metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridine-κ2N,N′)di­chlorido­platinum(IV) dichloride monohydrate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea, and bDepartment of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 6 January 2009; accepted 7 January 2009; online 14 January 2009)

In the title complex, [PtCl2(C10H8N2)2]Cl2·H2O, the Pt4+ ion is six-coordinated in a distorted octa­hedral environment by four N atoms from the two 2,2′-bipyridine ligands and two Cl atoms. As a result of the different trans influences of the N and Cl atoms, the Pt—N bonds trans to the Cl atom are slightly longer than those trans to the N atom. The compound displays inter­molecular hydrogen bonding between the water mol­ecule and the Cl anions. There are inter­molecular ππ inter­actions between adjacent pyridine rings, with a centroid–centroid distance of 3.962 Å.

Related literature

For related literature, see: Hambley (1986[Hambley, T. W. (1986). Acta Cryst. C42, 49-51.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905-m906.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C10H8N2)2]Cl2·H2O

  • Mr = 667.27

  • Orthorhombic, P 21 21 21

  • a = 11.1345 (12) Å

  • b = 11.5867 (12) Å

  • c = 17.0873 (19) Å

  • V = 2204.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.87 mm−1

  • T = 293 (2) K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.251, Tmax = 0.357

  • 12649 measured reflections

  • 4462 independent reflections

  • 4284 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.038

  • S = 0.84

  • 4462 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1901 Friedel pairs

  • Flack parameter: −0.006 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl3i 1.033 2.21 3.150 (3) 149.79 (16)
O1—H1B⋯Cl4ii 0.924 2.31 3.139 (3) 149.3 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title complex, [PtCl2(C10H8N2)2]Cl2.H2O, the central Pt4+ ion is six-coordinated in a distorted octahedral environment by four N atoms from the two 2,2'-bipyridine ligands and two Cl atoms (Fig. 1). The main contributions to the distortion are the tight N—Pt—N chelate angles (80.33 (10)° and 80.30 (10)°), which result in non-linear trans axes (<Cl1—Pt1—N1 = 176.73 (7)°, <Cl2—Pt1—N4 = 176.91 (7)° and <N2—Pt1—N3 = 176.52 (10)°).

Because of the different trans influences of the N and Cl atoms, the Pt—N bonds trans to the Cl atom (lengths: 2.040 (2) and 2.037 (3) Å) are slightly longer than those trans to the N atom (lengths: 2.029 (2) and 2.028 (2) Å).

The compound displays intermolecular hydrogen bonding between the solvent H2O molecule and the Cl anions (Table 1). There is also an intermolecular π-π interaction between the pyridine ring containing N1 and the one containg N3 at 1/2+x,1/2-y,-z, with a centroid-centroid distance of 3.962 Å and with a dihedral angle between the ring planes of 20.3°.

Related literature top

For related literature, see: Hambley (1986); Hojjat Kashani et al. (2008).

Experimental top

To a solution of K2PtCl6 (0.3068 g, 0.631 mmol) in H2O (20 ml) was added 2,2'-bipyridine (0.0971 g, 0.622 mmol) in MeOH (10 ml), and stirred for 2 h under heating. The formed precipitate was separated by filtration and washed with water and MeOH and dried under vacuum, to give a yellow powder (0.1185 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH2Cl2 solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. The H atoms of the solvent H2O molecule were located from Fourier difference maps, but not refined.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
Bis(2,2'-bipyridine-κ2N,N')dichloridoplatinum(IV) dichloride monohydrate top
Crystal data top
[PtCl2(C10H8N2)2]Cl2·H2OF(000) = 1280
Mr = 667.27Dx = 2.011 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 958 reflections
a = 11.1345 (12) Åθ = 2.4–26.4°
b = 11.5867 (12) ŵ = 6.87 mm1
c = 17.0873 (19) ÅT = 293 K
V = 2204.5 (4) Å3Stick, colorless
Z = 40.35 × 0.20 × 0.15 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
4462 independent reflections
Radiation source: fine-focus sealed tube4284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1213
Tmin = 0.251, Tmax = 0.357k = 1414
12649 measured reflectionsl = 2116
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.038 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max = 0.003
4462 reflectionsΔρmax = 0.95 e Å3
271 parametersΔρmin = 0.53 e Å3
0 restraintsAbsolute structure: Flack (1983), 1901 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (4)
Crystal data top
[PtCl2(C10H8N2)2]Cl2·H2OV = 2204.5 (4) Å3
Mr = 667.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.1345 (12) ŵ = 6.87 mm1
b = 11.5867 (12) ÅT = 293 K
c = 17.0873 (19) Å0.35 × 0.20 × 0.15 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
4462 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4284 reflections with I > 2σ(I)
Tmin = 0.251, Tmax = 0.357Rint = 0.017
12649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.038Δρmax = 0.95 e Å3
S = 0.84Δρmin = 0.53 e Å3
4462 reflectionsAbsolute structure: Flack (1983), 1901 Friedel pairs
271 parametersAbsolute structure parameter: 0.006 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.520023 (9)0.241999 (9)0.124231 (6)0.02622 (4)
Cl10.35373 (7)0.12668 (7)0.10471 (5)0.0410 (2)
Cl20.40172 (7)0.40216 (7)0.14570 (5)0.0394 (2)
Cl30.36627 (9)0.07710 (8)0.54638 (6)0.0517 (2)
Cl40.15636 (8)0.59942 (8)0.20502 (5)0.0421 (2)
N10.6674 (2)0.3407 (2)0.14792 (15)0.0272 (6)
N20.5239 (2)0.2274 (2)0.24255 (14)0.0290 (5)
N30.5272 (2)0.2554 (2)0.00599 (14)0.0288 (5)
N40.6210 (2)0.1002 (2)0.09926 (15)0.0309 (6)
C10.7301 (3)0.3999 (3)0.0943 (2)0.0340 (7)
H10.71100.39250.04160.041*
C20.8225 (3)0.4716 (3)0.1167 (2)0.0389 (8)
H20.86440.51400.07940.047*
C30.8524 (3)0.4801 (3)0.1945 (2)0.0413 (8)
H30.91590.52700.20990.050*
C40.7876 (3)0.4185 (3)0.2500 (2)0.0364 (8)
H40.80780.42270.30270.044*
C50.6933 (3)0.3516 (3)0.22561 (18)0.0284 (7)
C60.6124 (3)0.2891 (3)0.27847 (18)0.0282 (7)
C70.6188 (3)0.2940 (3)0.35849 (19)0.0391 (8)
H70.67920.33640.38270.047*
C80.5347 (3)0.2355 (3)0.4032 (2)0.0415 (8)
H80.53780.23800.45750.050*
C90.4458 (3)0.1728 (3)0.3651 (2)0.0452 (9)
H90.38860.13270.39400.054*
C100.4424 (3)0.1702 (3)0.2852 (2)0.0399 (8)
H100.38270.12810.26010.048*
C110.4779 (3)0.3413 (3)0.0360 (2)0.0386 (8)
H110.44070.40240.01030.046*
C120.4818 (3)0.3402 (3)0.1165 (2)0.0453 (9)
H120.44650.39960.14500.054*
C130.5380 (3)0.2508 (3)0.15455 (19)0.0413 (8)
H130.54090.24890.20890.050*
C140.5907 (3)0.1629 (3)0.11082 (19)0.0371 (8)
H140.63020.10240.13560.045*
C150.5836 (3)0.1666 (3)0.03080 (19)0.0294 (7)
C160.6334 (3)0.0775 (3)0.02149 (18)0.0299 (7)
C170.6884 (3)0.0219 (3)0.0035 (2)0.0404 (8)
H170.69420.03850.05660.048*
C180.7351 (3)0.0971 (3)0.0517 (2)0.0444 (9)
H180.77340.16440.03570.053*
C190.7249 (3)0.0725 (3)0.1296 (2)0.0435 (8)
H190.75670.12230.16690.052*
C200.6665 (3)0.0280 (3)0.1524 (2)0.0366 (8)
H200.65890.04510.20540.044*
O10.0454 (3)0.2475 (2)0.37482 (18)0.0807 (11)
H1A0.01410.31030.41250.080*
H1B0.00040.18310.36360.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02736 (6)0.02822 (6)0.02310 (6)0.00141 (5)0.00187 (4)0.00024 (5)
Cl10.0367 (4)0.0447 (5)0.0416 (5)0.0117 (4)0.0046 (3)0.0014 (4)
Cl20.0400 (4)0.0375 (4)0.0408 (5)0.0082 (4)0.0011 (3)0.0036 (3)
Cl30.0656 (6)0.0536 (6)0.0360 (5)0.0087 (5)0.0145 (4)0.0081 (4)
Cl40.0430 (5)0.0454 (5)0.0379 (5)0.0001 (4)0.0017 (4)0.0040 (4)
N10.0243 (13)0.0257 (13)0.0314 (16)0.0014 (10)0.0031 (11)0.0011 (10)
N20.0319 (13)0.0301 (13)0.0251 (13)0.0025 (14)0.0013 (10)0.0010 (10)
N30.0294 (13)0.0332 (13)0.0238 (12)0.0022 (16)0.0056 (9)0.0013 (10)
N40.0294 (14)0.0309 (14)0.0325 (15)0.0022 (11)0.0021 (11)0.0006 (11)
C10.0361 (18)0.0362 (18)0.0297 (18)0.0021 (15)0.0030 (14)0.0024 (14)
C20.0323 (17)0.0387 (18)0.046 (2)0.0046 (13)0.0074 (17)0.0082 (17)
C30.0320 (18)0.0377 (19)0.054 (2)0.0076 (15)0.0029 (16)0.0009 (16)
C40.0338 (18)0.042 (2)0.033 (2)0.0010 (15)0.0042 (14)0.0032 (15)
C50.0288 (16)0.0294 (16)0.0271 (17)0.0042 (13)0.0025 (13)0.0009 (13)
C60.0277 (16)0.0301 (15)0.0269 (16)0.0028 (12)0.0013 (12)0.0002 (12)
C70.0398 (19)0.0493 (19)0.0281 (19)0.0004 (15)0.0020 (14)0.0022 (15)
C80.050 (2)0.050 (2)0.0240 (16)0.003 (2)0.0016 (13)0.0056 (14)
C90.058 (2)0.0409 (19)0.037 (2)0.0088 (16)0.0134 (18)0.0074 (16)
C100.047 (2)0.0370 (18)0.035 (2)0.0099 (16)0.0033 (16)0.0032 (14)
C110.044 (2)0.0380 (17)0.0336 (19)0.0054 (17)0.0062 (16)0.0047 (14)
C120.051 (2)0.0494 (19)0.035 (2)0.0019 (17)0.0079 (18)0.0104 (16)
C130.0481 (19)0.052 (2)0.0233 (15)0.000 (3)0.0028 (13)0.0036 (15)
C140.0406 (19)0.0441 (18)0.0267 (19)0.0010 (15)0.0029 (15)0.0038 (14)
C150.0268 (16)0.0338 (17)0.0277 (17)0.0020 (13)0.0035 (13)0.0011 (13)
C160.0288 (17)0.0327 (17)0.0283 (18)0.0023 (13)0.0017 (13)0.0008 (13)
C170.045 (2)0.039 (2)0.037 (2)0.0053 (17)0.0047 (15)0.0058 (15)
C180.044 (2)0.038 (2)0.051 (3)0.0120 (17)0.0043 (17)0.0011 (17)
C190.0421 (19)0.0395 (18)0.049 (2)0.0079 (15)0.0068 (18)0.0024 (19)
C200.0423 (19)0.0386 (18)0.0287 (18)0.0012 (15)0.0087 (15)0.0029 (14)
O10.0528 (17)0.084 (2)0.106 (3)0.0042 (15)0.0045 (15)0.043 (2)
Geometric parameters (Å, º) top
Pt1—N32.028 (2)C7—H70.9300
Pt1—N22.029 (2)C8—C91.389 (5)
Pt1—N42.037 (3)C8—H80.9300
Pt1—N12.040 (2)C9—C101.366 (5)
Pt1—Cl22.3051 (8)C9—H90.9300
Pt1—Cl12.3076 (8)C10—H100.9300
N1—C11.341 (4)C11—C121.377 (5)
N1—C51.364 (4)C11—H110.9300
N2—C101.339 (4)C12—C131.375 (5)
N2—C61.364 (4)C12—H120.9300
N3—C111.344 (4)C13—C141.393 (5)
N3—C151.360 (4)C13—H130.9300
N4—C201.335 (4)C14—C151.370 (4)
N4—C161.361 (4)C14—H140.9300
C1—C21.377 (4)C15—C161.474 (4)
C1—H10.9300C16—C171.373 (4)
C2—C31.373 (5)C17—C181.385 (5)
C2—H20.9300C17—H170.9300
C3—C41.389 (5)C18—C191.367 (5)
C3—H30.9300C18—H180.9300
C4—C51.370 (4)C19—C201.389 (4)
C4—H40.9300C19—H190.9300
C5—C61.467 (4)C20—H200.9300
C6—C71.370 (4)O1—H1A1.033
C7—C81.385 (5)O1—H1B0.924
N3—Pt1—N2176.52 (10)C7—C6—C5124.2 (3)
N3—Pt1—N480.30 (10)C6—C7—C8119.6 (3)
N2—Pt1—N497.47 (10)C6—C7—H7120.2
N3—Pt1—N197.07 (10)C8—C7—H7120.2
N2—Pt1—N180.33 (10)C7—C8—C9118.7 (3)
N4—Pt1—N192.84 (9)C7—C8—H8120.7
N3—Pt1—Cl296.85 (7)C9—C8—H8120.7
N2—Pt1—Cl285.44 (7)C10—C9—C8119.9 (3)
N4—Pt1—Cl2176.91 (7)C10—C9—H9120.1
N1—Pt1—Cl288.68 (7)C8—C9—H9120.1
N3—Pt1—Cl186.10 (7)N2—C10—C9121.0 (3)
N2—Pt1—Cl196.47 (7)N2—C10—H10119.5
N4—Pt1—Cl186.88 (7)C9—C10—H10119.5
N1—Pt1—Cl1176.73 (7)N3—C11—C12120.9 (3)
Cl2—Pt1—Cl191.76 (3)N3—C11—H11119.5
C1—N1—C5120.5 (3)C12—C11—H11119.5
C1—N1—Pt1124.8 (2)C13—C12—C11119.6 (3)
C5—N1—Pt1114.53 (19)C13—C12—H12120.2
C10—N2—C6120.3 (3)C11—C12—H12120.2
C10—N2—Pt1124.7 (2)C12—C13—C14119.3 (3)
C6—N2—Pt1114.83 (19)C12—C13—H13120.3
C11—N3—C15120.2 (3)C14—C13—H13120.3
C11—N3—Pt1124.9 (2)C15—C14—C13119.2 (3)
C15—N3—Pt1114.88 (19)C15—C14—H14120.4
C20—N4—C16120.3 (3)C13—C14—H14120.4
C20—N4—Pt1124.9 (2)N3—C15—C14120.8 (3)
C16—N4—Pt1114.6 (2)N3—C15—C16115.1 (3)
N1—C1—C2120.6 (3)C14—C15—C16124.1 (3)
N1—C1—H1119.7N4—C16—C17120.7 (3)
C2—C1—H1119.7N4—C16—C15114.8 (3)
C3—C2—C1119.5 (3)C17—C16—C15124.5 (3)
C3—C2—H2120.2C16—C17—C18118.9 (3)
C1—C2—H2120.2C16—C17—H17120.6
C2—C3—C4119.9 (3)C18—C17—H17120.6
C2—C3—H3120.0C19—C18—C17120.1 (3)
C4—C3—H3120.0C19—C18—H18119.9
C5—C4—C3118.7 (3)C17—C18—H18119.9
C5—C4—H4120.6C18—C19—C20119.1 (3)
C3—C4—H4120.6C18—C19—H19120.4
N1—C5—C4120.7 (3)C20—C19—H19120.4
N1—C5—C6115.0 (3)N4—C20—C19120.8 (3)
C4—C5—C6124.2 (3)N4—C20—H20119.6
N2—C6—C7120.6 (3)C19—C20—H20119.6
N2—C6—C5115.2 (3)H1A—O1—H1B120.8
N3—Pt1—N1—C16.2 (3)C3—C4—C5—C6175.4 (3)
N2—Pt1—N1—C1176.1 (3)C10—N2—C6—C70.4 (4)
N4—Pt1—N1—C186.8 (3)Pt1—N2—C6—C7174.8 (2)
Cl2—Pt1—N1—C190.5 (2)C10—N2—C6—C5177.7 (3)
N3—Pt1—N1—C5179.5 (2)Pt1—N2—C6—C52.6 (3)
N2—Pt1—N1—C51.9 (2)N1—C5—C6—N21.0 (4)
N4—Pt1—N1—C599.0 (2)C4—C5—C6—N2179.9 (3)
Cl2—Pt1—N1—C583.7 (2)N1—C5—C6—C7176.2 (3)
N4—Pt1—N2—C1091.0 (3)C4—C5—C6—C72.7 (5)
N1—Pt1—N2—C10177.4 (3)N2—C6—C7—C80.2 (5)
Cl2—Pt1—N2—C1087.9 (2)C5—C6—C7—C8177.3 (3)
Cl1—Pt1—N2—C103.3 (3)C6—C7—C8—C90.1 (5)
N4—Pt1—N2—C694.0 (2)C7—C8—C9—C100.2 (5)
N1—Pt1—N2—C62.4 (2)C6—N2—C10—C90.3 (5)
Cl2—Pt1—N2—C687.0 (2)Pt1—N2—C10—C9174.4 (3)
Cl1—Pt1—N2—C6178.28 (19)C8—C9—C10—N20.0 (5)
N4—Pt1—N3—C11178.1 (3)C15—N3—C11—C121.1 (5)
N1—Pt1—N3—C1186.4 (3)Pt1—N3—C11—C12176.5 (2)
Cl2—Pt1—N3—C113.1 (2)N3—C11—C12—C130.8 (5)
Cl1—Pt1—N3—C1194.4 (2)C11—C12—C13—C140.3 (5)
N4—Pt1—N3—C154.2 (2)C12—C13—C14—C151.0 (5)
N1—Pt1—N3—C1595.9 (2)C11—N3—C15—C140.3 (4)
Cl2—Pt1—N3—C15174.61 (19)Pt1—N3—C15—C14177.5 (2)
Cl1—Pt1—N3—C1583.3 (2)C11—N3—C15—C16179.7 (3)
N3—Pt1—N4—C20178.5 (3)Pt1—N3—C15—C161.8 (3)
N2—Pt1—N4—C201.2 (3)C13—C14—C15—N30.7 (5)
N1—Pt1—N4—C2081.8 (3)C13—C14—C15—C16178.6 (3)
Cl1—Pt1—N4—C2094.9 (3)C20—N4—C16—C172.6 (5)
N3—Pt1—N4—C166.0 (2)Pt1—N4—C16—C17173.2 (2)
N2—Pt1—N4—C16176.7 (2)C20—N4—C16—C15177.5 (3)
N1—Pt1—N4—C16102.7 (2)Pt1—N4—C16—C156.8 (3)
Cl1—Pt1—N4—C1680.5 (2)N3—C15—C16—N43.3 (4)
C5—N1—C1—C20.8 (5)C14—C15—C16—N4177.4 (3)
Pt1—N1—C1—C2174.7 (2)N3—C15—C16—C17176.6 (3)
N1—C1—C2—C31.6 (5)C14—C15—C16—C172.7 (5)
C1—C2—C3—C41.5 (5)N4—C16—C17—C182.3 (5)
C2—C3—C4—C51.0 (5)C15—C16—C17—C18177.8 (3)
C1—N1—C5—C43.4 (4)C16—C17—C18—C190.7 (5)
Pt1—N1—C5—C4177.9 (2)C17—C18—C19—C200.6 (5)
C1—N1—C5—C6175.6 (3)C16—N4—C20—C191.3 (5)
Pt1—N1—C5—C61.1 (3)Pt1—N4—C20—C19174.0 (2)
C3—C4—C5—N13.4 (5)C18—C19—C20—N40.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl3i1.0332.213.150 (3)149.79 (16)
O1—H1B···Cl4ii0.9242.313.139 (3)149.3 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[PtCl2(C10H8N2)2]Cl2·H2O
Mr667.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)11.1345 (12), 11.5867 (12), 17.0873 (19)
V3)2204.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)6.87
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.251, 0.357
No. of measured, independent and
observed [I > 2σ(I)] reflections
12649, 4462, 4284
Rint0.017
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.038, 0.84
No. of reflections4462
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.53
Absolute structureFlack (1983), 1901 Friedel pairs
Absolute structure parameter0.006 (4)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl3i1.0332.213.150 (3)149.79 (16)
O1—H1B···Cl4ii0.9242.313.139 (3)149.3 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Korea Research Foundation (2006–353-C00028).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHambley, T. W. (1986). Acta Cryst. C42, 49–51.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds