connected via short hydrogen bonds [O1—H1O⋯O2ii = 2.725 (3) Å] to a centrosymmetric dimer (Table 1[link]). A C—H⋯O hydrogen bond [C5—H5⋯O1i = 3.297 (4) Å] forms a chain parallel to the b axis. Hydrogen bonds between atoms O1 and O2 to the water mol­ecule [O2—H2O⋯O3i = 2.773 (3) Å and O3—H3O⋯O1 = 2.999 (3) Å] connect these chains into layers in the ab plane (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.98 (4) 2.50 (4) 3.297 (4) 139 (3)
O1—H1O⋯O2ii 0.72 (4) 2.01 (4) 2.725 (3) 168 (4)
O2—H2O⋯O3i 0.75 (4) 2.02 (4) 2.773 (3) 175 (4)
O3—H3O⋯O1 0.90 (5) 2.29 (5) 2.999 (3) 135 (5)
O3—H3O⋯Cl1 0.90 (5) 2.83 (5) 3.5120 (8) 134 (4)
O3—H3O⋯Cl2 0.90 (5) 3.06 (5) 3.895 (3) 155 (5)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Part of the packing diagram, viewed along the b axis. Hydrogen bonds are shown with dashed lines.

Synthesis and crystallization

The title compound was prepared from ethyl magnesium bromide, acetyl­ene and chloral according to Gorgues et al. (1986[Gorgues, A., Simon, A., Le Coq, A., Hercouet, A. & Corre, F. (1986). Tetrahedron, 42, 351-370.]) and Dupont (1910[Dupont, G. (1910). C. R. Acad. Sci. T150, 1121-1123.]) followed by aqueous work-up. A mixture of three stereoisomers was obtained. Recrystallization from ethanol solution gave the title compound. 1H NMR: (CDCl3/DMSO-d6, 400 MHz): δ 7.05 (2H, OH), 4.79 (2H, CH, 1JCH = 154 Hz). Recrystallization from chloro­form solution yielded colourless crystals (m.p. 408 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were located in difference Fourier maps and were refined with isotropic displacement parameters.

Table 2
Experimental details

Crystal data
Chemical formula 2C6H4Cl6O2·H2O
Mr 659.60
Crystal system, space group Monoclinic, I2/a
Temperature (K) 193
a, b, c (Å) 19.8354 (11), 5.8480 (2), 21.7082 (13)
β (°) 108.321 (4)
V3) 2390.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.41
Crystal size (mm) 0.39 × 0.07 × 0.06
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (X-RED32; Stoe & Cie, 2006b[Stoe & Cie (2006b). X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.714, 0.933
No. of measured, independent and observed [I > 2σ(I)] reflections 6305, 2965, 2202
Rint 0.026
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.090, 1.03
No. of reflections 2965
No. of parameters 152
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.59, −0.57
Computer programs: X-AREA (Stoe & Cie, 2006a[Stoe & Cie (2006a). X-AREA. Stoe & Cie, Darmstadt, Germany.]), X-RED32 (Stoe & Cie, 2006b[Stoe & Cie (2006b). X-RED32. Stoe & Cie, Darmstadt, Germany.]), SIR2004 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2006a); cell refinement: X-AREA (Stoe & Cie, 2006a); data reduction: X-RED32 (Stoe & Cie, 2006b); program(s) used to solve structure: SIR2004 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

rac-1,1,1,6,6,6-Hexachlorohex-3-yne-2,5-diol hemihydrate top
Crystal data top
2C6H4Cl6O2·H2ODx = 1.833 Mg m3
Mr = 659.60Melting point: 408 K
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 19.8354 (11) ÅCell parameters from 5782 reflections
b = 5.8480 (2) Åθ = 3.4–28.3°
c = 21.7082 (13) ŵ = 1.41 mm1
β = 108.321 (4)°T = 193 K
V = 2390.5 (2) Å3Column, colourless
Z = 40.39 × 0.07 × 0.06 mm
F(000) = 1304
Data collection top
Stoe IPDS 2T
diffractometer
2965 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2202 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.026
rotation method scansθmax = 28.3°, θmin = 2.4°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2006b)
h = 2626
Tmin = 0.714, Tmax = 0.933k = 76
6305 measured reflectionsl = 2428
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039All H-atom parameters refined
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0295P)2 + 6.4827P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2965 reflectionsΔρmax = 0.59 e Å3
152 parametersΔρmin = 0.57 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58326 (13)0.4054 (5)0.37414 (13)0.0269 (5)
C20.56624 (13)0.4444 (5)0.43828 (13)0.0268 (5)
H20.5573 (14)0.608 (5)0.4386 (13)0.026 (7)*
C30.50278 (14)0.3142 (5)0.43757 (12)0.0296 (6)
C40.45026 (15)0.2097 (5)0.43394 (13)0.0314 (6)
C50.38356 (15)0.0835 (5)0.42428 (13)0.0303 (6)
H50.3951 (17)0.077 (6)0.4347 (16)0.046 (9)*
C60.34051 (13)0.0815 (5)0.35171 (13)0.0270 (5)
O10.62524 (11)0.3777 (4)0.49119 (10)0.0345 (5)
H1O0.637 (2)0.484 (7)0.5082 (19)0.051 (12)*
O20.34423 (13)0.1915 (5)0.46020 (11)0.0489 (7)
H2O0.319 (2)0.114 (7)0.4692 (19)0.059 (13)*
O30.75000.0752 (6)0.50000.0380 (7)
H3O0.717 (3)0.171 (10)0.475 (3)0.12 (2)*
Cl10.59756 (4)0.11144 (12)0.36352 (4)0.03662 (17)
Cl20.66181 (4)0.55802 (13)0.37759 (4)0.04003 (19)
Cl30.51257 (4)0.50491 (14)0.30818 (3)0.04010 (19)
Cl40.38978 (5)0.05417 (17)0.30774 (4)0.0551 (3)
Cl50.26084 (4)0.07339 (13)0.34107 (4)0.03746 (18)
Cl60.31978 (4)0.36244 (14)0.32294 (5)0.0547 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0242 (12)0.0244 (12)0.0341 (13)0.0017 (10)0.0119 (10)0.0002 (11)
C20.0232 (12)0.0271 (14)0.0300 (13)0.0016 (10)0.0083 (10)0.0002 (11)
C30.0268 (13)0.0357 (15)0.0257 (12)0.0011 (11)0.0075 (10)0.0015 (11)
C40.0302 (14)0.0358 (15)0.0292 (13)0.0032 (12)0.0109 (11)0.0016 (12)
C50.0311 (14)0.0315 (15)0.0312 (14)0.0084 (12)0.0138 (11)0.0003 (12)
C60.0251 (12)0.0271 (13)0.0312 (13)0.0024 (10)0.0123 (10)0.0012 (11)
O10.0297 (10)0.0338 (12)0.0349 (11)0.0043 (9)0.0028 (8)0.0005 (9)
O20.0507 (14)0.0622 (16)0.0484 (13)0.0332 (13)0.0367 (11)0.0271 (12)
O30.0278 (15)0.0455 (18)0.0381 (16)0.0000.0066 (12)0.000
Cl10.0322 (3)0.0265 (3)0.0517 (4)0.0022 (3)0.0140 (3)0.0071 (3)
Cl20.0346 (4)0.0347 (4)0.0601 (5)0.0071 (3)0.0282 (3)0.0022 (3)
Cl30.0384 (4)0.0489 (4)0.0334 (3)0.0119 (3)0.0118 (3)0.0097 (3)
Cl40.0544 (5)0.0652 (6)0.0615 (5)0.0178 (4)0.0408 (4)0.0298 (5)
Cl50.0301 (3)0.0397 (4)0.0436 (4)0.0134 (3)0.0130 (3)0.0058 (3)
Cl60.0418 (4)0.0358 (4)0.0742 (6)0.0033 (3)0.0004 (4)0.0202 (4)
Geometric parameters (Å, º) top
C1—C21.549 (4)C5—O21.414 (3)
C1—Cl31.758 (3)C5—C61.538 (4)
C1—Cl11.769 (3)C5—H50.98 (4)
C1—Cl21.776 (3)C6—Cl41.756 (3)
C2—O11.413 (3)C6—Cl61.760 (3)
C2—C31.467 (4)C6—Cl51.772 (3)
C2—H20.97 (3)O1—H1O0.72 (4)
C3—C41.189 (4)O2—H2O0.75 (4)
C4—C51.471 (4)O3—H3O0.90 (5)
C2—C1—Cl3109.87 (17)O2—C5—C4108.9 (2)
C2—C1—Cl1110.43 (19)O2—C5—C6110.1 (2)
Cl3—C1—Cl1109.56 (15)C4—C5—C6109.5 (2)
C2—C1—Cl2108.92 (18)O2—C5—H5116 (2)
Cl3—C1—Cl2109.42 (14)C4—C5—H5108 (2)
Cl1—C1—Cl2108.62 (14)C6—C5—H5104 (2)
O1—C2—C3110.7 (2)C5—C6—Cl4109.60 (19)
O1—C2—C1109.4 (2)C5—C6—Cl6110.4 (2)
C3—C2—C1110.1 (2)Cl4—C6—Cl6109.69 (15)
O1—C2—H2111.8 (17)C5—C6—Cl5108.81 (18)
C3—C2—H2110.6 (17)Cl4—C6—Cl5108.90 (15)
C1—C2—H2104.0 (17)Cl6—C6—Cl5109.37 (14)
C4—C3—C2176.9 (3)C2—O1—H1O104 (3)
C3—C4—C5175.8 (3)C5—O2—H2O114 (3)
Cl3—C1—C2—O1176.19 (18)O2—C5—C6—Cl4179.75 (18)
Cl1—C1—C2—O162.8 (2)C4—C5—C6—Cl460.5 (3)
Cl2—C1—C2—O156.3 (3)O2—C5—C6—Cl659.3 (3)
Cl3—C1—C2—C362.0 (3)C4—C5—C6—Cl660.5 (3)
Cl1—C1—C2—C359.0 (3)O2—C5—C6—Cl560.8 (3)
Cl2—C1—C2—C3178.21 (19)C4—C5—C6—Cl5179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.98 (4)2.50 (4)3.297 (4)139 (3)
O1—H1O···O2ii0.72 (4)2.01 (4)2.725 (3)168 (4)
O2—H2O···O3i0.75 (4)2.02 (4)2.773 (3)175 (4)
O3—H3O···O10.90 (5)2.29 (5)2.999 (3)135 (5)
O3—H3O···Cl10.90 (5)2.83 (5)3.5120 (8)134 (4)
O3—H3O···Cl20.90 (5)3.06 (5)3.895 (3)155 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to Anna Weber for the preparation of the title compound.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDetert, H., Lenoir, D. & Zipse, H. (2009). Eur. J. Org. Chem. pp. 1181–1190.  Web of Science CSD CrossRef Google Scholar
First citationDupont, G. (1910). C. R. Acad. Sci. T150, 1121–1123.  Google Scholar
First citationGorgues, A., Simon, A., Le Coq, A., Hercouet, A. & Corre, F. (1986). Tetrahedron, 42, 351–370.  CrossRef CAS Google Scholar
First citationMcIntosh, G. J. & Russell, D. K. (2014). J. Phys. Chem. A, 118, 8644–8663.  CrossRef CAS PubMed Google Scholar
First citationRahimi, A., Gjikai, M. & Schmidt, A. (2009). Synlett, pp. 2583–2588.  Google Scholar
First citationSchmidt, A., Rahimi, A. & Gjikai, M. (2009). Synlett, pp. 2371–2378.  Google Scholar
First citationSchollmeyer, D. & Detert, H. (2017). Tetrahedron Lett. 58, 843–846.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2006a). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2006b). X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaylor, P. H., Wehrmeier, A., Sidhu, S. S., Lenoir, D., Schramm, K. W. & Kettrup, A. (2000). Chemosphere, 40, 1297–1303.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds