organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1156

3-(6-Benz­yl­oxy-2,2-di­methyl­perhydro­furo[2,3-d][1,3]dioxol-5-yl)-5-(4-bromo­phen­yl)-2-phenyl­perhydro­pyrrolo[3,4-d]isoxazole-4,6-dione

aDepartment of Physics, The New College (Autonomous), Chennai 600 014, India, bOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 16 April 2009; accepted 23 April 2009; online 30 April 2009)

In the title compound, C31H29BrN2O7, the isoxazolidine ring adopts a twist conformation, while the tetrahydrofuran, dioxolone and pyrrole rings adopt envelope conformations. The structure is stabilized by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For general background to isoxazolidines, see: Ali et al. (1988[Ali, A. S., Khan, J. H. & Wazeer, M. I. M. (1988). Tetrahedron, 44, 5911-5920.]); Goti et al. (1997[Goti, A., Fedi, V., Naneli, L., De Sarlo, F. & Brandi, A. (1997). Synlett, pp. 577-579.]); Kumar et al. (2003[Kumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Synth. Commun. 33, 1545-1555.]); Huisgen (1984[Huisgen, R. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. I, edited by A. Padawa, pp. 3-27. New York: Wiley Interscience.]). For ring puckering parameters see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C31H29BrN2O7

  • Mr = 621.47

  • Monoclinic, P 21

  • a = 15.0680 (12) Å

  • b = 6.6801 (5) Å

  • c = 15.8550 (12) Å

  • β = 117.578 (2)°

  • V = 1414.57 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.734, Tmax = 0.740

  • 20450 measured reflections

  • 9003 independent reflections

  • 5502 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.138

  • S = 1.00

  • 9003 reflections

  • 372 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3886 Friedel pairs

  • Flack parameter: −0.001 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.93 2.46 3.273 (3) 145
C5—H5⋯O5ii 0.93 2.52 3.198 (3) 130
C9—H9⋯O1ii 0.98 2.58 3.418 (3) 144
C19—H19B⋯O3i 0.97 2.58 3.360 (3) 137
C17—H17b⋯Cg1iii 0.96 2.86 3.720 (4) 150
C21—H21⋯Cg2iv 0.93 2.67 3.559 (7) 160
Symmetry codes: (i) x, y+1, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iii) [-x, y-{\script{1\over 2}}, -z+1]; (iv) [-x, y-{\script{1\over 2}}, -z]. Cg1 and Cg2 are the centroids of the C1–C6 and C20–C25 rings, respectively.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isoxazolidines are potential precursors for biologically important compounds such as amino sugars (Ali et al., 1988), alkaloids (Goti et al., 1997), and exhibit antibacterial and antifungal activities (Kumar et al., 2003). The stereochemistry, such as regioselectivity and enantioselectivity, of heterocyclic isoxazole compounds (Huisgen, 1984) can be studied by 1,3-dipolar cycloaddition reactions. In view of these important properties, the crystal structure of the title compound, (I), has been determined.

A perspective view of compound (I) with the atom-numbering scheme is shown in Fig. 1. The dihedral angle between the phenyl rings C1—C6 and C20—C25, and, C20—C25 and C26—C31, C1—C6 and C26—C31 are 62.4 (1), 75.9 (1) and 42.1 (1)°, respectively.

The five membered isoxazolidine ring (C9-C1,O3,N2) adopts a twisted conformation On O3 and N2 with a pseudo-twofold axis passing through C11-C9 bond. The other five membered tetrahydrofuran, dioxolone and pyrrole rings adopt envelope conformation on C12, O6 and C8 respectively. The puckering parameters (Cremer & Pople, 1975) and the lowest displacement asymmetry parameters (Nardelli, 1983) as follows: for the isoxazolidine ring q2 = 0.353 (1) Å, ϕ = 26.0 (1)°, ΔS(N2) is 9.6 (1)° and Δ2(C9) is 7.4 (1)°, for the tetrahydrofuran ring q2 = 0.395 (1) Å, ϕ = 313.0 (1)°, ΔS(C12) is 6.6 (1)° and Δ2(C15) is 11.2 (1)°, for the dioxolone ring q2 = 0.232 (1) Å, ϕ = 295.8 (1)°, ΔS(O6) is 5.3 (1)° and Δ2(C15) is 6.2 (1)° and for the pyrrole ring q2 = 0.085 (1) Å, ϕ = 140.0 (1)°, ΔS(C8) is 0.2 (1)° and Δ2(C7) is 4.5 (1)°.

The crystal structure is stabilized by intermolecular C—H···O hydrogen bonds (Table 1; Fig. 2). The crystal structure is further stabilized by C—H···π interactions involing rings C17—H17B···Cg1 and C21—H21···Cg2 (Cg1 and Cg2 denote the centroid of the C1—C6 and C20—C25 phenyl rings).

Related literature top

For general background to isoxazolidines, see: Ali et al. (1988); Goti et al. (1997); Kumar et al. (2003); Huisgen (1984). For ring puckering parameters see: Cremer & Pople (1975); Nardelli (1983). Cg1 and Cg2 are the centroids of the C1–C6 and C20–C25 rings, respectively.

Experimental top

A mixture of D-glucose derived nitrone (0.5 mmol) and maleimide (0.5 mmol) was refluxed in dry toluene (10 ml) until completion of the reaction as evidenced by TLC analysis. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (Merck, 100–200 mesh, ethylacetate-petroleum ether (1:9). Single crystals of the title compound suitable for X-ray diffraction were obtained by recrystallization from ethanol.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial packing view, showing the C—H···O hydrogen-bonding interactions (dashed lines), resulting in the formation of an infinite chain. H atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x, y + 1, z; (ii) -x + 2, y - 1/2, -z + 1.]
3-(6-Benzyloxy-2,2-dimethylperhydrofuro[2,3-d][1,3]dioxol-5-yl)- 5-(4-bromophenyl)-2-phenylperhydropyrrolo[3,4-d]isoxazole-4,6-dione top
Crystal data top
C31H29BrN2O7F(000) = 640
Mr = 621.47Dx = 1.459 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5502 reflections
a = 15.0680 (12) Åθ = 2.5–25°
b = 6.6801 (5) ŵ = 1.51 mm1
c = 15.8550 (12) ÅT = 293 K
β = 117.578 (2)°Needle, colourless
V = 1414.57 (19) Å30.3 × 0.2 × 0.2 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
9003 independent reflections
Radiation source: fine-focus sealed tube5502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 31.7°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker 2004)
h = 2222
Tmin = 0.734, Tmax = 0.740k = 98
20450 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.066P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
9003 reflectionsΔρmax = 0.66 e Å3
372 parametersΔρmin = 0.38 e Å3
1 restraintAbsolute structure: Flack (1983), 3886 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (8)
Crystal data top
C31H29BrN2O7V = 1414.57 (19) Å3
Mr = 621.47Z = 2
Monoclinic, P21Mo Kα radiation
a = 15.0680 (12) ŵ = 1.51 mm1
b = 6.6801 (5) ÅT = 293 K
c = 15.8550 (12) Å0.3 × 0.2 × 0.2 mm
β = 117.578 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
9003 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2004)
5502 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.740Rint = 0.027
20450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.138Δρmax = 0.66 e Å3
S = 1.00Δρmin = 0.38 e Å3
9003 reflectionsAbsolute structure: Flack (1983), 3886 Friedel pairs
372 parametersAbsolute structure parameter: 0.001 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64016 (18)0.3845 (4)0.35916 (18)0.0430 (6)
H10.68650.47250.40280.052*
C20.5464 (2)0.4517 (5)0.2949 (2)0.0524 (7)
H20.52930.58530.29520.063*
C30.4785 (2)0.3213 (5)0.2304 (2)0.0557 (7)
C40.5020 (2)0.1225 (5)0.2294 (2)0.0576 (8)
H40.45530.03490.18580.069*
C50.5958 (2)0.0545 (4)0.2940 (2)0.0462 (6)
H50.61250.07960.29420.055*
C60.66469 (18)0.1858 (4)0.35820 (16)0.0359 (5)
C70.7771 (2)0.0588 (4)0.47898 (17)0.0415 (5)
C80.85005 (18)0.2249 (4)0.45433 (17)0.0381 (5)
C90.93114 (18)0.1327 (4)0.54302 (17)0.0370 (5)
H90.99310.11050.53850.044*
C100.88614 (19)0.0602 (4)0.55592 (17)0.0427 (5)
H100.92200.17720.54980.051*
C110.94837 (17)0.2561 (3)0.63122 (16)0.0340 (5)
H110.92660.39480.61320.041*
C121.05597 (18)0.2501 (4)0.70747 (16)0.0352 (5)
H121.07750.11090.72400.042*
C131.07749 (18)0.3678 (3)0.79726 (16)0.0347 (5)
H131.05940.29260.84020.042*
C141.18993 (18)0.3982 (4)0.83916 (16)0.0379 (5)
H141.21350.52020.87760.045*
C151.20853 (17)0.3989 (4)0.75221 (16)0.0402 (5)
H151.23190.53060.74370.048*
C161.3149 (2)0.1722 (4)0.86285 (19)0.0447 (6)
C171.3205 (3)0.0535 (6)0.8586 (3)0.0690 (9)
H17A1.33610.10920.91970.104*
H17B1.37180.08980.84150.104*
H17C1.25720.10470.81180.104*
C181.4135 (2)0.2643 (7)0.9303 (3)0.0759 (11)
H18A1.40630.40710.93040.114*
H18B1.46290.23140.91040.114*
H18C1.43420.21340.99330.114*
C190.9839 (2)0.6190 (4)0.82909 (19)0.0432 (6)
H19A0.94390.51110.83490.052*
H19B0.93920.73020.79800.052*
C201.05951 (18)0.6836 (3)0.92725 (17)0.0359 (5)
C211.0676 (2)0.5854 (4)1.00695 (19)0.0453 (6)
H211.02860.47291.00050.054*
C221.1336 (2)0.6541 (5)1.0960 (2)0.0557 (7)
H221.13790.58841.14950.067*
C231.1925 (2)0.8162 (5)1.1073 (2)0.0600 (8)
H231.23660.86091.16800.072*
C241.1866 (2)0.9139 (5)1.0285 (2)0.0587 (7)
H241.22711.02421.03560.070*
C251.1202 (2)0.8473 (4)0.9390 (2)0.0471 (6)
H251.11620.91340.88570.057*
C260.78715 (19)0.2237 (4)0.63967 (16)0.0380 (5)
C270.7611 (2)0.4255 (5)0.6230 (2)0.0486 (6)
H270.80810.52000.62700.058*
C280.6640 (3)0.4843 (6)0.6006 (3)0.0656 (9)
H280.64650.61870.58860.079*
C290.5940 (2)0.3490 (6)0.5957 (3)0.0699 (10)
H290.52940.39010.58070.084*
C300.6209 (2)0.1490 (6)0.6135 (2)0.0645 (9)
H300.57370.05510.61000.077*
C310.7164 (2)0.0883 (5)0.6361 (2)0.0511 (7)
H310.73360.04600.64920.061*
N10.76087 (15)0.1169 (3)0.42650 (14)0.0342 (4)
N20.88766 (16)0.1595 (3)0.66968 (14)0.0367 (4)
O10.85721 (15)0.3700 (3)0.41335 (14)0.0592 (6)
O20.71522 (18)0.1839 (3)0.46666 (16)0.0608 (6)
O30.89191 (14)0.0499 (3)0.64921 (12)0.0442 (4)
O41.11759 (13)0.3476 (3)0.67218 (12)0.0419 (4)
O51.28173 (14)0.2528 (3)0.77001 (14)0.0501 (5)
O61.23964 (13)0.2227 (3)0.88938 (12)0.0419 (4)
O71.02692 (15)0.5529 (3)0.77010 (13)0.0429 (4)
Br10.35138 (3)0.41736 (8)0.14395 (3)0.1005 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0417 (13)0.0400 (13)0.0428 (13)0.0072 (11)0.0157 (11)0.0124 (11)
C20.0489 (15)0.0478 (14)0.0581 (17)0.0043 (12)0.0228 (13)0.0084 (13)
C30.0343 (14)0.0731 (19)0.0541 (18)0.0086 (13)0.0158 (13)0.0138 (14)
C40.0374 (14)0.0683 (19)0.0611 (18)0.0091 (13)0.0177 (13)0.0319 (15)
C50.0384 (13)0.0423 (12)0.0578 (17)0.0065 (11)0.0222 (12)0.0192 (12)
C60.0352 (12)0.0398 (12)0.0353 (12)0.0065 (9)0.0185 (10)0.0070 (9)
C70.0558 (15)0.0311 (11)0.0400 (13)0.0054 (11)0.0244 (11)0.0081 (10)
C80.0340 (12)0.0461 (13)0.0338 (12)0.0050 (10)0.0153 (10)0.0001 (10)
C90.0329 (12)0.0425 (12)0.0357 (12)0.0009 (9)0.0161 (10)0.0006 (10)
C100.0530 (14)0.0315 (11)0.0431 (14)0.0070 (11)0.0218 (11)0.0019 (10)
C110.0334 (11)0.0352 (11)0.0328 (11)0.0030 (9)0.0149 (9)0.0044 (9)
C120.0341 (12)0.0363 (11)0.0350 (12)0.0004 (9)0.0158 (10)0.0014 (9)
C130.0381 (12)0.0349 (11)0.0329 (11)0.0004 (9)0.0181 (10)0.0045 (9)
C140.0393 (11)0.0383 (11)0.0316 (11)0.0032 (10)0.0127 (9)0.0022 (10)
C150.0358 (11)0.0427 (12)0.0385 (12)0.0072 (10)0.0142 (10)0.0027 (11)
C160.0345 (13)0.0587 (15)0.0402 (13)0.0000 (11)0.0166 (11)0.0047 (12)
C170.076 (2)0.0624 (19)0.080 (2)0.0156 (18)0.0458 (19)0.0102 (17)
C180.0406 (18)0.111 (3)0.064 (2)0.0090 (18)0.0140 (16)0.008 (2)
C190.0424 (14)0.0470 (14)0.0435 (14)0.0091 (11)0.0227 (12)0.0013 (11)
C200.0380 (12)0.0380 (12)0.0371 (12)0.0077 (10)0.0219 (10)0.0018 (10)
C210.0496 (15)0.0464 (14)0.0456 (15)0.0005 (12)0.0268 (13)0.0069 (11)
C220.0602 (18)0.0670 (18)0.0401 (15)0.0136 (15)0.0234 (14)0.0121 (13)
C230.0455 (16)0.077 (2)0.0481 (17)0.0061 (15)0.0141 (13)0.0170 (15)
C240.0553 (16)0.0568 (16)0.0696 (19)0.0134 (15)0.0337 (14)0.0139 (16)
C250.0585 (17)0.0401 (13)0.0524 (16)0.0017 (11)0.0338 (14)0.0016 (11)
C260.0387 (13)0.0487 (13)0.0282 (11)0.0048 (10)0.0167 (10)0.0032 (10)
C270.0428 (13)0.0461 (14)0.0596 (16)0.0018 (12)0.0259 (12)0.0012 (13)
C280.0530 (19)0.071 (2)0.078 (2)0.0156 (15)0.0347 (17)0.0065 (17)
C290.0366 (15)0.108 (3)0.067 (2)0.0044 (16)0.0253 (15)0.008 (2)
C300.0486 (18)0.088 (3)0.065 (2)0.0179 (17)0.0339 (16)0.0119 (18)
C310.0508 (16)0.0582 (16)0.0496 (16)0.0155 (13)0.0278 (13)0.0062 (13)
N10.0341 (10)0.0343 (9)0.0339 (10)0.0038 (7)0.0155 (8)0.0032 (8)
N20.0378 (10)0.0365 (10)0.0355 (10)0.0027 (8)0.0166 (8)0.0001 (8)
O10.0442 (10)0.0710 (13)0.0481 (11)0.0187 (9)0.0092 (8)0.0213 (10)
O20.0768 (15)0.0417 (10)0.0591 (13)0.0238 (10)0.0274 (12)0.0086 (9)
O30.0540 (10)0.0345 (8)0.0416 (9)0.0038 (8)0.0198 (8)0.0092 (7)
O40.0365 (9)0.0575 (11)0.0325 (8)0.0067 (8)0.0167 (7)0.0015 (7)
O50.0431 (11)0.0668 (12)0.0457 (10)0.0046 (9)0.0250 (9)0.0085 (9)
O60.0403 (10)0.0494 (10)0.0364 (9)0.0036 (8)0.0180 (8)0.0072 (7)
O70.0575 (11)0.0388 (9)0.0350 (9)0.0079 (8)0.0235 (8)0.0037 (7)
Br10.0491 (2)0.1229 (4)0.0909 (3)0.0303 (2)0.00047 (17)0.0247 (3)
Geometric parameters (Å, º) top
C1—C21.379 (4)C16—O61.421 (3)
C1—C61.380 (4)C16—O51.423 (3)
C1—H10.9300C16—C181.502 (4)
C2—C31.372 (4)C16—C171.513 (5)
C2—H20.9300C17—H17A0.9600
C3—C41.377 (5)C17—H17B0.9600
C3—Br11.878 (3)C17—H17C0.9600
C4—C51.384 (4)C18—H18A0.9600
C4—H40.9300C18—H18B0.9600
C5—C61.380 (3)C18—H18C0.9600
C5—H50.9300C19—O71.433 (3)
C6—N11.425 (3)C19—C201.505 (4)
C7—O21.198 (3)C19—H19A0.9700
C7—N11.393 (3)C19—H19B0.9700
C7—C101.527 (4)C20—C211.378 (3)
C8—O11.199 (3)C20—C251.382 (4)
C8—N11.405 (3)C21—C221.376 (4)
C8—C91.503 (3)C21—H210.9300
C9—C101.513 (4)C22—C231.359 (5)
C9—C111.538 (3)C22—H220.9300
C9—H90.9800C23—C241.375 (5)
C10—O31.443 (3)C23—H230.9300
C10—H100.9800C24—C251.377 (4)
C11—N21.464 (3)C24—H240.9300
C11—C121.509 (3)C25—H250.9300
C11—H110.9800C26—C311.379 (4)
C12—O41.442 (3)C26—C271.395 (4)
C12—C131.524 (3)C26—N21.427 (3)
C12—H120.9800C27—C281.392 (4)
C13—O71.411 (3)C27—H270.9300
C13—C141.520 (3)C28—C291.364 (5)
C13—H130.9800C28—H280.9300
C14—O61.420 (3)C29—C301.386 (6)
C14—C151.529 (3)C29—H290.9300
C14—H140.9800C30—C311.374 (4)
C15—O51.400 (3)C30—H300.9300
C15—O41.413 (3)C31—H310.9300
C15—H150.9800N2—O31.444 (3)
C2—C1—C6119.5 (2)O6—C16—C17108.6 (2)
C2—C1—H1120.2O5—C16—C17109.3 (3)
C6—C1—H1120.2C18—C16—C17112.5 (3)
C3—C2—C1120.0 (3)C16—C17—H17A109.5
C3—C2—H2120.0C16—C17—H17B109.5
C1—C2—H2120.0H17A—C17—H17B109.5
C2—C3—C4120.9 (3)C16—C17—H17C109.5
C2—C3—Br1119.0 (2)H17A—C17—H17C109.5
C4—C3—Br1120.2 (2)H17B—C17—H17C109.5
C3—C4—C5119.3 (3)C16—C18—H18A109.5
C3—C4—H4120.4C16—C18—H18B109.5
C5—C4—H4120.4H18A—C18—H18B109.5
C6—C5—C4119.9 (3)C16—C18—H18C109.5
C6—C5—H5120.1H18A—C18—H18C109.5
C4—C5—H5120.1H18B—C18—H18C109.5
C1—C6—C5120.4 (2)O7—C19—C20114.1 (2)
C1—C6—N1119.1 (2)O7—C19—H19A108.7
C5—C6—N1120.5 (2)C20—C19—H19A108.7
O2—C7—N1125.6 (3)O7—C19—H19B108.7
O2—C7—C10126.5 (2)C20—C19—H19B108.7
N1—C7—C10107.9 (2)H19A—C19—H19B107.6
O1—C8—N1123.9 (2)C21—C20—C25118.8 (2)
O1—C8—C9126.9 (2)C21—C20—C19121.0 (2)
N1—C8—C9109.2 (2)C25—C20—C19120.2 (2)
C8—C9—C10104.74 (19)C22—C21—C20119.8 (3)
C8—C9—C11110.7 (2)C22—C21—H21120.1
C10—C9—C11103.35 (19)C20—C21—H21120.1
C8—C9—H9112.5C23—C22—C21121.2 (3)
C10—C9—H9112.5C23—C22—H22119.4
C11—C9—H9112.5C21—C22—H22119.4
O3—C10—C9106.3 (2)C22—C23—C24119.7 (3)
O3—C10—C7110.5 (2)C22—C23—H23120.2
C9—C10—C7105.72 (19)C24—C23—H23120.2
O3—C10—H10111.4C25—C24—C23119.5 (3)
C9—C10—H10111.4C25—C24—H24120.2
C7—C10—H10111.4C23—C24—H24120.2
N2—C11—C12107.55 (18)C24—C25—C20120.9 (3)
N2—C11—C9105.52 (19)C24—C25—H25119.5
C12—C11—C9112.38 (19)C20—C25—H25119.5
N2—C11—H11110.4C31—C26—C27118.8 (3)
C12—C11—H11110.4C31—C26—N2119.8 (2)
C9—C11—H11110.4C27—C26—N2121.1 (2)
O4—C12—C11108.86 (18)C28—C27—C26119.5 (3)
O4—C12—C13103.47 (18)C28—C27—H27120.3
C11—C12—C13114.83 (19)C26—C27—H27120.3
O4—C12—H12109.8C29—C28—C27121.3 (3)
C11—C12—H12109.8C29—C28—H28119.3
C13—C12—H12109.8C27—C28—H28119.3
O7—C13—C14110.6 (2)C28—C29—C30118.8 (3)
O7—C13—C12108.39 (18)C28—C29—H29120.6
C14—C13—C12100.91 (18)C30—C29—H29120.6
O7—C13—H13112.1C31—C30—C29120.6 (3)
C14—C13—H13112.1C31—C30—H30119.7
C12—C13—H13112.1C29—C30—H30119.7
O6—C14—C13109.06 (19)C30—C31—C26120.9 (3)
O6—C14—C15103.8 (2)C30—C31—H31119.5
C13—C14—C15103.82 (17)C26—C31—H31119.5
O6—C14—H14113.1C7—N1—C8111.6 (2)
C13—C14—H14113.1C7—N1—C6124.2 (2)
C15—C14—H14113.1C8—N1—C6124.1 (2)
O5—C15—O4111.0 (2)C26—N2—O3111.51 (19)
O5—C15—C14105.81 (19)C26—N2—C11120.00 (19)
O4—C15—C14107.62 (18)O3—N2—C11103.42 (17)
O5—C15—H15110.8N2—O3—C10106.78 (17)
O4—C15—H15110.8C15—O4—C12106.98 (17)
C14—C15—H15110.8C15—O5—C16109.83 (19)
O6—C16—O5105.7 (2)C14—O6—C16108.42 (18)
O6—C16—C18110.7 (2)C13—O7—C19114.50 (18)
O5—C16—C18109.9 (3)
C6—C1—C2—C30.2 (4)C19—C20—C25—C24177.0 (3)
C1—C2—C3—C40.7 (5)C31—C26—C27—C281.9 (4)
C1—C2—C3—Br1179.9 (2)N2—C26—C27—C28175.4 (3)
C2—C3—C4—C50.5 (5)C26—C27—C28—C290.9 (5)
Br1—C3—C4—C5179.7 (2)C27—C28—C29—C300.1 (6)
C3—C4—C5—C60.3 (5)C28—C29—C30—C310.3 (6)
C2—C1—C6—C50.5 (4)C29—C30—C31—C261.4 (5)
C2—C1—C6—N1178.4 (2)C27—C26—C31—C302.2 (4)
C4—C5—C6—C10.8 (4)N2—C26—C31—C30175.7 (3)
C4—C5—C6—N1178.6 (2)O2—C7—N1—C8175.9 (2)
O1—C8—C9—C10172.5 (3)C10—C7—N1—C85.6 (3)
N1—C8—C9—C109.1 (3)O2—C7—N1—C68.6 (4)
O1—C8—C9—C1176.7 (3)C10—C7—N1—C6169.94 (19)
N1—C8—C9—C11101.7 (2)O1—C8—N1—C7172.1 (2)
C8—C9—C10—O3123.0 (2)C9—C8—N1—C79.4 (3)
C11—C9—C10—O37.1 (2)O1—C8—N1—C612.3 (4)
C8—C9—C10—C75.5 (2)C9—C8—N1—C6166.1 (2)
C11—C9—C10—C7110.4 (2)C1—C6—N1—C7134.2 (2)
O2—C7—C10—O363.6 (3)C5—C6—N1—C743.7 (3)
N1—C7—C10—O3114.9 (2)C1—C6—N1—C840.8 (3)
O2—C7—C10—C9178.2 (3)C5—C6—N1—C8141.3 (2)
N1—C7—C10—C90.3 (2)C31—C26—N2—O327.9 (3)
C8—C9—C11—N295.2 (2)C27—C26—N2—O3158.7 (2)
C10—C9—C11—N216.4 (2)C31—C26—N2—C11149.0 (2)
C8—C9—C11—C12147.9 (2)C27—C26—N2—C1137.7 (3)
C10—C9—C11—C12100.5 (2)C12—C11—N2—C26148.6 (2)
N2—C11—C12—O4179.02 (17)C9—C11—N2—C2691.2 (2)
C9—C11—C12—O465.3 (2)C12—C11—N2—O386.4 (2)
N2—C11—C12—C1363.6 (2)C9—C11—N2—O333.8 (2)
C9—C11—C12—C13179.3 (2)C26—N2—O3—C1091.0 (2)
O4—C12—C13—O775.3 (2)C11—N2—O3—C1039.3 (2)
C11—C12—C13—O743.2 (3)C9—C10—O3—N228.7 (2)
O4—C12—C13—C1440.9 (2)C7—C10—O3—N285.5 (2)
C11—C12—C13—C14159.34 (19)O5—C15—O4—C1295.9 (2)
O7—C13—C14—O6163.81 (18)C14—C15—O4—C1219.5 (3)
C12—C13—C14—O681.6 (2)C11—C12—O4—C15160.8 (2)
O7—C13—C14—C1586.0 (2)C13—C12—O4—C1538.2 (2)
C12—C13—C14—C1528.5 (2)O4—C15—O5—C16120.5 (2)
O6—C14—C15—O511.6 (2)C14—C15—O5—C164.1 (3)
C13—C14—C15—O5125.6 (2)O6—C16—O5—C1518.4 (3)
O6—C14—C15—O4107.1 (2)C18—C16—O5—C15101.0 (3)
C13—C14—C15—O46.9 (3)C17—C16—O5—C15135.0 (3)
O7—C19—C20—C21118.0 (3)C13—C14—O6—C16133.4 (2)
O7—C19—C20—C2564.0 (3)C15—C14—O6—C1623.3 (2)
C25—C20—C21—C221.6 (4)O5—C16—O6—C1426.3 (3)
C19—C20—C21—C22176.4 (2)C18—C16—O6—C1492.6 (3)
C20—C21—C22—C231.0 (4)C17—C16—O6—C14143.4 (2)
C21—C22—C23—C240.1 (5)C14—C13—O7—C19109.0 (2)
C22—C23—C24—C250.6 (5)C12—C13—O7—C19141.2 (2)
C23—C24—C25—C200.0 (4)C20—C19—O7—C1370.5 (3)
C21—C20—C25—C241.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.932.463.273 (3)145
C5—H5···O5ii0.932.523.198 (3)130
C9—H9···O1ii0.982.583.418 (3)144
C19—H19B···O3i0.972.583.360 (3)137
C17—H17b···Cg1iii0.962.863.720 (4)150
C21—H21···Cg2iv0.932.673.559 (7)160
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z+1; (iii) x, y1/2, z+1; (iv) x, y1/2, z.

Experimental details

Crystal data
Chemical formulaC31H29BrN2O7
Mr621.47
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)15.0680 (12), 6.6801 (5), 15.8550 (12)
β (°) 117.578 (2)
V3)1414.57 (19)
Z2
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2004)
Tmin, Tmax0.734, 0.740
No. of measured, independent and
observed [I > 2σ(I)] reflections
20450, 9003, 5502
Rint0.027
(sin θ/λ)max1)0.738
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.138, 1.00
No. of reflections9003
No. of parameters372
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.38
Absolute structureFlack (1983), 3886 Friedel pairs
Absolute structure parameter0.001 (8)

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.932.463.273 (3)145.4
C5—H5···O5ii0.932.523.198 (3)130.4
C9—H9···O1ii0.982.583.418 (3)143.5
C19—H19B···O3i0.972.583.360 (3)137.2
C17—H17b···Cg1iii0.962.863.720 (4)150
C21—H21···Cg2iv0.932.673.559 (7)160
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z+1; (iii) x, y1/2, z+1; (iv) x, y1/2, z.
 

Acknowledgements

MNM and ASP thank Dr J. Jothi Kumar, The Principal, Presidency College (Autonomous), Chennai, India, for providing the computer and internet facilities. The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data.

References

First citationAli, A. S., Khan, J. H. & Wazeer, M. I. M. (1988). Tetrahedron, 44, 5911–5920.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoti, A., Fedi, V., Naneli, L., De Sarlo, F. & Brandi, A. (1997). Synlett, pp. 577-579.  CrossRef Google Scholar
First citationHuisgen, R. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. I, edited by A. Padawa, pp. 3–27. New York: Wiley Interscience.  Google Scholar
First citationKumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Synth. Commun. 33, 1545–1555.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1156
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds