metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(5,7-di­chloro­quinolin-8-olato-κ2N,O)tin(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 5 February 2009; accepted 6 February 2009; online 13 February 2009)

The SnIV atom in the title compound, [Sn(C9H4Cl2NO)2Cl2], is chelated by the substituted quinolin-8-olate anions in a distorted octa­hedral geometry. The N-donor atoms are in a cis alignment as are the Cl atoms; the O atoms are trans to each other.

Related literature

For the structure of dichloridobis(quinolin-8-olato)tin(IV), which shows a very similar coordination geometry, see: Archer et al. (1987[Archer, S. J., Koch, K. R. & Schmidt, S. (1987). Inorg. Chim. Acta, 126, 209-218.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C9H4Cl2NO)2Cl2]

  • Mr = 615.65

  • Monoclinic, P 21 /c

  • a = 15.2459 (2) Å

  • b = 8.9262 (1) Å

  • c = 15.8541 (2) Å

  • β = 110.381 (1)°

  • V = 2022.48 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.08 mm−1

  • T = 100 (2) K

  • 0.28 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.594, Tmax = 0.706

  • 18582 measured reflections

  • 4651 independent reflections

  • 4218 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.079

  • S = 1.06

  • 4651 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −1.25 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the structure of dichloridobis(quinolin-8-olato)tin, which shows the same coordination geometry, see: Archer et al. (1987).

Experimental top

5,7-Dichloro-8-hydroxyquinoline (1 mmol, 0.21 g) was added to a solution of stannous chloride (1 mmol, 0.23) in DMSO (20 ml). The clear solution was set aside for several days to yield yellow crystals. These crystals are stable when heated at 573 K.

Refinement top

H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The final difference Fourier map had a large peak/deep hole at about 1 Å from the Sn atom.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of SnCl2(C9H4Cl2NO)2; ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius.
Dichloridobis(5,7-dichloroquinolin-8-olato-κ2N,O)tin(IV) top
Crystal data top
[Sn(C9H4Cl2NO)2Cl2]F(000) = 1192
Mr = 615.65Dx = 2.022 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9940 reflections
a = 15.2459 (2) Åθ = 2.6–28.3°
b = 8.9262 (1) ŵ = 2.08 mm1
c = 15.8541 (2) ÅT = 100 K
β = 110.381 (1)°Polyhedron, yellow
V = 2022.48 (4) Å30.28 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4651 independent reflections
Radiation source: fine-focus sealed tube4218 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.594, Tmax = 0.706k = 1111
18582 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0394P)2 + 4.6706P]
where P = (Fo2 + 2Fc2)/3
4651 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 1.25 e Å3
Crystal data top
[Sn(C9H4Cl2NO)2Cl2]V = 2022.48 (4) Å3
Mr = 615.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.2459 (2) ŵ = 2.08 mm1
b = 8.9262 (1) ÅT = 100 K
c = 15.8541 (2) Å0.28 × 0.22 × 0.18 mm
β = 110.381 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4651 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4218 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.706Rint = 0.021
18582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.06Δρmax = 0.59 e Å3
4651 reflectionsΔρmin = 1.25 e Å3
262 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.778941 (13)0.92337 (2)0.344613 (13)0.01736 (7)
Cl10.93987 (6)0.32043 (9)0.64058 (5)0.02934 (17)
Cl20.84159 (6)0.38698 (8)0.28352 (5)0.02702 (17)
Cl30.34831 (5)1.07293 (11)0.39582 (6)0.0343 (2)
Cl40.66222 (6)1.38854 (9)0.45378 (7)0.03409 (19)
Cl50.70590 (6)0.98399 (10)0.19137 (5)0.02889 (17)
Cl60.92679 (6)1.01709 (10)0.36724 (6)0.03319 (19)
O10.80174 (15)0.7039 (2)0.31888 (13)0.0191 (4)
O20.73412 (14)1.1077 (2)0.39671 (15)0.0205 (4)
N10.83134 (16)0.8252 (3)0.48199 (16)0.0171 (5)
N20.63835 (17)0.8521 (3)0.34618 (16)0.0192 (5)
C10.83654 (19)0.6170 (3)0.39116 (19)0.0169 (5)
C20.8582 (2)0.4680 (3)0.38683 (19)0.0183 (6)
C30.8920 (2)0.3773 (3)0.4644 (2)0.0198 (6)
H30.90640.27500.45910.024*
C40.9038 (2)0.4366 (3)0.5468 (2)0.0198 (6)
C50.8855 (2)0.5884 (3)0.55734 (19)0.0180 (6)
C60.85181 (19)0.6765 (3)0.47856 (19)0.0160 (5)
C70.8970 (2)0.6608 (4)0.64017 (19)0.0208 (6)
H70.91870.60580.69490.025*
C80.8765 (2)0.8106 (4)0.6412 (2)0.0230 (6)
H80.88430.85980.69640.028*
C90.8441 (2)0.8900 (3)0.5600 (2)0.0202 (6)
H90.83100.99390.56120.024*
C100.6471 (2)1.1032 (3)0.39562 (19)0.0183 (6)
C110.6027 (2)1.2221 (3)0.4198 (2)0.0217 (6)
C120.5108 (2)1.2119 (4)0.4191 (2)0.0248 (6)
H120.48241.29630.43560.030*
C130.4617 (2)1.0813 (4)0.3950 (2)0.0250 (7)
C140.5014 (2)0.9536 (4)0.37007 (19)0.0218 (6)
C150.5937 (2)0.9681 (3)0.37025 (19)0.0185 (5)
C160.4580 (2)0.8118 (4)0.3460 (2)0.0288 (7)
H160.39590.79650.34490.035*
C170.5055 (2)0.6976 (4)0.3246 (2)0.0299 (7)
H170.47710.60180.30990.036*
C180.5961 (2)0.7209 (4)0.3242 (2)0.0251 (6)
H180.62800.64090.30770.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01867 (11)0.01519 (11)0.01871 (11)0.00298 (7)0.00712 (8)0.00097 (7)
Cl10.0364 (4)0.0257 (4)0.0232 (4)0.0040 (3)0.0070 (3)0.0099 (3)
Cl20.0428 (4)0.0173 (3)0.0204 (3)0.0031 (3)0.0103 (3)0.0020 (3)
Cl30.0169 (3)0.0521 (5)0.0357 (4)0.0022 (3)0.0114 (3)0.0054 (4)
Cl40.0308 (4)0.0211 (4)0.0559 (5)0.0008 (3)0.0220 (4)0.0073 (4)
Cl50.0293 (4)0.0319 (4)0.0251 (4)0.0071 (3)0.0091 (3)0.0065 (3)
Cl60.0314 (4)0.0304 (4)0.0410 (5)0.0019 (3)0.0167 (4)0.0024 (4)
O10.0251 (10)0.0166 (10)0.0150 (9)0.0032 (8)0.0063 (8)0.0006 (8)
O20.0167 (10)0.0175 (10)0.0293 (11)0.0003 (8)0.0107 (9)0.0020 (8)
N10.0153 (11)0.0178 (12)0.0189 (11)0.0009 (9)0.0068 (9)0.0013 (9)
N20.0204 (12)0.0201 (12)0.0162 (11)0.0008 (10)0.0052 (9)0.0016 (9)
C10.0157 (13)0.0172 (13)0.0184 (13)0.0007 (10)0.0066 (10)0.0006 (10)
C20.0206 (14)0.0166 (13)0.0186 (13)0.0006 (11)0.0078 (11)0.0016 (11)
C30.0189 (14)0.0174 (13)0.0232 (14)0.0001 (11)0.0074 (11)0.0014 (11)
C40.0168 (13)0.0226 (15)0.0186 (13)0.0022 (11)0.0046 (11)0.0058 (11)
C50.0147 (13)0.0237 (15)0.0153 (13)0.0010 (11)0.0047 (10)0.0021 (11)
C60.0132 (12)0.0164 (13)0.0193 (13)0.0006 (10)0.0069 (10)0.0005 (10)
C70.0182 (13)0.0281 (16)0.0167 (13)0.0008 (12)0.0067 (11)0.0017 (12)
C80.0203 (14)0.0306 (17)0.0191 (14)0.0005 (12)0.0083 (11)0.0041 (12)
C90.0178 (13)0.0207 (14)0.0234 (14)0.0012 (11)0.0089 (11)0.0046 (11)
C100.0181 (13)0.0205 (14)0.0173 (13)0.0009 (11)0.0074 (11)0.0025 (11)
C110.0217 (14)0.0201 (14)0.0245 (14)0.0027 (12)0.0094 (12)0.0016 (11)
C120.0228 (15)0.0299 (17)0.0233 (15)0.0079 (13)0.0099 (12)0.0042 (12)
C130.0146 (13)0.0381 (18)0.0224 (15)0.0029 (12)0.0067 (11)0.0061 (13)
C140.0189 (14)0.0290 (16)0.0159 (13)0.0013 (12)0.0041 (11)0.0039 (12)
C150.0176 (13)0.0221 (14)0.0157 (12)0.0004 (11)0.0056 (10)0.0034 (11)
C160.0214 (15)0.041 (2)0.0229 (15)0.0091 (14)0.0058 (12)0.0010 (14)
C170.0296 (17)0.0285 (17)0.0276 (16)0.0131 (14)0.0052 (13)0.0049 (13)
C180.0288 (16)0.0243 (16)0.0208 (14)0.0022 (13)0.0070 (12)0.0010 (12)
Geometric parameters (Å, º) top
Sn1—O12.055 (2)C4—C51.405 (4)
Sn1—O22.061 (2)C5—C61.413 (4)
Sn1—N12.222 (2)C5—C71.419 (4)
Sn1—N22.244 (2)C7—C81.374 (5)
Sn1—Cl62.3122 (9)C7—H70.9500
Sn1—Cl52.3561 (8)C8—C91.400 (4)
Cl1—C41.737 (3)C8—H80.9500
Cl2—C21.726 (3)C9—H90.9500
Cl3—C131.735 (3)C10—C111.383 (4)
Cl4—C111.726 (3)C10—C151.432 (4)
O1—C11.332 (3)C11—C121.401 (4)
O2—C101.321 (4)C12—C131.366 (5)
N1—C91.316 (4)C12—H120.9500
N1—C61.369 (4)C13—C141.411 (5)
N2—C181.323 (4)C14—C151.412 (4)
N2—C151.365 (4)C14—C161.418 (5)
C1—C21.378 (4)C16—C171.361 (5)
C1—C61.425 (4)C16—H160.9500
C2—C31.411 (4)C17—C181.400 (5)
C3—C41.362 (4)C17—H170.9500
C3—H30.9500C18—H180.9500
O1—Sn1—O2160.55 (8)N1—C6—C1116.0 (3)
O1—Sn1—N177.91 (8)C5—C6—C1122.5 (3)
O2—Sn1—N188.76 (9)C8—C7—C5119.9 (3)
O1—Sn1—N287.73 (9)C8—C7—H7120.0
O2—Sn1—N276.73 (9)C5—C7—H7120.0
N1—Sn1—N284.03 (9)C7—C8—C9119.4 (3)
O1—Sn1—Cl698.77 (6)C7—C8—H8120.3
O2—Sn1—Cl695.19 (6)C9—C8—H8120.3
N1—Sn1—Cl689.56 (7)N1—C9—C8122.0 (3)
N2—Sn1—Cl6169.75 (7)N1—C9—H9119.0
O1—Sn1—Cl593.79 (6)C8—C9—H9119.0
O2—Sn1—Cl597.26 (6)O2—C10—C11124.0 (3)
N1—Sn1—Cl5168.73 (7)O2—C10—C15120.0 (3)
N2—Sn1—Cl588.07 (6)C11—C10—C15116.0 (3)
Cl6—Sn1—Cl599.32 (3)C10—C11—C12122.2 (3)
C1—O1—Sn1115.39 (17)C10—C11—Cl4119.5 (2)
C10—O2—Sn1116.24 (18)C12—C11—Cl4118.3 (2)
C9—N1—C6120.2 (3)C13—C12—C11120.4 (3)
C9—N1—Sn1129.2 (2)C13—C12—H12119.8
C6—N1—Sn1110.64 (18)C11—C12—H12119.8
C18—N2—C15120.1 (3)C12—C13—C14121.5 (3)
C18—N2—Sn1128.8 (2)C12—C13—Cl3119.0 (3)
C15—N2—Sn1111.08 (19)C14—C13—Cl3119.5 (3)
O1—C1—C2123.4 (3)C15—C14—C13116.7 (3)
O1—C1—C6120.0 (3)C15—C14—C16117.0 (3)
C2—C1—C6116.6 (3)C13—C14—C16126.3 (3)
C1—C2—C3122.1 (3)N2—C15—C14121.6 (3)
C1—C2—Cl2119.5 (2)N2—C15—C10115.3 (3)
C3—C2—Cl2118.4 (2)C14—C15—C10123.2 (3)
C4—C3—C2120.0 (3)C17—C16—C14119.8 (3)
C4—C3—H3120.0C17—C16—H16120.1
C2—C3—H3120.0C14—C16—H16120.1
C3—C4—C5121.5 (3)C16—C17—C18120.1 (3)
C3—C4—Cl1119.1 (2)C16—C17—H17119.9
C5—C4—Cl1119.4 (2)C18—C17—H17119.9
C4—C5—C6117.2 (3)N2—C18—C17121.4 (3)
C4—C5—C7125.7 (3)N2—C18—H18119.3
C6—C5—C7117.0 (3)C17—C18—H18119.3
N1—C6—C5121.5 (3)
O2—Sn1—O1—C149.4 (3)Sn1—N1—C6—C10.3 (3)
N1—Sn1—O1—C11.69 (19)C4—C5—C6—N1179.5 (3)
N2—Sn1—O1—C186.08 (19)C7—C5—C6—N10.1 (4)
Cl6—Sn1—O1—C185.96 (19)C4—C5—C6—C10.1 (4)
Cl5—Sn1—O1—C1173.99 (18)C7—C5—C6—C1179.5 (3)
O1—Sn1—O2—C1045.4 (4)O1—C1—C6—N11.9 (4)
N1—Sn1—O2—C1091.7 (2)C2—C1—C6—N1179.0 (2)
N2—Sn1—O2—C107.57 (19)O1—C1—C6—C5177.8 (3)
Cl6—Sn1—O2—C10178.82 (19)C2—C1—C6—C51.3 (4)
Cl5—Sn1—O2—C1078.7 (2)C4—C5—C7—C8179.9 (3)
O1—Sn1—N1—C9179.7 (3)C6—C5—C7—C80.7 (4)
O2—Sn1—N1—C913.9 (2)C5—C7—C8—C90.2 (4)
N2—Sn1—N1—C990.7 (3)C6—N1—C9—C81.5 (4)
Cl6—Sn1—N1—C981.3 (2)Sn1—N1—C9—C8178.9 (2)
Cl5—Sn1—N1—C9136.4 (3)C7—C8—C9—N10.9 (5)
O1—Sn1—N1—C60.71 (18)Sn1—O2—C10—C11173.6 (2)
O2—Sn1—N1—C6166.44 (19)Sn1—O2—C10—C157.9 (3)
N2—Sn1—N1—C689.65 (19)O2—C10—C11—C12178.9 (3)
Cl6—Sn1—N1—C698.36 (18)C15—C10—C11—C120.3 (4)
Cl5—Sn1—N1—C643.9 (4)O2—C10—C11—Cl40.0 (4)
O1—Sn1—N2—C188.2 (3)C15—C10—C11—Cl4178.6 (2)
O2—Sn1—N2—C18176.5 (3)C10—C11—C12—C130.6 (5)
N1—Sn1—N2—C1886.3 (3)Cl4—C11—C12—C13178.3 (2)
Cl6—Sn1—N2—C18137.9 (3)C11—C12—C13—C140.1 (5)
Cl5—Sn1—N2—C1885.6 (3)C11—C12—C13—Cl3179.6 (2)
O1—Sn1—N2—C15174.68 (19)C12—C13—C14—C150.7 (4)
O2—Sn1—N2—C156.47 (18)Cl3—C13—C14—C15179.6 (2)
N1—Sn1—N2—C1596.60 (19)C12—C13—C14—C16178.4 (3)
Cl6—Sn1—N2—C1545.0 (5)Cl3—C13—C14—C161.3 (4)
Cl5—Sn1—N2—C1591.45 (18)C18—N2—C15—C141.8 (4)
Sn1—O1—C1—C2178.4 (2)Sn1—N2—C15—C14175.6 (2)
Sn1—O1—C1—C62.5 (3)C18—N2—C15—C10178.0 (3)
O1—C1—C2—C3177.7 (3)Sn1—N2—C15—C104.6 (3)
C6—C1—C2—C31.3 (4)C13—C14—C15—N2179.2 (3)
O1—C1—C2—Cl20.8 (4)C16—C14—C15—N21.6 (4)
C6—C1—C2—Cl2179.9 (2)C13—C14—C15—C101.1 (4)
C1—C2—C3—C40.1 (4)C16—C14—C15—C10178.1 (3)
Cl2—C2—C3—C4178.4 (2)O2—C10—C15—N21.7 (4)
C2—C3—C4—C51.7 (4)C11—C10—C15—N2179.7 (3)
C2—C3—C4—Cl1176.8 (2)O2—C10—C15—C14178.1 (3)
C3—C4—C5—C61.6 (4)C11—C10—C15—C140.6 (4)
Cl1—C4—C5—C6176.9 (2)C15—C14—C16—C170.1 (4)
C3—C4—C5—C7179.0 (3)C13—C14—C16—C17179.1 (3)
Cl1—C4—C5—C72.5 (4)C14—C16—C17—C181.5 (5)
C9—N1—C6—C51.0 (4)C15—N2—C18—C170.2 (4)
Sn1—N1—C6—C5179.3 (2)Sn1—N2—C18—C17176.6 (2)
C9—N1—C6—C1179.4 (3)C16—C17—C18—N21.5 (5)

Experimental details

Crystal data
Chemical formula[Sn(C9H4Cl2NO)2Cl2]
Mr615.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.2459 (2), 8.9262 (1), 15.8541 (2)
β (°) 110.381 (1)
V3)2022.48 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.08
Crystal size (mm)0.28 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.594, 0.706
No. of measured, independent and
observed [I > 2σ(I)] reflections
18582, 4651, 4218
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.079, 1.06
No. of reflections4651
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 1.25

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationArcher, S. J., Koch, K. R. & Schmidt, S. (1987). Inorg. Chim. Acta, 126, 209–218.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds