organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(5-Bromo-2-hy­droxy­benzyl­­idene)-3,4,5-tri­hydroxy­benzohydrazide dihydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 16 July 2008; accepted 19 July 2008; online 23 July 2008)

The title compound, C14H11BrN2O5·2H2O, crystallizes as hydrogen-bonded sheets. The 2-hydr­oxy group on the benzyl­idene group forms an intra­molecular hydrogen bond to the N atom of the C=N double bond. The amino N atom is a hydrogen-bond donor to a water mol­ecule. The hydr­oxy group on the benzohydrazide group is a hydrogen-bond donor to one acceptor site, whereas each water mol­ecule is a hydrogen-bond donor to two acceptor sites.

Related literature

For the structure of a similar Schiff-base ligand, 5-bromo­salicylaldehyde benzoyl­hydrazone, see: Liu et al. (2006[Liu, H.-Y., Wang, H.-Y., Gao, F., Lu, Z.-S. & Niu, D.-Z. (2006). Acta Cryst. E62, o4495-o4496.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrN2O5·2H2O

  • Mr = 403.19

  • Monoclinic, P 21 /c

  • a = 30.8424 (8) Å

  • b = 3.7999 (1) Å

  • c = 12.8484 (4) Å

  • β = 90.280 (2)°

  • V = 1505.79 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.77 mm−1

  • T = 100 (2) K

  • 0.30 × 0.03 × 0.03 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.658, Tmax = 0.921

  • 9964 measured reflections

  • 3424 independent reflections

  • 2914 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.155

  • S = 1.22

  • 3424 reflections

  • 241 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.08 e Å−3

  • Δρmin = −1.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.84 (1) 1.91 (5) 2.616 (6) 141 (7)
O3—H3o⋯O2w 0.84 (1) 1.96 (4) 2.736 (6) 153 (7)
O4—H4o⋯O2wi 0.84 (1) 1.81 (3) 2.623 (8) 163 (9)
O5—H5o⋯O2ii 0.84 (1) 1.93 (2) 2.764 (5) 171 (7)
O1w—H1w1⋯O2iii 0.84 (1) 1.98 (2) 2.812 (5) 170 (6)
O1w—H1w2⋯O1ii 0.84 (1) 2.09 (2) 2.914 (6) 167 (6)
O2w—H2w1⋯O3iv 0.84 (1) 2.13 (5) 2.845 (9) 142 (8)
O2w—H2w2⋯O4v 0.84 (1) 2.12 (4) 2.900 (8) 154 (8)
Symmetry codes: (i) -x, -y+2, -z+2; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x, -y+3, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

This study extends the structural study on the Schiff base, 5-bromosalicylaldehyde benzoylhydrazone (Liu et al., 2006) as the title compound (Scheme I, Fig. 1) has several hydroxy groups on one of the aromatic rings. The compound crystallizes with two lattice water molecules. Hydrogen bonding interactions (Table 1) give rise to a layer motif.

Related literature top

For the structure of a similar Schiff-base ligand, 5-bromosalicylaldehyde benzoylhydrazone, see: Liu et al. (2006).

Experimental top

3,4,5-Trihydroxybenzoylhydrazide (0.65 g, 3.5 mmol) and 5-bromo-2-hydroxybenzaldehyde (0.70 g, 3.5 mmol) were heated for 12 h in ethanol. The solvent was removed and the product recrystallized from ethanol.

Refinement top

Carbon and nitrogen-bound H-atoms were placed in calculated positions (C—H 0.95 Å; N–H 0.88 Å) and were included in the refinement in the riding model approximation, with Uiso(H) 1.2 Ueq(C). The hydroxy and water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 Å and H···H 1.37±0.01 Å.

The final difference Fourier map had a peak of 1.37eÅ-3 at 0.69Å from Br1 and a hole of -1.81eÅ-3 at 1.33Å from C2.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. View (Barbour, 2001) of N-(5-bromo-2-hydroxybenzylidene)-3,4,5-trihydroxybenzohydrazide with displacement ellipsoids at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
N'-(5-Bromo-2-hydroxybenzylidene)-3,4,5-trihydroxybenzohydrazide dihydrate top
Crystal data top
C14H11BrN2O5·2H2OF(000) = 816
Mr = 403.19Dx = 1.779 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2758 reflections
a = 30.8424 (8) Åθ = 3.2–27.4°
b = 3.7999 (1) ŵ = 2.77 mm1
c = 12.8484 (4) ÅT = 100 K
β = 90.280 (2)°Needle, colorless
V = 1505.79 (7) Å30.30 × 0.03 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3424 independent reflections
Radiation source: fine-focus sealed tube2914 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3840
Tmin = 0.658, Tmax = 0.921k = 44
9964 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.22 w = 1/[σ2(Fo2) + (0.0499P)2 + 10.2476P]
where P = (Fo2 + 2Fc2)/3
3424 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 1.08 e Å3
10 restraintsΔρmin = 1.82 e Å3
Crystal data top
C14H11BrN2O5·2H2OV = 1505.79 (7) Å3
Mr = 403.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 30.8424 (8) ŵ = 2.77 mm1
b = 3.7999 (1) ÅT = 100 K
c = 12.8484 (4) Å0.30 × 0.03 × 0.03 mm
β = 90.280 (2)°
Data collection top
Bruker SMART APEX
diffractometer
3424 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2914 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.921Rint = 0.039
9964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06410 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.22 w = 1/[σ2(Fo2) + (0.0499P)2 + 10.2476P]
where P = (Fo2 + 2Fc2)/3
3424 reflectionsΔρmax = 1.08 e Å3
241 parametersΔρmin = 1.82 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.467910 (16)0.31017 (16)0.89799 (4)0.01787 (17)
O10.32358 (12)0.6446 (12)0.5944 (3)0.0201 (9)
H1O0.3020 (15)0.745 (18)0.621 (5)0.030*
O20.20078 (11)0.9755 (11)0.6545 (3)0.0182 (8)
O30.05472 (13)1.3768 (13)0.7962 (4)0.0295 (11)
H3O0.0335 (16)1.36 (2)0.836 (5)0.044*
O40.05208 (14)1.1036 (15)0.9894 (4)0.0353 (12)
H4O0.048 (3)0.933 (15)1.030 (6)0.053*
O50.12324 (12)0.7692 (12)1.0737 (3)0.0182 (9)
H5O0.1471 (12)0.682 (18)1.092 (5)0.027*
O1W0.25912 (12)1.3152 (13)0.9988 (3)0.0209 (9)
H1W10.2444 (17)1.382 (18)1.050 (3)0.031*
H1W20.2806 (14)1.199 (17)1.020 (4)0.031*
O2W0.02887 (15)1.3435 (17)0.8657 (5)0.0506 (16)
H2W10.042 (3)1.30 (2)0.810 (4)0.076*
H2W20.038 (3)1.534 (14)0.890 (7)0.076*
N10.27850 (13)0.8683 (12)0.7531 (3)0.0139 (9)
N20.24174 (13)0.9859 (13)0.8027 (3)0.0138 (9)
H2N0.24311.05110.86840.017*
C10.35563 (16)0.5778 (15)0.6648 (4)0.0144 (10)
C20.39381 (16)0.4251 (16)0.6295 (4)0.0173 (11)
H20.39700.37300.55760.021*
C30.42746 (17)0.3479 (16)0.6985 (4)0.0193 (12)
H30.45350.24310.67430.023*
C40.42245 (16)0.4256 (16)0.8025 (4)0.0160 (11)
C50.38470 (16)0.5781 (15)0.8398 (4)0.0143 (10)
H50.38200.62940.91180.017*
C60.35065 (15)0.6562 (15)0.7712 (4)0.0126 (10)
C70.31105 (16)0.7988 (15)0.8138 (4)0.0130 (10)
H70.30890.84150.88650.016*
C80.20343 (16)1.0010 (13)0.7503 (4)0.0108 (10)
C90.16507 (16)1.0460 (15)0.8180 (4)0.0130 (10)
C100.12793 (16)1.2046 (16)0.7771 (4)0.0163 (11)
H100.12811.29840.70860.020*
C110.09101 (17)1.2242 (15)0.8368 (4)0.0176 (12)
C120.09010 (17)1.0775 (17)0.9364 (4)0.0204 (12)
C130.12713 (17)0.9146 (15)0.9777 (4)0.0152 (11)
C140.16479 (17)0.9040 (15)0.9188 (4)0.0149 (11)
H140.19030.80060.94680.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0094 (2)0.0195 (3)0.0247 (3)0.0001 (2)0.00302 (17)0.0020 (3)
O10.0160 (18)0.032 (3)0.0125 (17)0.0031 (18)0.0028 (14)0.0016 (17)
O20.0127 (17)0.027 (2)0.0148 (18)0.0039 (16)0.0015 (14)0.0021 (17)
O30.0142 (19)0.041 (3)0.034 (2)0.0120 (19)0.0051 (17)0.005 (2)
O40.016 (2)0.060 (4)0.030 (2)0.009 (2)0.0035 (18)0.013 (2)
O50.0129 (17)0.031 (2)0.0110 (17)0.0007 (17)0.0027 (14)0.0045 (16)
O1W0.0162 (18)0.035 (2)0.0113 (17)0.0027 (18)0.0015 (14)0.0044 (18)
O2W0.016 (2)0.049 (4)0.087 (5)0.010 (2)0.010 (2)0.013 (3)
N10.0107 (19)0.014 (3)0.017 (2)0.0016 (17)0.0010 (16)0.0008 (18)
N20.0096 (19)0.019 (3)0.013 (2)0.0004 (18)0.0007 (15)0.0028 (18)
C10.014 (2)0.016 (3)0.014 (2)0.002 (2)0.0013 (19)0.002 (2)
C20.013 (2)0.025 (3)0.014 (2)0.001 (2)0.0024 (19)0.000 (2)
C30.013 (2)0.020 (3)0.025 (3)0.001 (2)0.006 (2)0.003 (2)
C40.012 (2)0.014 (3)0.021 (3)0.001 (2)0.003 (2)0.003 (2)
C50.015 (2)0.013 (3)0.015 (2)0.001 (2)0.0005 (19)0.002 (2)
C60.010 (2)0.015 (3)0.013 (2)0.003 (2)0.0008 (18)0.001 (2)
C70.013 (2)0.015 (3)0.012 (2)0.006 (2)0.0022 (18)0.003 (2)
C80.013 (2)0.004 (3)0.015 (2)0.0007 (18)0.0019 (18)0.0009 (19)
C90.011 (2)0.013 (3)0.015 (2)0.000 (2)0.0027 (19)0.003 (2)
C100.013 (2)0.016 (3)0.020 (3)0.001 (2)0.0034 (19)0.000 (2)
C110.017 (2)0.013 (3)0.022 (3)0.008 (2)0.007 (2)0.007 (2)
C120.012 (2)0.027 (3)0.022 (3)0.002 (2)0.001 (2)0.012 (2)
C130.016 (2)0.017 (3)0.013 (2)0.001 (2)0.0025 (19)0.008 (2)
C140.013 (2)0.016 (3)0.015 (2)0.001 (2)0.0022 (19)0.006 (2)
Geometric parameters (Å, º) top
Br1—C41.909 (5)C1—C61.408 (7)
O1—C11.361 (6)C2—C31.393 (8)
O1—H1O0.840 (10)C2—H20.9500
O2—C81.236 (6)C3—C41.378 (8)
O3—C111.362 (6)C3—H30.9500
O3—H3O0.838 (10)C4—C51.388 (7)
O4—C121.362 (7)C5—C61.400 (7)
O4—H4O0.840 (10)C5—H50.9500
O5—C131.357 (7)C6—C71.446 (7)
O5—H5O0.841 (10)C7—H70.9500
O1W—H1W10.839 (10)C8—C91.482 (7)
O1W—H1W20.838 (10)C9—C101.395 (7)
O2W—H2W10.838 (10)C9—C141.403 (7)
O2W—H2W20.839 (10)C10—C111.378 (7)
N1—C71.296 (7)C10—H100.9500
N1—N21.378 (6)C11—C121.396 (8)
N2—C81.359 (6)C12—C131.401 (8)
N2—H2N0.8800C13—C141.390 (7)
C1—C21.391 (7)C14—H140.9500
C1—O1—H1O113 (5)C5—C6—C7118.3 (4)
C11—O3—H3O111 (6)C1—C6—C7122.9 (5)
C12—O4—H4O112 (6)N1—C7—C6120.1 (4)
C13—O5—H5O110 (5)N1—C7—H7120.0
H1W1—O1W—H1W2109.6 (18)C6—C7—H7120.0
H2W1—O2W—H2W2109.5 (18)O2—C8—N2122.9 (4)
C7—N1—N2115.1 (4)O2—C8—C9123.0 (4)
C8—N2—N1120.0 (4)N2—C8—C9114.1 (4)
C8—N2—H2N120.0C10—C9—C14120.3 (5)
N1—N2—H2N120.0C10—C9—C8119.0 (5)
O1—C1—C2118.3 (5)C14—C9—C8120.4 (5)
O1—C1—C6121.6 (5)C11—C10—C9119.5 (5)
C2—C1—C6120.1 (5)C11—C10—H10120.2
C1—C2—C3120.6 (5)C9—C10—H10120.2
C1—C2—H2119.7O3—C11—C10119.3 (5)
C3—C2—H2119.7O3—C11—C12120.1 (5)
C4—C3—C2119.1 (5)C10—C11—C12120.6 (5)
C4—C3—H3120.5O4—C12—C11116.7 (5)
C2—C3—H3120.5O4—C12—C13123.0 (5)
C3—C4—C5121.5 (5)C11—C12—C13120.3 (5)
C3—C4—Br1119.2 (4)O5—C13—C14124.1 (5)
C5—C4—Br1119.3 (4)O5—C13—C12116.7 (5)
C4—C5—C6120.0 (5)C14—C13—C12119.2 (5)
C4—C5—H5120.0C13—C14—C9120.0 (5)
C6—C5—H5120.0C13—C14—H14120.0
C5—C6—C1118.7 (5)C9—C14—H14120.0
C7—N1—N2—C8167.2 (5)N2—C8—C9—C10154.0 (5)
O1—C1—C2—C3179.3 (5)O2—C8—C9—C14147.8 (5)
C6—C1—C2—C30.1 (9)N2—C8—C9—C1431.4 (7)
C1—C2—C3—C40.1 (9)C14—C9—C10—C110.6 (9)
C2—C3—C4—C50.1 (9)C8—C9—C10—C11175.2 (5)
C2—C3—C4—Br1178.5 (4)C9—C10—C11—O3179.5 (5)
C3—C4—C5—C60.0 (9)C9—C10—C11—C122.0 (9)
Br1—C4—C5—C6178.4 (4)O3—C11—C12—O41.4 (8)
C4—C5—C6—C10.1 (8)C10—C11—C12—O4178.9 (6)
C4—C5—C6—C7177.0 (5)O3—C11—C12—C13178.9 (5)
O1—C1—C6—C5179.4 (5)C10—C11—C12—C131.4 (9)
C2—C1—C6—C50.1 (8)O4—C12—C13—O52.2 (9)
O1—C1—C6—C72.5 (9)C11—C12—C13—O5178.1 (5)
C2—C1—C6—C7176.9 (5)O4—C12—C13—C14179.1 (6)
N2—N1—C7—C6176.8 (5)C11—C12—C13—C140.6 (9)
C5—C6—C7—N1178.7 (5)O5—C13—C14—C9176.7 (5)
C1—C6—C7—N11.8 (8)C12—C13—C14—C91.9 (8)
N1—N2—C8—O213.6 (8)C10—C9—C14—C131.3 (8)
N1—N2—C8—C9165.7 (5)C8—C9—C14—C13173.2 (5)
O2—C8—C9—C1026.7 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.84 (1)1.91 (5)2.616 (6)141 (7)
O3—H3o···O2w0.84 (1)1.96 (4)2.736 (6)153 (7)
O4—H4o···O2wi0.84 (1)1.81 (3)2.623 (8)163 (9)
O5—H5o···O2ii0.84 (1)1.93 (2)2.764 (5)171 (7)
O1w—H1w1···O2iii0.84 (1)1.98 (2)2.812 (5)170 (6)
O1w—H1w2···O1ii0.84 (1)2.09 (2)2.914 (6)167 (6)
O2w—H2w1···O3iv0.84 (1)2.13 (5)2.845 (9)142 (8)
O2w—H2w2···O4v0.84 (1)2.12 (4)2.900 (8)154 (8)
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+3/2, z+1/2; (iii) x, y+5/2, z+1/2; (iv) x, y1/2, z+3/2; (v) x, y+3, z+2.

Experimental details

Crystal data
Chemical formulaC14H11BrN2O5·2H2O
Mr403.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)30.8424 (8), 3.7999 (1), 12.8484 (4)
β (°) 90.280 (2)
V3)1505.79 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.77
Crystal size (mm)0.30 × 0.03 × 0.03
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.658, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
9964, 3424, 2914
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.155, 1.22
No. of reflections3424
No. of parameters241
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0499P)2 + 10.2476P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.08, 1.82

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.84 (1)1.91 (5)2.616 (6)141 (7)
O3—H3o···O2w0.84 (1)1.96 (4)2.736 (6)153 (7)
O4—H4o···O2wi0.84 (1)1.81 (3)2.623 (8)163 (9)
O5—H5o···O2ii0.84 (1)1.93 (2)2.764 (5)171 (7)
O1w—H1w1···O2iii0.84 (1)1.98 (2)2.812 (5)170 (6)
O1w—H1w2···O1ii0.84 (1)2.09 (2)2.914 (6)167 (6)
O2w—H2w1···O3iv0.84 (1)2.13 (5)2.845 (9)142 (8)
O2w—H2w2···O4v0.84 (1)2.12 (4)2.900 (8)154 (8)
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+3/2, z+1/2; (iii) x, y+5/2, z+1/2; (iv) x, y1/2, z+3/2; (v) x, y+3, z+2.
 

Acknowledgements

We thank the Science Fund (12–02-03–2031, 12–02-03–2051) and the University of Malaya (PJP) for supporting this study. We are grateful to the University of Malaya for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, H.-Y., Wang, H.-Y., Gao, F., Lu, Z.-S. & Niu, D.-Z. (2006). Acta Cryst. E62, o4495–o4496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds