metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(ethyl­enedi­amine)zinc(II) dichloride monohydrate

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 29 August 2008; accepted 2 September 2008; online 6 September 2008)

The asymmetric unit of the title compound, [Zn(C2H8N2)3]Cl2·H2O, contains a discrete [Zn(C2H8N2)3]2+ cation with a distorted octa­hedral geometry around Zn, two uncoordinated chloride ions and one water mol­ecule. The crystal structure exhibits N—H⋯O, N—H⋯Cl and O—H⋯O hydrogen bonds.

Related literature

For related structures, see: Bernhardt & Riley (2003[Bernhardt, P. V. & Riley, M. J. (2003). Aust. J. Chem. 56, 287-291.]); Cernak et al. (1984[Cernak, J., Chomic, J., Dunaj-Jurco, M. & Kappenstein, C. (1984). Inorg. Chim. Acta, 85, 219-223.]); Emsley et al. (1989[Emsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1989). Chem. Commun. pp. 738-739.]); Muralikrishna et al. (1983[Muralikrishna, C., Mahadevan, C., Sastry, S., Seshasayee, M. & Subramanian, S. (1983). Acta Cryst. C39, 1630-1632.]); Nesterova et al. (2006[Nesterova, O. V., Petrusenko, S. R., Dyakonenko, V. V., Shishkin, O. V. & Linert, W. (2006). Acta Cryst. C62, m281-m283.]); Wu et al. (2001[Wu, D.-M., Lin, X., Lu, C.-Z. & Zhuang, H.-H. (2001). Chin. J. Struct. Chem. 20, 409-412.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C2H8N2)3]Cl2·H2O

  • Mr = 334.60

  • Monoclinic, P 21 /c

  • a = 8.8165 (10) Å

  • b = 11.9379 (14) Å

  • c = 14.4043 (17) Å

  • β = 92.804 (2)°

  • V = 1514.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.97 mm−1

  • T = 293 (2) K

  • 0.25 × 0.22 × 0.16 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.639, Tmax = 0.744

  • 11550 measured reflections

  • 2975 independent reflections

  • 2511 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.10

  • 2975 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯Cl2i 0.90 2.86 3.739 (3) 165
N2—H2C⋯Cl1 0.90 2.50 3.363 (3) 162
N2—H2D⋯Cl2ii 0.90 2.48 3.332 (2) 158
N3—H3C⋯O1Wiii 0.90 2.27 3.159 (3) 169
N3—H3D⋯Cl2 0.90 2.73 3.605 (3) 165
N4—H4C⋯O1Wiv 0.90 2.39 3.260 (3) 164
N4—H4D⋯Cl1 0.90 2.52 3.375 (3) 159
N5—H5D⋯Cl2i 0.90 2.57 3.420 (3) 158
N6—H6C⋯Cl1iv 0.90 2.44 3.309 (3) 161
N6—H6D⋯Cl2 0.90 2.58 3.471 (3) 172
O1W—H1WA⋯Cl1 0.85 2.25 3.097 (3) 171
O1W—H1WB⋯Cl2v 0.85 2.34 3.187 (3) 180
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The preparation of complexes including different stereoisomers is a fascinating and promising means. There are many complexes including [Zn(en)3]2+ cation (en = ethylenediamine), which have been reported, due that [Zn(en)3]2+ cation has two simple and intuitive stereoisomers (Bernhardt et al., 2003; Cernak et al., 1984; Emsley et al., 1989; Muralikrishna et al., 1983; Nesterova et al., 2006; Wu et al., 2001). Different from the similar compound [Zn(en)3]Cl2.2H2O (Muralikrishna et al., 1983; Wu et al., 2001), here, we report a salt [Zn(en)3]Cl2.H2O. In the asymmetric unit of the salt, there are only one crystal water molecule.

The asymmetric unit of the title salt, [Zn(en)3]Cl2.H2O, contains a discrete [Zn(en)3]2+ cation, two uncoordinated chloride ions and one water molecule. The Zn(II) ion displays a distorted octahedral geometry, being surrounded by three en ligands. The Zn···N distances are between 2.159 (2) and 2.220 (2) Å. Each en acts as a chelating bidentate ligand. In crystal, the [Zn(en)3]2+ cations, chloride ions and the crystal water are linked together by N—H···O, N—H···Cl and O—H···Cl hydrogen bonds (Table 2).

Related literature top

For related structures, see: Bernhardt et al. (2003); Cernak et al. (1984); Emsley et al. (1989); Muralikrishna et al. (1983); Nesterova et al. (2006); Wu et al. (2001).

Experimental top

To a solution of ZnCl2.2H2O (0.172 g, 1 mmol) in CH3OH (5 ml), an aqueous solution (5 ml) of bib (bib = 1,3-bis(4,5-Dihydro-1H-imidazol-2-yl)benzene) (0.214 g, 1 mmol) was added. After the mixture was stirred for half an hour, a white precipitate formed. 3 ml en was added to the mixture and the precipitate disappeared. Then the mixture was stirred for an hour and filtered. The filtrate was allowed to evaporate slowly at room temperature. After 3 weeks, colorless block shaped crystals were obtained in 40% yield (0.034 g) based on Zn(II).

Refinement top

H atoms were located in a difference map, but refined using a riding model with N—H = 0.90, O—H = 0.85 Å and C—H = 0.97 Å and with Uiso(H) = 1.2 Uiso(C,N,O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with 30% displacement ellipsoids.
[Figure 2] Fig. 2. Partial packing diagram. The H atoms bonded to C atoms are omitted for clarity.
Tris(ethylenediamine)zinc(II) dichloride monohydrate top
Crystal data top
[Zn(C2H8N2)3]Cl2·H2OF(000) = 704
Mr = 334.60Dx = 1.468 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 783 reflections
a = 8.8165 (10) Åθ = 2.5–28.0°
b = 11.9379 (14) ŵ = 1.97 mm1
c = 14.4043 (17) ÅT = 293 K
β = 92.804 (2)°Block, colorless
V = 1514.2 (3) Å30.25 × 0.22 × 0.16 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
2975 independent reflections
Radiation source: fine-focus sealed tube2511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scanθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1010
Tmin = 0.639, Tmax = 0.744k = 1414
11550 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.5868P]
where P = (Fo2 + 2Fc2)/3
2975 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Zn(C2H8N2)3]Cl2·H2OV = 1514.2 (3) Å3
Mr = 334.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8165 (10) ŵ = 1.97 mm1
b = 11.9379 (14) ÅT = 293 K
c = 14.4043 (17) Å0.25 × 0.22 × 0.16 mm
β = 92.804 (2)°
Data collection top
Bruker APEX CCD
diffractometer
2975 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2511 reflections with I > 2σ(I)
Tmin = 0.639, Tmax = 0.744Rint = 0.030
11550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.10Δρmax = 0.39 e Å3
2975 reflectionsΔρmin = 0.27 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.24154 (3)0.55616 (3)0.20878 (2)0.03553 (12)
Cl10.31636 (9)0.23340 (7)0.36125 (6)0.0567 (2)
Cl20.20561 (8)0.87644 (7)0.38972 (5)0.0505 (2)
C10.3870 (3)0.3760 (3)0.1009 (2)0.0555 (8)
H1A0.44520.34500.15380.067*
H1B0.42970.34800.04460.067*
C20.2244 (4)0.3402 (3)0.1041 (2)0.0540 (8)
H2A0.16810.36590.04860.065*
H2B0.21860.25910.10580.065*
C30.1673 (4)0.5327 (3)0.4086 (2)0.0507 (8)
H3A0.14310.45360.40340.061*
H3B0.12640.56100.46530.061*
C40.3359 (4)0.5484 (3)0.4120 (2)0.0557 (9)
H4A0.36010.62730.41920.067*
H4B0.38160.50850.46490.067*
C50.0887 (4)0.7490 (3)0.1124 (2)0.0565 (9)
H5A0.03910.77830.16590.068*
H5B0.04110.78240.05690.068*
C60.2557 (4)0.7787 (3)0.1193 (2)0.0508 (8)
H6A0.30400.75350.06400.061*
H6B0.26760.85940.12380.061*
N10.3960 (3)0.4984 (2)0.10299 (17)0.0465 (6)
H1C0.48850.53000.11050.070*
H1D0.36840.52620.04660.070*
N20.1568 (3)0.3873 (2)0.18697 (16)0.0419 (6)
H2C0.17780.33830.23330.063*
H2D0.05460.38540.18390.063*
N30.0993 (3)0.5935 (2)0.32796 (16)0.0443 (6)
H3C0.00100.57900.32320.067*
H3D0.10790.66750.33890.067*
N40.3974 (3)0.5059 (2)0.32603 (16)0.0445 (6)
H4C0.49470.52760.32230.067*
H4D0.38720.43120.32040.067*
N50.0720 (3)0.6272 (2)0.10862 (16)0.0456 (6)
H5C0.02180.60390.12140.068*
H5D0.09330.60750.05040.068*
N60.3279 (3)0.7250 (2)0.20173 (16)0.0444 (6)
H6C0.42880.73420.19820.067*
H6D0.30540.76780.25060.067*
O1W0.2475 (3)0.0426 (2)0.21973 (17)0.0692 (7)
H1WA0.26300.10020.25360.104*
H1WB0.23610.00200.26490.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03116 (18)0.0416 (2)0.03389 (18)0.00316 (13)0.00251 (12)0.00012 (13)
Cl10.0520 (5)0.0563 (5)0.0622 (5)0.0042 (4)0.0079 (4)0.0108 (4)
Cl20.0449 (4)0.0597 (5)0.0467 (4)0.0018 (3)0.0009 (3)0.0014 (4)
C10.0461 (18)0.073 (2)0.0480 (18)0.0078 (16)0.0089 (14)0.0111 (17)
C20.0550 (19)0.056 (2)0.0503 (19)0.0051 (16)0.0010 (15)0.0111 (16)
C30.0565 (19)0.061 (2)0.0348 (15)0.0002 (16)0.0076 (14)0.0003 (14)
C40.0529 (19)0.073 (2)0.0403 (17)0.0025 (16)0.0075 (14)0.0069 (16)
C50.056 (2)0.060 (2)0.0534 (19)0.0148 (16)0.0015 (15)0.0061 (16)
C60.067 (2)0.0420 (18)0.0440 (17)0.0034 (15)0.0052 (15)0.0025 (14)
N10.0359 (13)0.0597 (17)0.0444 (14)0.0059 (12)0.0072 (10)0.0020 (12)
N20.0349 (12)0.0484 (15)0.0425 (13)0.0093 (11)0.0032 (10)0.0006 (11)
N30.0368 (13)0.0514 (15)0.0453 (14)0.0006 (11)0.0072 (10)0.0015 (12)
N40.0354 (13)0.0527 (16)0.0451 (14)0.0013 (11)0.0023 (10)0.0031 (12)
N50.0357 (13)0.0582 (17)0.0426 (13)0.0029 (11)0.0004 (10)0.0052 (12)
N60.0407 (13)0.0467 (15)0.0461 (14)0.0083 (11)0.0042 (11)0.0033 (12)
O1W0.0747 (18)0.0651 (17)0.0678 (16)0.0051 (12)0.0032 (14)0.0022 (12)
Geometric parameters (Å, º) top
Zn1—N62.158 (2)C5—C61.513 (5)
Zn1—N22.167 (2)C5—H5A0.9700
Zn1—N52.196 (2)C5—H5B0.9700
Zn1—N12.203 (2)C6—N61.467 (4)
Zn1—N42.208 (2)C6—H6A0.9700
Zn1—N32.220 (2)C6—H6B0.9700
C1—N11.464 (4)N1—H1C0.9000
C1—C21.498 (4)N1—H1D0.9000
C1—H1A0.9700N2—H2C0.9000
C1—H1B0.9700N2—H2D0.9000
C2—N21.472 (4)N3—H3C0.9000
C2—H2A0.9700N3—H3D0.9000
C2—H2B0.9700N4—H4C0.9000
C3—N31.472 (4)N4—H4D0.9000
C3—C41.496 (4)N5—H5C0.9000
C3—H3A0.9700N5—H5D0.9000
C3—H3B0.9700N6—H6C0.9000
C4—N41.466 (4)N6—H6D0.9000
C4—H4A0.9700O1W—H1WA0.8500
C4—H4B0.9700O1W—H1WB0.8503
C5—N51.463 (4)
N6—Zn1—N2168.95 (9)H5A—C5—H5B108.3
N6—Zn1—N580.73 (9)N6—C6—C5109.4 (2)
N2—Zn1—N592.59 (9)N6—C6—H6A109.8
N6—Zn1—N191.62 (9)C5—C6—H6A109.8
N2—Zn1—N180.16 (9)N6—C6—H6B109.8
N5—Zn1—N195.18 (9)C5—C6—H6B109.8
N6—Zn1—N494.68 (9)H6A—C6—H6B108.2
N2—Zn1—N493.19 (9)C1—N1—Zn1106.97 (18)
N5—Zn1—N4170.26 (9)C1—N1—H1C117.9
N1—Zn1—N493.52 (9)Zn1—N1—H1C111.9
N6—Zn1—N393.60 (9)C1—N1—H1D109.7
N2—Zn1—N395.45 (9)Zn1—N1—H1D111.1
N5—Zn1—N392.20 (9)H1C—N1—H1D99.1
N1—Zn1—N3171.56 (9)C2—N2—Zn1108.81 (18)
N4—Zn1—N379.46 (9)C2—N2—H2C106.0
N1—C1—C2109.6 (3)Zn1—N2—H2C116.1
N1—C1—H1A109.8C2—N2—H2D113.2
C2—C1—H1A109.8Zn1—N2—H2D111.6
N1—C1—H1B109.8H2C—N2—H2D100.9
C2—C1—H1B109.8C3—N3—Zn1106.68 (18)
H1A—C1—H1B108.2C3—N3—H3C109.1
N2—C2—C1110.0 (2)Zn1—N3—H3C119.5
N2—C2—H2A109.7C3—N3—H3D108.6
C1—C2—H2A109.7Zn1—N3—H3D106.6
N2—C2—H2B109.7H3C—N3—H3D106.0
C1—C2—H2B109.7C4—N4—Zn1108.07 (17)
H2A—C2—H2B108.2C4—N4—H4C110.2
N3—C3—C4109.3 (3)Zn1—N4—H4C115.8
N3—C3—H3A109.8C4—N4—H4D112.3
C4—C3—H3A109.8Zn1—N4—H4D98.3
N3—C3—H3B109.8H4C—N4—H4D111.7
C4—C3—H3B109.8C5—N5—Zn1107.18 (17)
H3A—C3—H3B108.3C5—N5—H5C113.0
N4—C4—C3109.7 (2)Zn1—N5—H5C110.4
N4—C4—H4A109.7C5—N5—H5D105.6
C3—C4—H4A109.7Zn1—N5—H5D110.2
N4—C4—H4B109.7H5C—N5—H5D110.2
C3—C4—H4B109.7C6—N6—Zn1107.84 (18)
H4A—C4—H4B108.2C6—N6—H6C107.0
N5—C5—C6109.4 (2)Zn1—N6—H6C118.0
N5—C5—H5A109.8C6—N6—H6D106.3
C6—C5—H5A109.8Zn1—N6—H6D113.7
N5—C5—H5B109.8H6C—N6—H6D103.4
C6—C5—H5B109.8H1WA—O1W—H1WB95.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl2i0.902.863.739 (3)165
N2—H2C···Cl10.902.503.363 (3)162
N2—H2D···Cl2ii0.902.483.332 (2)158
N3—H3C···O1Wiii0.902.273.159 (3)169
N3—H3D···Cl20.902.733.605 (3)165
N4—H4C···O1Wiv0.902.393.260 (3)164
N4—H4D···Cl10.902.523.375 (3)159
N5—H5D···Cl2i0.902.573.420 (3)158
N6—H6C···Cl1iv0.902.443.309 (3)161
N6—H6D···Cl20.902.583.471 (3)172
O1W—H1WA···Cl10.852.253.097 (3)171
O1W—H1WB···Cl2v0.852.343.187 (3)180
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y1, z.

Experimental details

Crystal data
Chemical formula[Zn(C2H8N2)3]Cl2·H2O
Mr334.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.8165 (10), 11.9379 (14), 14.4043 (17)
β (°) 92.804 (2)
V3)1514.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.97
Crystal size (mm)0.25 × 0.22 × 0.16
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.639, 0.744
No. of measured, independent and
observed [I > 2σ(I)] reflections
11550, 2975, 2511
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.10
No. of reflections2975
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl2i0.902.863.739 (3)164.8
N2—H2C···Cl10.902.503.363 (3)161.6
N2—H2D···Cl2ii0.902.483.332 (2)157.5
N3—H3C···O1Wiii0.902.273.159 (3)168.6
N3—H3D···Cl20.902.733.605 (3)165.4
N4—H4C···O1Wiv0.902.393.260 (3)163.5
N4—H4D···Cl10.902.523.375 (3)158.8
N5—H5D···Cl2i0.902.573.420 (3)158.1
N6—H6C···Cl1iv0.902.443.309 (3)161.3
N6—H6D···Cl20.902.583.471 (3)172.1
O1W—H1WA···Cl10.852.253.097 (3)170.9
O1W—H1WB···Cl2v0.852.343.187 (3)179.6
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y1, z.
 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBernhardt, P. V. & Riley, M. J. (2003). Aust. J. Chem. 56, 287–291.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCernak, J., Chomic, J., Dunaj-Jurco, M. & Kappenstein, C. (1984). Inorg. Chim. Acta, 85, 219–223.  CSD CrossRef CAS Web of Science Google Scholar
First citationEmsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1989). Chem. Commun. pp. 738–739.  CrossRef Google Scholar
First citationMuralikrishna, C., Mahadevan, C., Sastry, S., Seshasayee, M. & Subramanian, S. (1983). Acta Cryst. C39, 1630–1632.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNesterova, O. V., Petrusenko, S. R., Dyakonenko, V. V., Shishkin, O. V. & Linert, W. (2006). Acta Cryst. C62, m281–m283.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D.-M., Lin, X., Lu, C.-Z. & Zhuang, H.-H. (2001). Chin. J. Struct. Chem. 20, 409–412.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds