organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(3-phenyl­allyl­­idene)bi­phenyl-2,2′-di­amine

aDepartment of Chemistry, Alzahra University, Vanak, Tehran, Iran, bSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: dehganpour_farasha@yahoo.com

(Received 7 January 2009; accepted 7 January 2009; online 14 January 2009)

In the title Schiff base, C30H24N2, the complete molecule is generated by a crystallographic twofold axis; the aromatic rings of the biphenyl unit are twisted by 60.78 (1)°. The imine double bond has a trans configuration.

Related literature

For a list of the crystal structures of Schiff bases formed by condensing biphenyl-2,2′-diamine with aldehydes or ketones, see: Dehghanpour et al. (2009[Dehghanpour, S., Asadizadeh, S., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o306.]).

[Scheme 1]

Experimental

Crystal data
  • C30H24N2

  • Mr = 412.51

  • Orthorhombic, F d d 2

  • a = 15.4354 (12) Å

  • b = 31.783 (2) Å

  • c = 9.6188 (8) Å

  • V = 4718.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 (2) K

  • 0.27 × 0.21 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.982, Tmax = 0.989

  • 11331 measured reflections

  • 1427 independent reflections

  • 1021 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.110

  • S = 1.07

  • 1427 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For a list of the crystal structures of Schiff bases formed by condensing biphenyl-2,2'-diamine with aldehydes or ketones, see: Dehghanpour et al. (2009).

Experimental top

Biphenyl-2,2'-diamine (5 mmol) and cinnamaldehyde (10 mmol) were dissolved in diethyl ether (50 ml). The mixture was stirred for 30 min. Evaporation of the solvent gave a solid that was recrystallized from ethanol twice. Yield: 80%. CH&N elemental analysis. Calculated for C30H24N2: C 87.35, H 5.86, N 6.79%; found: C 87.30, H 5.81, N 9.82%.

Refinement top

H atoms were placed in calculated positions [C—H 0.93 Å and Uiso(H) 1.2Ueq(C)], and were included in the refinement in the riding-model approximation. Friedel pairs were merged

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001); displacement ellipsoids are drawn at the 50% probability level, and H atoms as spheres of arbitrary radius. (Symmetry code i: -x, -y, z).
N,N'-Bis(3-phenylallylidene)biphenyl-2,2'-diamine top
Crystal data top
C30H24N2F(000) = 1744
Mr = 412.51Dx = 1.161 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 7049 reflections
a = 15.4354 (12) Åθ = 3.2–27.5°
b = 31.783 (2) ŵ = 0.07 mm1
c = 9.6188 (8) ÅT = 295 K
V = 4718.8 (6) Å3Cuboid, light yellow
Z = 80.27 × 0.21 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1427 independent reflections
Radiation source: fine-focus sealed tube1021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 2019
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 4141
Tmin = 0.982, Tmax = 0.989l = 1212
11331 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.8672P]
where P = (Fo2 + 2Fc2)/3
1427 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C30H24N2V = 4718.8 (6) Å3
Mr = 412.51Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 15.4354 (12) ŵ = 0.07 mm1
b = 31.783 (2) ÅT = 295 K
c = 9.6188 (8) Å0.27 × 0.21 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1427 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1021 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.989Rint = 0.029
11331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.110H-atom parameters constrained
S = 1.07Δρmax = 0.11 e Å3
1427 reflectionsΔρmin = 0.15 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01193 (13)0.05064 (6)0.5676 (2)0.0523 (5)
C20.02328 (13)0.02045 (6)0.4634 (2)0.0541 (5)
C30.07746 (15)0.02974 (7)0.3523 (3)0.0641 (6)
H3A0.08590.00970.28310.077*
C40.11943 (16)0.06833 (8)0.3424 (3)0.0724 (7)
H4A0.15610.07390.26790.087*
C50.10622 (16)0.09796 (7)0.4433 (3)0.0695 (7)
H5A0.13330.12400.43630.083*
C60.05334 (14)0.08962 (6)0.5546 (3)0.0609 (6)
H6A0.04490.11010.62230.073*
C70.03355 (16)0.05664 (7)0.7976 (3)0.0598 (6)
H7A0.01850.07020.81650.072*
C80.09664 (17)0.05217 (7)0.9066 (3)0.0629 (6)
H8A0.14670.03700.88700.075*
C90.08822 (15)0.06818 (7)1.0333 (3)0.0637 (6)
H9A0.03740.08291.05160.076*
C100.15066 (15)0.06500 (7)1.1471 (3)0.0588 (6)
C110.22801 (16)0.04272 (7)1.1346 (3)0.0669 (6)
H11A0.24170.03011.05020.080*
C120.28461 (18)0.03901 (9)1.2443 (3)0.0771 (8)
H12A0.33610.02411.23370.093*
C130.2651 (2)0.05718 (9)1.3688 (3)0.0822 (8)
H13A0.30330.05471.44310.099*
C140.18916 (19)0.07916 (10)1.3845 (3)0.0829 (8)
H14A0.17580.09131.46970.099*
C150.13291 (17)0.08318 (8)1.2745 (3)0.0703 (7)
H15A0.08200.09841.28600.084*
N10.04738 (12)0.04246 (5)0.6758 (2)0.0584 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0562 (11)0.0430 (9)0.0576 (14)0.0011 (8)0.0025 (11)0.0017 (9)
C20.0626 (11)0.0412 (10)0.0584 (14)0.0000 (9)0.0012 (11)0.0017 (9)
C30.0792 (15)0.0510 (11)0.0622 (15)0.0019 (11)0.0095 (13)0.0006 (11)
C40.0809 (15)0.0638 (13)0.0725 (16)0.0109 (12)0.0124 (14)0.0089 (12)
C50.0807 (15)0.0509 (11)0.0770 (18)0.0140 (11)0.0009 (15)0.0072 (12)
C60.0714 (13)0.0432 (9)0.0681 (15)0.0043 (9)0.0024 (13)0.0018 (10)
C70.0649 (13)0.0496 (11)0.0648 (16)0.0036 (10)0.0008 (13)0.0007 (11)
C80.0707 (14)0.0538 (11)0.0641 (16)0.0005 (10)0.0006 (12)0.0019 (12)
C90.0645 (13)0.0638 (13)0.0627 (16)0.0013 (11)0.0043 (13)0.0040 (12)
C100.0632 (13)0.0539 (11)0.0593 (14)0.0054 (10)0.0053 (12)0.0010 (10)
C110.0663 (14)0.0743 (14)0.0600 (16)0.0005 (11)0.0086 (12)0.0008 (12)
C120.0688 (15)0.0864 (18)0.076 (2)0.0019 (13)0.0035 (14)0.0137 (15)
C130.0814 (17)0.0908 (19)0.074 (2)0.0112 (15)0.0109 (17)0.0062 (16)
C140.100 (2)0.0861 (17)0.0621 (18)0.0064 (16)0.0005 (17)0.0145 (15)
C150.0763 (15)0.0673 (13)0.0673 (17)0.0006 (12)0.0044 (14)0.0112 (13)
N10.0707 (11)0.0445 (8)0.0599 (13)0.0019 (8)0.0044 (10)0.0029 (9)
Geometric parameters (Å, º) top
C1—C21.399 (3)C8—C91.327 (4)
C1—C61.400 (3)C8—H8A0.9300
C1—N11.410 (3)C9—C101.461 (3)
C2—C31.389 (3)C9—H9A0.9300
C2—C2i1.485 (4)C10—C151.383 (4)
C3—C41.390 (3)C10—C111.393 (3)
C3—H3A0.9300C11—C121.375 (4)
C4—C51.368 (4)C11—H11A0.9300
C4—H4A0.9300C12—C131.362 (4)
C5—C61.373 (4)C12—H12A0.9300
C5—H5A0.9300C13—C141.373 (4)
C6—H6A0.9300C13—H13A0.9300
C7—N11.273 (3)C14—C151.375 (4)
C7—C81.438 (4)C14—H14A0.9300
C7—H7A0.9300C15—H15A0.9300
C2—C1—C6119.1 (2)C7—C8—H8A117.8
C2—C1—N1118.93 (17)C8—C9—C10126.6 (2)
C6—C1—N1121.7 (2)C8—C9—H9A116.7
C3—C2—C1118.76 (18)C10—C9—H9A116.7
C3—C2—C2i118.52 (15)C15—C10—C11117.3 (2)
C1—C2—C2i122.67 (16)C15—C10—C9120.3 (2)
C2—C3—C4121.4 (2)C11—C10—C9122.4 (2)
C2—C3—H3A119.3C12—C11—C10121.5 (3)
C4—C3—H3A119.3C12—C11—H11A119.3
C5—C4—C3119.3 (3)C10—C11—H11A119.3
C5—C4—H4A120.4C13—C12—C11119.8 (3)
C3—C4—H4A120.4C13—C12—H12A120.1
C4—C5—C6120.6 (2)C11—C12—H12A120.1
C4—C5—H5A119.7C12—C13—C14120.1 (3)
C6—C5—H5A119.7C12—C13—H13A120.0
C5—C6—C1120.8 (2)C14—C13—H13A120.0
C5—C6—H6A119.6C13—C14—C15120.1 (3)
C1—C6—H6A119.6C13—C14—H14A119.9
N1—C7—C8121.5 (2)C15—C14—H14A119.9
N1—C7—H7A119.3C14—C15—C10121.2 (2)
C8—C7—H7A119.3C14—C15—H15A119.4
C9—C8—C7124.4 (2)C10—C15—H15A119.4
C9—C8—H8A117.8C7—N1—C1120.32 (19)
C6—C1—C2—C31.9 (3)C8—C9—C10—C15179.7 (2)
N1—C1—C2—C3175.9 (2)C8—C9—C10—C112.0 (4)
C6—C1—C2—C2i175.3 (2)C15—C10—C11—C120.2 (4)
N1—C1—C2—C2i1.4 (3)C9—C10—C11—C12177.9 (2)
C1—C2—C3—C40.7 (3)C10—C11—C12—C130.4 (4)
C2i—C2—C3—C4176.6 (2)C11—C12—C13—C140.0 (5)
C2—C3—C4—C50.8 (4)C12—C13—C14—C150.5 (5)
C3—C4—C5—C61.1 (4)C13—C14—C15—C100.7 (5)
C4—C5—C6—C10.1 (4)C11—C10—C15—C140.4 (4)
C2—C1—C6—C51.7 (3)C9—C10—C15—C14177.4 (2)
N1—C1—C6—C5175.4 (2)C8—C7—N1—C1174.1 (2)
N1—C7—C8—C9176.2 (2)C2—C1—N1—C7147.5 (2)
C7—C8—C9—C10179.2 (2)C6—C1—N1—C738.7 (3)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC30H24N2
Mr412.51
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)295
a, b, c (Å)15.4354 (12), 31.783 (2), 9.6188 (8)
V3)4718.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.27 × 0.21 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.982, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
11331, 1427, 1021
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.110, 1.07
No. of reflections1427
No. of parameters145
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.15

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the Alzahra University Research Council and Natural Resources, and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDehghanpour, S., Asadizadeh, S., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds