organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-4-[(Phenyl­sulfon­yl­oxy)meth­yl]cyclo­hexa­ne­carboxylic acid

aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: wcums416@yahoo.com.cn

(Received 15 July 2008; accepted 31 July 2008; online 6 August 2008)

The title compound, C14H18O5S, is an important inter­mediate for the synthesis of poly(amido­amine) dendrimers. The cyclo­hexane ring adopts a chair conformation with its two substituents in equatorial positions. In the crystal structure, mol­ecules form centrosymmetric dimers via O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Ahmed et al. (2001[Ahmed, S. M., Budd, P. M., McKeown, N. B., Evans, K. P., Beaumont, G. L., Donaldson, C. & Brennan, C. M. (2001). Polymer, 42, 889-896.]); Grabchev et al. (2003[Grabchev, I., Chovelon, J. M., Bojinov, V. & Ivanova, G. (2003). Tetrahedron, 59, 9591-9598.]); Wang et al. (2004[Wang, B.-B., Zhang, X., Jia, X.-R., Luo, Y.-F., Sun, Z., Yang, L., Ji, Y. & Wei, Y. (2004). Polymer, 45, 8395-8402.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18O5S

  • Mr = 298.34

  • Monoclinic, P 21 /c

  • a = 17.097 (5) Å

  • b = 5.960 (3) Å

  • c = 14.919 (4) Å

  • β = 107.09 (3)°

  • V = 1453.2 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 292 (2) K

  • 0.32 × 0.32 × 0.13 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3702 measured reflections

  • 2691 independent reflections

  • 1323 reflections with I > 2σ(I)

  • Rint = 0.008

  • 3 standard reflections every 250 reflections intensity decay: 0.9%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.142

  • S = 1.00

  • 2691 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.82 1.86 2.677 (3) 174
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

PAMAM (poly(amidoamine)) dendrimers have attracted much interest for their symmetry, high degree of branching and high density of terminal functional groups, which can participate in different reactions. The modification of periphery of PAMAM dendrimer which aimed to change the physical or chemical properties of PAMAM dendrimers, have been reported recently (Grabchev et al.,2003; Ahmed et al.,2001; Wang et al.,2004). To improve the lipophilicity of PAMAM dendrimers and provide a new type of linker with special stereostructure, a series of cyclohexane derivatives were synthesized.

The crystal structure shows that molecules are mainly linked by O—H···.O hydrogen bonds and the cyclohexane ring of the title compound exists in the chair conformation.

Related literature top

For related literature, see: Ahmed et al. (2001); Grabchev et al. (2003); Wang et al. (2004).

Experimental top

trans-4-(methoxycarbonyl)cyclohexanemethanol (10 mmol), triethylamine (10 mmol) and a small amount of trimethylamine hydrochloride were suspended in dichloromethane (20 mL), benzenesulfonyl chloride (11 mmol) was dropped with vigorous stirring at room temperature, after 1 h the reaction was quenched by addition of water. The organic layer separated was evaporated to give an oil and the oil was hydrolyzed in methanol and aqueous NaOH (11 mmol) solution for 5 h at 323 K. Then the title compound was obtained by acidification with hydrochloride and recrystallized from acetone. Colorless crystals suitable for X-ray analysis were obtained by slow evaporation in cyclohexane and acetone at room temperature.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å, O—H = 0.82 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
trans-4-[(Phenylsulfonyloxy)methyl]cyclohexanecarboxylic acid top
Crystal data top
C14H18O5SF(000) = 632
Mr = 298.34Dx = 1.364 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.097 (5) ÅCell parameters from 24 reflections
b = 5.960 (3) Åθ = 4.4–8.7°
c = 14.919 (4) ŵ = 0.24 mm1
β = 107.09 (3)°T = 292 K
V = 1453.2 (10) Å3Block, colourless
Z = 40.32 × 0.32 × 0.13 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.008
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.3°
Graphite monochromatorh = 220
ω/2θ scansk = 70
3702 measured reflectionsl = 1817
2691 independent reflections3 standard reflections every 250 reflections
1323 reflections with I > 2σ(I) intensity decay: 0.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0729P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2691 reflectionsΔρmax = 0.27 e Å3
183 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0076 (16)
Crystal data top
C14H18O5SV = 1453.2 (10) Å3
Mr = 298.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.097 (5) ŵ = 0.24 mm1
b = 5.960 (3) ÅT = 292 K
c = 14.919 (4) Å0.32 × 0.32 × 0.13 mm
β = 107.09 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.008
3702 measured reflections3 standard reflections every 250 reflections
2691 independent reflections intensity decay: 0.9%
1323 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
2691 reflectionsΔρmin = 0.25 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15478 (7)0.60525 (16)0.42320 (6)0.0631 (4)
O10.15724 (19)0.8419 (4)0.42806 (17)0.0942 (11)
O20.10478 (16)0.4829 (4)0.46844 (17)0.0782 (8)
O30.24614 (15)0.5294 (4)0.46482 (16)0.0705 (8)
O40.4357 (2)0.1520 (5)0.8999 (2)0.1010 (11)
H40.46450.16230.95450.151*
O50.46270 (19)0.2062 (5)0.92678 (18)0.0973 (11)
C10.0928 (2)0.3172 (6)0.2785 (2)0.0558 (10)
H10.08550.21670.32310.067*
C20.0687 (2)0.2625 (7)0.1846 (3)0.0694 (12)
H20.04570.12270.16540.083*
C30.0785 (3)0.4130 (9)0.1199 (3)0.0786 (14)
H30.06150.37520.05670.094*
C40.1127 (3)0.6184 (9)0.1467 (3)0.0807 (13)
H4A0.11840.72020.10170.097*
C50.1386 (2)0.6739 (6)0.2393 (2)0.0636 (11)
H50.16320.81220.25790.076*
C60.12814 (18)0.5243 (5)0.3051 (2)0.0434 (9)
C70.2647 (2)0.2958 (6)0.4899 (2)0.0634 (11)
H7A0.28770.22570.44470.076*
H7B0.21470.21680.48850.076*
C80.3248 (2)0.2787 (6)0.5868 (2)0.0543 (10)
H80.37400.36320.58700.065*
C90.2910 (2)0.3764 (6)0.6619 (2)0.0560 (10)
H9A0.23900.30560.65790.067*
H9B0.28120.53560.65040.067*
C100.3488 (2)0.3433 (6)0.7602 (2)0.0595 (11)
H10A0.39850.42870.76690.071*
H10B0.32320.39910.80580.071*
C110.3702 (2)0.0971 (6)0.7794 (2)0.0540 (10)
H110.31930.01650.77530.065*
C120.4053 (2)0.0003 (6)0.7056 (2)0.0685 (12)
H12A0.41470.15970.71690.082*
H12B0.45770.06990.71090.082*
C130.3484 (2)0.0350 (6)0.6063 (2)0.0688 (12)
H13A0.37540.01710.56140.083*
H13B0.29930.05400.59810.083*
C140.4275 (2)0.0573 (7)0.8757 (3)0.0637 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0904 (8)0.0477 (6)0.0373 (5)0.0035 (6)0.0028 (5)0.0010 (5)
O10.152 (3)0.0478 (16)0.0584 (17)0.0040 (17)0.0069 (17)0.0068 (14)
O20.103 (2)0.0828 (19)0.0552 (16)0.0009 (16)0.0327 (15)0.0129 (15)
O30.0844 (18)0.0586 (15)0.0488 (15)0.0147 (13)0.0111 (13)0.0161 (12)
O40.129 (3)0.0696 (19)0.0663 (19)0.0009 (17)0.0307 (17)0.0240 (15)
O50.125 (3)0.0689 (18)0.0601 (18)0.0064 (17)0.0309 (17)0.0143 (15)
C10.060 (2)0.053 (2)0.049 (2)0.0035 (18)0.0074 (18)0.0019 (18)
C20.062 (2)0.065 (3)0.065 (3)0.005 (2)0.006 (2)0.022 (2)
C30.086 (3)0.104 (4)0.034 (2)0.034 (3)0.001 (2)0.006 (3)
C40.105 (3)0.091 (3)0.046 (2)0.020 (3)0.023 (2)0.023 (3)
C50.077 (3)0.058 (2)0.051 (2)0.004 (2)0.012 (2)0.014 (2)
C60.049 (2)0.0432 (19)0.0327 (18)0.0033 (16)0.0031 (15)0.0025 (15)
C70.078 (3)0.055 (2)0.046 (2)0.006 (2)0.0014 (19)0.0017 (19)
C80.057 (2)0.053 (2)0.044 (2)0.0011 (17)0.0010 (18)0.0034 (18)
C90.060 (2)0.054 (2)0.046 (2)0.0115 (18)0.0023 (17)0.0113 (19)
C100.068 (2)0.064 (2)0.0378 (19)0.010 (2)0.0006 (17)0.0036 (18)
C110.051 (2)0.057 (2)0.045 (2)0.0009 (18)0.0007 (17)0.0120 (19)
C120.072 (2)0.063 (2)0.058 (2)0.017 (2)0.000 (2)0.009 (2)
C130.078 (3)0.067 (3)0.048 (2)0.020 (2)0.003 (2)0.0003 (18)
C140.060 (2)0.066 (3)0.056 (2)0.004 (2)0.0020 (19)0.020 (2)
Geometric parameters (Å, º) top
S1—O11.412 (3)C7—H7A0.9700
S1—O21.434 (3)C7—H7B0.9700
S1—O31.568 (3)C8—C131.513 (5)
S1—C61.754 (3)C8—C91.521 (5)
O3—C71.453 (4)C8—H80.9800
O4—C141.295 (4)C9—C101.521 (4)
O4—H40.8200C9—H9A0.9700
O5—C141.209 (4)C9—H9B0.9700
C1—C21.378 (5)C10—C111.519 (4)
C1—C61.380 (4)C10—H10A0.9700
C1—H10.9300C10—H10B0.9700
C2—C31.364 (6)C11—C141.501 (4)
C2—H20.9300C11—C121.516 (5)
C3—C41.365 (6)C11—H110.9800
C3—H30.9300C12—C131.529 (4)
C4—C51.362 (5)C12—H12A0.9700
C4—H4A0.9300C12—H12B0.9700
C5—C61.376 (4)C13—H13A0.9700
C5—H50.9300C13—H13B0.9700
C7—C81.510 (4)
O1—S1—O2119.8 (2)C13—C8—H8108.2
O1—S1—O3104.85 (16)C9—C8—H8108.2
O2—S1—O3109.22 (15)C8—C9—C10112.4 (3)
O1—S1—C6108.74 (16)C8—C9—H9A109.1
O2—S1—C6108.57 (16)C10—C9—H9A109.1
O3—S1—C6104.66 (16)C8—C9—H9B109.1
C7—O3—S1119.6 (2)C10—C9—H9B109.1
C14—O4—H4109.5H9A—C9—H9B107.9
C2—C1—C6118.6 (4)C11—C10—C9111.1 (3)
C2—C1—H1120.7C11—C10—H10A109.4
C6—C1—H1120.7C9—C10—H10A109.4
C3—C2—C1120.1 (4)C11—C10—H10B109.4
C3—C2—H2119.9C9—C10—H10B109.4
C1—C2—H2119.9H10A—C10—H10B108.0
C2—C3—C4120.9 (4)C14—C11—C12110.4 (3)
C2—C3—H3119.5C14—C11—C10112.7 (3)
C4—C3—H3119.5C12—C11—C10110.9 (3)
C5—C4—C3119.9 (4)C14—C11—H11107.5
C5—C4—H4A120.1C12—C11—H11107.5
C3—C4—H4A120.1C10—C11—H11107.5
C4—C5—C6119.6 (4)C11—C12—C13112.1 (3)
C4—C5—H5120.2C11—C12—H12A109.2
C6—C5—H5120.2C13—C12—H12A109.2
C5—C6—C1120.8 (3)C11—C12—H12B109.2
C5—C6—S1119.3 (3)C13—C12—H12B109.2
C1—C6—S1119.8 (3)H12A—C12—H12B107.9
O3—C7—C8110.3 (3)C8—C13—C12112.1 (3)
O3—C7—H7A109.6C8—C13—H13A109.2
C8—C7—H7A109.6C12—C13—H13A109.2
O3—C7—H7B109.6C8—C13—H13B109.2
C8—C7—H7B109.6C12—C13—H13B109.2
H7A—C7—H7B108.1H13A—C13—H13B107.9
C7—C8—C13108.5 (3)O5—C14—O4122.6 (3)
C7—C8—C9112.4 (3)O5—C14—C11123.5 (3)
C13—C8—C9111.3 (3)O4—C14—C11113.9 (3)
C7—C8—H8108.2
O1—S1—O3—C7166.4 (3)S1—O3—C7—C8132.0 (3)
O2—S1—O3—C736.9 (3)O3—C7—C8—C13174.7 (3)
C6—S1—O3—C779.2 (3)O3—C7—C8—C961.8 (4)
C6—C1—C2—C31.2 (5)C7—C8—C9—C10175.6 (3)
C1—C2—C3—C40.6 (6)C13—C8—C9—C1053.7 (4)
C2—C3—C4—C50.8 (6)C8—C9—C10—C1155.3 (4)
C3—C4—C5—C61.6 (6)C9—C10—C11—C14179.8 (3)
C4—C5—C6—C11.0 (5)C9—C10—C11—C1255.4 (4)
C4—C5—C6—S1175.4 (3)C14—C11—C12—C13179.5 (3)
C2—C1—C6—C50.4 (5)C10—C11—C12—C1354.7 (4)
C2—C1—C6—S1176.7 (3)C7—C8—C13—C12176.5 (3)
O1—S1—C6—C520.1 (3)C9—C8—C13—C1252.4 (4)
O2—S1—C6—C5151.9 (3)C11—C12—C13—C853.6 (5)
O3—S1—C6—C591.5 (3)C12—C11—C14—O5113.9 (5)
O1—S1—C6—C1156.3 (3)C10—C11—C14—O510.8 (6)
O2—S1—C6—C124.4 (3)C12—C11—C14—O466.6 (5)
O3—S1—C6—C192.1 (3)C10—C11—C14—O4168.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.821.862.677 (3)174
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC14H18O5S
Mr298.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)17.097 (5), 5.960 (3), 14.919 (4)
β (°) 107.09 (3)
V3)1453.2 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.32 × 0.32 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3702, 2691, 1323
Rint0.008
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.143, 1.00
No. of reflections2691
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.821.862.677 (3)173.7
Symmetry code: (i) x+1, y, z+2.
 

References

First citationAhmed, S. M., Budd, P. M., McKeown, N. B., Evans, K. P., Beaumont, G. L., Donaldson, C. & Brennan, C. M. (2001). Polymer, 42, 889–896.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.  Google Scholar
First citationGrabchev, I., Chovelon, J. M., Bojinov, V. & Ivanova, G. (2003). Tetrahedron, 59, 9591–9598.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, B.-B., Zhang, X., Jia, X.-R., Luo, Y.-F., Sun, Z., Yang, L., Ji, Y. & Wei, Y. (2004). Polymer, 45, 8395–8402.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds