organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2054-o2055

4-(4-Chloro­phenyl­sulfan­yl)-1-[(E)-2-(4-chloro­phenyl­sulfan­yl)-1-phenyl­ethen­yl]-3-phenyl-1H-pyrazole

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 13 September 2008; accepted 26 September 2008; online 4 October 2008)

In the title compound, C29H20Cl2N2S2, the pyrazole ring adopts a planar conformation. The chlorophenyl rings are twisted from the pyrazole ring at angles of 52.74 (14) and 29.92 (13)°, respectively. The crystal structure is stabilized by C—H⋯N and C—H⋯π inter­actions.

Related literature

For the pharmacological and medicinal properties of the title compound, see: Baraldi et al. (1998[Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.]); Bruno et al. (1990[Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Il Farmaco, 45, 147-166.]); Cottineau et al. (2002[Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105-2108.]); Londershausen (1996[Londershausen, M. (1996). Pestic. Sci. 48, 269-274.]); Chen & Li (1998[Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.]); Mishra et al. (1998[Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199.]); Smith et al. (2001[Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107-119.]). For hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For a related structure, see: Jin et al. (2004[Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642-o643.]).

[Scheme 1]

Experimental

Crystal data
  • C29H20Cl2N2S2

  • Mr = 531.49

  • Monoclinic, P 21 /c

  • a = 12.3808 (4) Å

  • b = 21.4667 (7) Å

  • c = 10.4281 (4) Å

  • β = 108.181 (2)°

  • V = 2633.16 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.883, Tmax = 0.927

  • 31420 measured reflections

  • 6594 independent reflections

  • 4292 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.142

  • S = 1.02

  • 6594 reflections

  • 316 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C26–C31 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N1 0.93 2.44 2.772 (3) 101
C21—H21⋯Cgi 0.93 2.96 3.808 (3) 153
Symmetry code: (i) [x, {1 \over 2}-y, {1 \over 2}+z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Pyrazole derivatives possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen et al., 1996) properties. Some pyrazole derivatives are successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al., 1998) and anti-inflammatory (Smith et al., 2001) activities.

An ORTEP plot of the molecule is shown in Fig. 1. The pyrazole ring adopts a planar conformation. The sum of the bond angles at N2 of the pyrazole ring (359.34°) is in accordance with sp2 hybridization (Beddoes et al., 1986). The C—N bond lengths in the pyrazole ring are 1.340 (3) and 1.325 (3) Å, which are shorter than a C—N single bond length of 1.443 Å, but longer than a double bond length of 1.269 Å (Jin et al., 2004), indicating electron delocalization. The chlorophenyl rings are twisted from the pyrazole ring at angles of 52.74 (14)° and 29.92 (13), respectively. The crystal packing shows weak C—H···N (Tab. 1) and C—H···π interactions [C21-H21···cogi(C26,C27,C28,C29,C30,C31); symmetry operator (i) x, 1/2-y, 1/2+z: H···cog 2.956Å, C21···cog 3.808Å, C21-H21···cog 152.9°] in addition to van der Waals forces.

Related literature top

For the pharmacological and medicinal properties [of the title compound?], see: Baraldi et al. (1998); Bruno et al. (1990); Cottineau et al. (2002); Londershausen (1996); Chen & Li (1998); Mishra et al. (1998); Smith et al. (2001). For hybridization, see: Beddoes et al. (1986). For a related structure, see: Jin et al. (2004).

Experimental top

To a mixture of 2-[(4-chlorophenyl)sulfanyl]-1-phenyl-1-ethanone N-(E)-2- [(4-chlorophenyl)sulfanyl]-1-phenylethylidenehydrazone (0.003 mole) and 3 ml of dimethyl formamide kept in ice bath at 0° C, phosphorus oxycholride (0.024 mole) was added dropwise for 5–10 minutes. The reaction mixture was then kept in a microwave oven at 600 W for 30–60 sec. The process of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried in anhydrous sodium sulfate. The different compounds present in the mixture were separated by column chromatography using petroleum ether and ethyl acetate mixture as eluent. This isolated compound was recrystallized in dichloromethane to obtain 4-[(4-chlorophenyl)sulfanyl]-1- (E)-2-[(4-chlorophenyl)sulfanyl]-1-phenylethenyl-3-phenyl-1H-pyrazole in 86% yield.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms. The atom S1 was restrained within an effective standard deviation of 0.1 so that their Uij components approximate to isotropic bahavior.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atomic numbering and 50% probability displacement ellipsoids.
4-(4-Chlorophenylsulfanyl)-1-[(E)-2-(4-chlorophenylsulfanyl)-1- phenylethenyl]-3-phenyl-1H-pyrazole top
Crystal data top
C29H20Cl2N2S2F(000) = 1096
Mr = 531.49Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4538 reflections
a = 12.3808 (4) Åθ = 1.9–28.4°
b = 21.4667 (7) ŵ = 0.43 mm1
c = 10.4281 (4) ÅT = 293 K
β = 108.181 (2)°Block, colorless
V = 2633.16 (16) Å30.30 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
6594 independent reflections
Radiation source: fine-focus sealed tube4292 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 916
Tmin = 0.883, Tmax = 0.927k = 2828
31420 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0499P)2 + 1.5769P]
where P = (Fo2 + 2Fc2)/3
6594 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.58 e Å3
6 restraintsΔρmin = 0.56 e Å3
Crystal data top
C29H20Cl2N2S2V = 2633.16 (16) Å3
Mr = 531.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3808 (4) ŵ = 0.43 mm1
b = 21.4667 (7) ÅT = 293 K
c = 10.4281 (4) Å0.30 × 0.20 × 0.18 mm
β = 108.181 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
6594 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4292 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.927Rint = 0.027
31420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0506 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.02Δρmax = 0.58 e Å3
6594 reflectionsΔρmin = 0.56 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05360 (11)0.97426 (6)1.29295 (10)0.1304 (4)
Cl20.49992 (8)0.55063 (4)0.67733 (9)0.0936 (3)
S10.22821 (6)0.89305 (5)0.68804 (10)0.0988 (3)
S20.13985 (5)0.72882 (3)0.29751 (6)0.05543 (17)
N20.03047 (14)0.82027 (8)0.48954 (18)0.0442 (4)
N10.06227 (14)0.85803 (8)0.52541 (18)0.0458 (4)
C40.08940 (18)0.77699 (10)0.4007 (2)0.0457 (5)
C50.13504 (17)0.83241 (10)0.4710 (2)0.0432 (5)
C30.01665 (18)0.77170 (10)0.4154 (2)0.0474 (5)
H30.06920.74020.38040.057*
C60.12269 (18)0.83142 (11)0.5402 (2)0.0487 (5)
C70.1128 (2)0.87324 (13)0.6357 (3)0.0660 (7)
H70.04300.89240.67560.079*
C80.1672 (2)0.91670 (13)0.8564 (3)0.0708 (7)
C90.0600 (2)0.90247 (14)0.9387 (3)0.0749 (8)
H90.01080.88040.90400.090*
C100.0243 (3)0.92044 (15)1.0718 (4)0.0844 (9)
H100.04900.91101.12620.101*
C110.0963 (3)0.95220 (14)1.1244 (3)0.0815 (9)
C120.2020 (3)0.96751 (19)1.0443 (4)0.1049 (12)
H120.25040.98991.07970.126*
C130.2377 (3)0.95004 (19)0.9112 (4)0.1074 (13)
H130.31040.96080.85700.129*
C140.22593 (18)0.79358 (11)0.4766 (2)0.0521 (5)
C150.3037 (2)0.81280 (15)0.3589 (3)0.0748 (8)
H150.29180.84970.31860.090*
C160.4000 (3)0.7778 (2)0.2995 (4)0.0977 (11)
H160.45240.79110.21920.117*
C170.4182 (3)0.7247 (2)0.3572 (4)0.1013 (13)
H170.48340.70140.31710.122*
C180.3416 (4)0.7046 (2)0.4741 (4)0.1147 (15)
H180.35440.66770.51370.138*
C190.2445 (3)0.73921 (16)0.5344 (3)0.0901 (10)
H190.19190.72540.61410.108*
C200.23637 (18)0.67789 (10)0.4109 (2)0.0465 (5)
C210.3060 (2)0.64266 (12)0.3584 (3)0.0584 (6)
H210.29850.64560.26700.070*
C220.3863 (2)0.60336 (12)0.4394 (3)0.0656 (7)
H220.43330.58010.40350.079*
C230.3961 (2)0.59894 (11)0.5732 (3)0.0615 (6)
C240.3265 (2)0.63248 (13)0.6277 (3)0.0653 (7)
H240.33330.62860.71870.078*
C250.2463 (2)0.67213 (12)0.5457 (2)0.0571 (6)
H250.19890.69500.58170.069*
C260.24546 (18)0.86348 (11)0.4912 (2)0.0471 (5)
C270.34364 (19)0.83066 (12)0.5004 (2)0.0544 (6)
H270.34020.78780.48640.065*
C280.4473 (2)0.86127 (14)0.5304 (3)0.0653 (7)
H280.51300.83890.53640.078*
C290.4531 (2)0.92423 (15)0.5512 (3)0.0738 (8)
H290.52280.94450.57250.089*
C300.3564 (2)0.95734 (14)0.5405 (3)0.0780 (8)
H300.36041.00030.55340.094*
C310.2524 (2)0.92733 (12)0.5107 (3)0.0637 (7)
H310.18700.95020.50390.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1506 (10)0.1492 (10)0.0782 (6)0.0227 (8)0.0167 (6)0.0108 (6)
Cl20.0875 (6)0.0736 (5)0.1054 (6)0.0208 (4)0.0094 (5)0.0060 (4)
S10.0426 (4)0.1458 (8)0.1049 (6)0.0127 (4)0.0184 (4)0.0526 (6)
S20.0496 (3)0.0730 (4)0.0426 (3)0.0013 (3)0.0128 (2)0.0085 (3)
N20.0340 (9)0.0478 (10)0.0491 (10)0.0018 (7)0.0103 (7)0.0014 (8)
N10.0401 (9)0.0447 (9)0.0511 (10)0.0051 (7)0.0119 (8)0.0017 (8)
C40.0388 (11)0.0537 (12)0.0425 (11)0.0019 (9)0.0097 (9)0.0018 (9)
C50.0382 (11)0.0498 (12)0.0404 (10)0.0024 (9)0.0103 (8)0.0055 (9)
C30.0373 (11)0.0513 (12)0.0504 (12)0.0036 (9)0.0089 (9)0.0035 (10)
C60.0351 (11)0.0543 (13)0.0546 (13)0.0051 (9)0.0109 (9)0.0013 (10)
C70.0375 (12)0.0774 (17)0.0822 (18)0.0019 (11)0.0173 (12)0.0179 (15)
C80.0533 (15)0.0706 (17)0.089 (2)0.0111 (13)0.0222 (14)0.0161 (15)
C90.0548 (16)0.0710 (18)0.099 (2)0.0148 (13)0.0241 (15)0.0101 (16)
C100.0685 (19)0.084 (2)0.092 (2)0.0161 (16)0.0113 (16)0.0015 (18)
C110.091 (2)0.0686 (18)0.080 (2)0.0153 (16)0.0203 (17)0.0020 (15)
C120.103 (3)0.118 (3)0.092 (2)0.049 (2)0.028 (2)0.021 (2)
C130.074 (2)0.142 (3)0.098 (3)0.051 (2)0.0150 (18)0.031 (2)
C140.0384 (11)0.0631 (14)0.0565 (13)0.0014 (10)0.0175 (10)0.0032 (11)
C150.0466 (14)0.087 (2)0.0811 (19)0.0006 (13)0.0055 (13)0.0086 (16)
C160.0480 (16)0.140 (3)0.090 (2)0.0098 (19)0.0007 (15)0.009 (2)
C170.072 (2)0.147 (4)0.092 (3)0.055 (2)0.0362 (19)0.042 (2)
C180.135 (4)0.118 (3)0.096 (3)0.071 (3)0.043 (3)0.011 (2)
C190.099 (2)0.091 (2)0.0697 (19)0.0358 (19)0.0118 (17)0.0075 (17)
C200.0432 (11)0.0498 (12)0.0489 (12)0.0083 (9)0.0177 (9)0.0106 (10)
C210.0645 (15)0.0629 (15)0.0545 (14)0.0016 (12)0.0283 (12)0.0093 (12)
C220.0661 (16)0.0593 (15)0.0797 (18)0.0048 (13)0.0347 (14)0.0102 (13)
C230.0583 (15)0.0484 (13)0.0731 (17)0.0009 (11)0.0136 (13)0.0042 (12)
C240.0750 (18)0.0684 (16)0.0510 (14)0.0034 (14)0.0175 (12)0.0034 (12)
C250.0569 (14)0.0674 (15)0.0510 (13)0.0055 (12)0.0227 (11)0.0067 (11)
C260.0421 (11)0.0585 (13)0.0391 (11)0.0097 (10)0.0103 (9)0.0051 (9)
C270.0453 (12)0.0629 (14)0.0555 (13)0.0062 (11)0.0164 (10)0.0006 (11)
C280.0421 (13)0.0853 (19)0.0682 (16)0.0075 (12)0.0167 (11)0.0051 (14)
C290.0478 (15)0.085 (2)0.0841 (19)0.0233 (14)0.0140 (13)0.0101 (16)
C300.0644 (18)0.0612 (16)0.102 (2)0.0207 (14)0.0169 (16)0.0073 (15)
C310.0503 (14)0.0570 (15)0.0802 (18)0.0086 (11)0.0150 (12)0.0087 (13)
Geometric parameters (Å, º) top
Cl1—C111.735 (3)C15—H150.9300
Cl2—C231.742 (3)C16—C171.340 (5)
S1—C71.734 (3)C16—H160.9300
S1—C81.756 (3)C17—C181.360 (6)
S2—C41.742 (2)C17—H170.9300
S2—C201.772 (2)C18—C191.386 (5)
N2—C31.340 (3)C18—H180.9300
N2—N11.359 (2)C19—H190.9300
N2—C61.420 (3)C20—C251.378 (3)
N1—C51.325 (3)C20—C211.382 (3)
C4—C31.373 (3)C21—C221.375 (4)
C4—C51.419 (3)C21—H210.9300
C5—C261.476 (3)C22—C231.366 (4)
C3—H30.9300C22—H220.9300
C6—C71.318 (3)C23—C241.374 (4)
C6—C141.485 (3)C24—C251.383 (4)
C7—H70.9300C24—H240.9300
C8—C91.371 (4)C25—H250.9300
C8—C131.383 (4)C26—C271.382 (3)
C9—C101.374 (4)C26—C311.384 (3)
C9—H90.9300C27—C281.388 (3)
C10—C111.366 (4)C27—H270.9300
C10—H100.9300C28—C291.367 (4)
C11—C121.355 (5)C28—H280.9300
C12—C131.371 (5)C29—C301.367 (4)
C12—H120.9300C29—H290.9300
C13—H130.9300C30—C311.386 (3)
C14—C191.365 (4)C30—H300.9300
C14—C151.366 (4)C31—H310.9300
C15—C161.382 (4)
C7—S1—C8104.26 (13)C15—C16—H16119.9
C4—S2—C20104.53 (10)C16—C17—C18120.2 (3)
C3—N2—N1111.96 (17)C16—C17—H17119.9
C3—N2—C6127.43 (18)C18—C17—H17119.9
N1—N2—C6120.35 (17)C17—C18—C19120.0 (4)
C5—N1—N2105.27 (17)C17—C18—H18120.0
C3—C4—C5104.59 (19)C19—C18—H18120.0
C3—C4—S2124.02 (17)C14—C19—C18120.0 (3)
C5—C4—S2130.90 (16)C14—C19—H19120.0
N1—C5—C4110.79 (18)C18—C19—H19120.0
N1—C5—C26118.32 (19)C25—C20—C21119.2 (2)
C4—C5—C26130.9 (2)C25—C20—S2124.29 (17)
N2—C3—C4107.39 (19)C21—C20—S2116.56 (18)
N2—C3—H3126.3C22—C21—C20120.9 (2)
C4—C3—H3126.3C22—C21—H21119.6
C7—C6—N2120.0 (2)C20—C21—H21119.6
C7—C6—C14125.0 (2)C23—C22—C21119.2 (2)
N2—C6—C14114.93 (19)C23—C22—H22120.4
C6—C7—S1120.9 (2)C21—C22—H22120.4
C6—C7—H7119.5C22—C23—C24121.3 (2)
S1—C7—H7119.5C22—C23—Cl2119.4 (2)
C9—C8—C13117.9 (3)C24—C23—Cl2119.3 (2)
C9—C8—S1126.3 (2)C23—C24—C25119.2 (2)
C13—C8—S1115.7 (2)C23—C24—H24120.4
C8—C9—C10120.9 (3)C25—C24—H24120.4
C8—C9—H9119.6C20—C25—C24120.3 (2)
C10—C9—H9119.6C20—C25—H25119.8
C11—C10—C9120.1 (3)C24—C25—H25119.8
C11—C10—H10120.0C27—C26—C31118.8 (2)
C9—C10—H10120.0C27—C26—C5122.3 (2)
C12—C11—C10119.9 (3)C31—C26—C5118.7 (2)
C12—C11—Cl1119.3 (3)C26—C27—C28120.4 (2)
C10—C11—Cl1120.8 (3)C26—C27—H27119.8
C11—C12—C13120.1 (3)C28—C27—H27119.8
C11—C12—H12119.9C29—C28—C27120.2 (3)
C13—C12—H12119.9C29—C28—H28119.9
C12—C13—C8121.0 (3)C27—C28—H28119.9
C12—C13—H13119.5C30—C29—C28120.0 (2)
C8—C13—H13119.5C30—C29—H29120.0
C19—C14—C15119.1 (3)C28—C29—H29120.0
C19—C14—C6120.7 (2)C29—C30—C31120.4 (3)
C15—C14—C6120.2 (2)C29—C30—H30119.8
C14—C15—C16120.4 (3)C31—C30—H30119.8
C14—C15—H15119.8C26—C31—C30120.2 (3)
C16—C15—H15119.8C26—C31—H31119.9
C17—C16—C15120.2 (3)C30—C31—H31119.9
C17—C16—H16119.9
C3—N2—N1—C50.5 (2)C7—C6—C14—C1594.6 (3)
C6—N2—N1—C5175.07 (18)N2—C6—C14—C1584.7 (3)
C20—S2—C4—C3104.7 (2)C19—C14—C15—C160.2 (5)
C20—S2—C4—C584.6 (2)C6—C14—C15—C16179.9 (3)
N2—N1—C5—C40.8 (2)C14—C15—C16—C170.3 (5)
N2—N1—C5—C26179.40 (17)C15—C16—C17—C180.5 (6)
C3—C4—C5—N10.8 (2)C16—C17—C18—C190.1 (7)
S2—C4—C5—N1172.85 (17)C15—C14—C19—C180.5 (5)
C3—C4—C5—C26179.5 (2)C6—C14—C19—C18179.6 (3)
S2—C4—C5—C267.4 (4)C17—C18—C19—C140.3 (6)
N1—N2—C3—C40.1 (2)C4—S2—C20—C2511.8 (2)
C6—N2—C3—C4174.1 (2)C4—S2—C20—C21167.52 (18)
C5—C4—C3—N20.4 (2)C25—C20—C21—C221.6 (4)
S2—C4—C3—N2173.19 (16)S2—C20—C21—C22177.8 (2)
C3—N2—C6—C7164.7 (2)C20—C21—C22—C230.6 (4)
N1—N2—C6—C78.9 (3)C21—C22—C23—C240.7 (4)
C3—N2—C6—C1415.9 (3)C21—C22—C23—Cl2178.5 (2)
N1—N2—C6—C14170.50 (18)C22—C23—C24—C251.0 (4)
N2—C6—C7—S1173.84 (18)Cl2—C23—C24—C25178.2 (2)
C14—C6—C7—S15.5 (4)C21—C20—C25—C241.2 (4)
C8—S1—C7—C6152.2 (2)S2—C20—C25—C24178.1 (2)
C7—S1—C8—C919.9 (3)C23—C24—C25—C200.0 (4)
C7—S1—C8—C13163.8 (3)N1—C5—C26—C27147.7 (2)
C13—C8—C9—C100.5 (5)C4—C5—C26—C2732.0 (3)
S1—C8—C9—C10175.8 (3)N1—C5—C26—C3127.8 (3)
C8—C9—C10—C110.9 (5)C4—C5—C26—C31152.5 (2)
C9—C10—C11—C121.8 (6)C31—C26—C27—C280.8 (3)
C9—C10—C11—Cl1179.0 (3)C5—C26—C27—C28174.7 (2)
C10—C11—C12—C131.4 (6)C26—C27—C28—C290.0 (4)
Cl1—C11—C12—C13179.4 (3)C27—C28—C29—C300.9 (4)
C11—C12—C13—C80.0 (7)C28—C29—C30—C311.0 (5)
C9—C8—C13—C121.0 (6)C27—C26—C31—C300.7 (4)
S1—C8—C13—C12175.7 (4)C5—C26—C31—C30174.9 (2)
C7—C6—C14—C1985.5 (4)C29—C30—C31—C260.1 (5)
N2—C6—C14—C1995.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N10.932.442.772 (3)101

Experimental details

Crystal data
Chemical formulaC29H20Cl2N2S2
Mr531.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.3808 (4), 21.4667 (7), 10.4281 (4)
β (°) 108.181 (2)
V3)2633.16 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.30 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.883, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
31420, 6594, 4292
Rint0.027
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 1.02
No. of reflections6594
No. of parameters316
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.56

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N10.93002.44002.772 (3)101.00
 

Acknowledgements

PR thanks Dr Babu Varghese, SAIF, IIT Madras, Chennai, India, for his help with the data collection.

References

First citationBaraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.  Web of Science CrossRef CAS Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Il Farmaco, 45, 147–166.  CAS PubMed Web of Science Google Scholar
First citationChen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572–576.  CAS Google Scholar
First citationCottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105–2108.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLondershausen, M. (1996). Pestic. Sci. 48, 269–274.  CrossRef CAS Google Scholar
First citationMishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107–119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2054-o2055
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds