organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R)-Ethyl 2-(5-bromo-2,3-dioxoindolin-1-yl)propanoate

aDepartment of Chemistry, Moscow State University, 119991 Moscow, Russian Federation
*Correspondence e-mail: kurkin@direction.chem.msu.ru

(Received 10 June 2008; accepted 3 July 2008; online 9 July 2008)

The title compound, C13H12BrNO4, was obtained from an optically active aniline derivative. The structure was characterized by 1H NMR, 13C NMR, MS and X-ray diffraction techniques. 86% of the atoms of the two independent mol­ecules in the asymmetric unit show non-crystallographic inversion symmetry.

Related literature

For related structures, see: Akkurt et al. (2006[Akkurt, M., Türktekin, S., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1575-o1577.]); Miehe et al. (1991[Miehe, G., Susse, P., Kupcik, V., Egert, E., Nieger, M., Kunz, G., Gerke, R., Knieriem, B., Niemeyer, M. & Luttke, W. (1991). Angew. Chem. Int. Ed. Engl. 30, 964-967.]); Robeyns et al. (2007[Robeyns, K., Rohand, T., Bouhfid, R., Essassi, E. L. M. & Van Meervelt, L. (2007). Acta Cryst. E63, o1747-o1748.]). For general background, see: Sandmeyer (1919[Sandmeyer, T. (1919). Helv. Chim. Acta, 2, 234-242.]); Silva et al. (2001[Silva, J. F., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]); Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12BrNO4

  • Mr = 326.14

  • Monoclinic, P 21

  • a = 9.7390 (13) Å

  • b = 14.355 (2) Å

  • c = 9.8361 (10) Å

  • β = 95.779 (9)°

  • V = 1368.1 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.20 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.385, Tmax = 0.432

  • 6047 measured reflections

  • 5502 independent reflections

  • 3935 reflections with I > 2σ(I)

  • Rint = 0.020

  • 1 standard reflection frequency: 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.140

  • S = 1.02

  • 5502 reflections

  • 348 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2566 Friedel pairs

  • Flack parameter: −0.06 (3)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nowadays, much attention has been focused on isatin derivatives for their broad–spectrum biological and pharmacological activities, such as antibacterial, antiprotozoal, antifungal, antiviral, anti–HIV, anticonvulsant, antihelminthic activities, influence CNS, participate in metabolism and stimulate growth of plants (Silva et al., 2001). There is a modern tendency to use pure enantiomers of heterocyclic compounds instead of their racemic mixtures, for example, as starting materials in preparation of pharmaceuticals. It is true for the derivatives of isatin. In this paper, we report the synthesis and crystal structure of the ethyl (2R)–2–(5–bromisatin–1–yl)propanoate.

The asymmetric unit of the title compound has two independent molecules (hereafter called A and B), which depicted in Fig. 1. The ADDSYM test by PLATON (Spek, 2003), shown a noncrystallographic inversion.

In the principle, the geometric parameters of heterobicycle are closely agree with ones in molecular structures of ethyl 2–(2,3–dioxoindolin–1–yl)acetate (Robeyns et al., 2007), N–benzylindole–2,3–dion (N–benzylisatin) (Akkurt et al., 2006) and 1–methyl–1H–indole–2,3–dione (Miehe et al., 1991).

The short interatomic contacts O12a···C3b = 3.01Å and O12b···C3a = 2.98Å were found in the crystal structure.

Related literature top

For related structures, see: Akkurt et al. (2006); Miehe et al. (1991); Robeyns et al. (2007). For general background, see: Sandmeyer (1919); Silva et al. (2001); Spek (2003).

Experimental top

We have synthesized ethyl (2R)–2–(5–bromisatin–1–yl)propanoate from optically active aniline by Sandmeyer method (Sandmeyer, 1919) (Fig. 2). A mixture of solutions of chloralhydrate (0.003 mol) in water (5.1 ml), a solution of ethyl (R)–N–(4–bromophenylamino)propanoate (0.0018 mol) in water (1.23 ml) with concentrated hydrochloric acid (0.26 g), a solution of hydroxylamine hydrochloride (0.0061 mol) in water (1.03 ml) and Na2SO4 (0.42 g), was stirred at reflux for 1–2 min. In addition we have used ethanol as a solvent to increase aniline solubility. The reaction mixture was cooled to r.t., extracted with CH2Cl2 and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure to afford isonitroso–substance as brown oil (83%). The isonitroso–substance (0.0015 mol) was added to concentrate sulfuric acid (1.46 g) at 323 K so that the temperature of the reaction mixture did not exceed 343 K. The reaction mixture was stirred at 353 K for 10–15 min. The resulting mixture was cooled to r. t., diluted with cold water, extracted with CH2Cl2 and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (eluent - ethylacetate/petroleum ether: 10/1) to afford ethyl (2R)–2–(5–bromisatin–1–yl)propanoate (60%) as a red solid, its enantiomeric purity determinates by HPLC with chiral stationary phase achieved 97% ee. M.p. 404–405 K.

The 1H NMR (CDCl3), δ, p.p.m., J (Hz): 1.15 (t, J=7.0, 3H, —CH2—CH3), 1.53 (d, J=7.1, 3H, —CH—CH3), 4.08–4.21 (m, 2H, —CH2—CH3), 5.15 (q, J=7.1, 1H, —CH—CH3), 7.12 (d, J=8.5, 1H, 7–H), 7.77 (s, 1H, 4–H), 7.85 (d, J=8.1, 1H, 6–H). 13C NMR (DMSO–d6), δ, p.p.m.: 14.19 (CH3), 14.42 (CH3), 49.55 (CH), 61.89 (CH2), 113.94 (CH), 115.71 (C), 119.92 (C), 127.52 (CH), 140.41 (CH), 148.95 (C), 157.70 (C?O), 169.73 (C?O), 181.87 (C?O). Mass–spectr., m/z (I, %): 224 [M+—CH3CHCO2Et], (10), 145 (2), 117 (8), 91 (36), 41 (39).

Refinement top

In the compound I hydrogen atoms bonded to C–atoms were included in calculated positions and refined as riding atoms. Calculated C—H bond lengths are in the range of 0.93–0.97 Å. For methyl H–atoms Uiso values were set equal to 1.5Ueq of the carrier atoms, for other H–atoms Uiso values were set to 1.2Ueq of the carrier atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP–3 (Farrugia, 1997) plot of the molecules (A and B) of compound I with the numbering scheme. Thermal displacement ellipsoids are shown at the 30% probability level. H atoms are drawn as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Sinthesis of ethyl (2R)–2–(5–bromisatin–1–yl)propanoate, I.
(2R)-Ethyl 2-(5-bromo-2,3-dioxoindolin-1-yl)propanoate top
Crystal data top
C13H12BrNO4F(000) = 656
Mr = 326.14Dx = 1.583 Mg m3
Monoclinic, P21Melting point: 404.5 K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54184 Å
a = 9.7390 (13) ÅCell parameters from 25 reflections
b = 14.355 (2) Åθ = 32.2–34.4°
c = 9.8361 (10) ŵ = 4.20 mm1
β = 95.779 (9)°T = 293 K
V = 1368.1 (3) Å3Prism, red
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3935 reflections with I > 2σ(I)
Radiation source: Fine–focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 74.9°, θmin = 4.5°
Non–profiled ω scansh = 1212
Absorption correction: ψ scan
(North et al., 1968)
k = 1717
Tmin = 0.385, Tmax = 0.432l = 1212
6047 measured reflections1 standard reflections every 60 min
5502 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.5869P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.140(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.45 e Å3
5502 reflectionsΔρmin = 0.38 e Å3
348 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0039 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.06 (3)
Crystal data top
C13H12BrNO4V = 1368.1 (3) Å3
Mr = 326.14Z = 4
Monoclinic, P21Cu Kα radiation
a = 9.7390 (13) ŵ = 4.20 mm1
b = 14.355 (2) ÅT = 293 K
c = 9.8361 (10) Å0.20 × 0.20 × 0.20 mm
β = 95.779 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3935 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.385, Tmax = 0.4321 standard reflections every 60 min
6047 measured reflections intensity decay: 2%
5502 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.140Δρmax = 0.45 e Å3
S = 1.02Δρmin = 0.38 e Å3
5502 reflectionsAbsolute structure: Flack (1983)
348 parametersAbsolute structure parameter: 0.06 (3)
1 restraint
Special details top

Experimental. Number of ψ–scan sets used was 8. The θ correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1a0.0320 (4)0.0742 (3)0.5522 (4)0.0519 (9)
C2a0.0599 (5)0.0181 (3)0.5310 (6)0.0558 (11)
O21a0.1299 (4)0.0683 (3)0.6073 (5)0.0748 (11)
C3a0.0156 (6)0.0421 (3)0.3892 (6)0.0599 (13)
O31a0.0148 (5)0.1195 (2)0.3406 (5)0.0838 (13)
C4a0.0793 (5)0.0440 (3)0.3390 (5)0.0536 (12)
C5a0.1571 (6)0.0641 (4)0.2187 (6)0.0655 (14)
H5a0.17500.01880.15170.079*
C6a0.2075 (6)0.1520 (4)0.1997 (6)0.0683 (15)
Br6a0.31241 (9)0.18369 (7)0.03306 (8)0.1113 (3)
C7a0.1789 (6)0.2207 (4)0.2980 (6)0.0603 (13)
H7a0.21410.28040.28220.072*
C8a0.1000 (5)0.2019 (3)0.4175 (5)0.0542 (12)
H8a0.07990.24820.48270.065*
C9a0.0506 (5)0.1117 (3)0.4392 (5)0.0468 (10)
C10a0.0842 (5)0.1204 (3)0.6760 (5)0.0524 (11)
H10a0.13150.07240.73410.063*
C11a0.0284 (6)0.1595 (4)0.7571 (5)0.0663 (15)
H11a0.07260.21120.70850.099*
H11b0.01190.18010.84500.099*
H11c0.09540.11190.76870.099*
C12a0.1957 (5)0.1904 (4)0.6456 (5)0.0539 (11)
O12a0.2353 (4)0.2019 (3)0.5372 (4)0.0787 (12)
O13a0.2439 (4)0.2352 (3)0.7588 (4)0.0654 (10)
C14a0.3501 (6)0.3044 (5)0.7423 (6)0.0764 (17)
H14a0.43080.27490.71110.092*
H14b0.31600.35060.67530.092*
C15A0.3859 (7)0.3487 (5)0.8757 (7)0.089 (2)
H15A0.30520.37720.90600.133*
H15B0.45520.39540.86750.133*
H15C0.42080.30260.94080.133*
N1b0.5010 (4)0.5226 (3)0.4543 (4)0.0580 (10)
C2b0.4556 (6)0.6130 (4)0.4568 (7)0.0662 (15)
O21b0.3847 (5)0.6536 (3)0.3690 (6)0.0947 (15)
C3b0.5115 (6)0.6509 (4)0.5989 (7)0.0671 (15)
O31b0.4928 (5)0.7288 (3)0.6363 (6)0.0896 (15)
C4b0.5872 (5)0.5728 (4)0.6681 (5)0.0567 (12)
C5b0.6581 (6)0.5656 (5)0.7945 (6)0.0692 (15)
H5b0.66390.61550.85510.083*
C6b0.7207 (5)0.4817 (5)0.8295 (5)0.0689 (14)
Br6b0.82477 (10)0.46814 (8)1.00249 (8)0.1231 (4)
C7b0.7096 (6)0.4070 (4)0.7425 (6)0.0671 (14)
H7b0.75170.35100.77010.080*
C8b0.6371 (5)0.4131 (4)0.6151 (5)0.0553 (12)
H8b0.62950.36230.55600.066*
C9b0.5761 (5)0.4980 (3)0.5786 (5)0.0459 (10)
C10b0.4649 (5)0.4574 (4)0.3427 (5)0.0596 (12)
H10b0.51580.39990.36650.072*
C11b0.5102 (7)0.4896 (7)0.2087 (7)0.106 (3)
H11d0.45380.54110.17470.159*
H11e0.50080.43940.14400.159*
H11f0.60500.50900.22190.159*
C12b0.3120 (5)0.4334 (4)0.3396 (5)0.0559 (12)
O12b0.2423 (4)0.4511 (3)0.4281 (4)0.0780 (11)
O13b0.2720 (4)0.3850 (3)0.2285 (4)0.0750 (11)
C14b0.1338 (7)0.3446 (7)0.2229 (9)0.105 (3)
H14c0.12500.30890.30540.126*
H14d0.06540.39400.21780.126*
C15b0.1098 (8)0.2856 (6)0.1066 (9)0.114 (3)
H15d0.13090.31880.02650.171*
H15e0.01470.26680.09590.171*
H15f0.16760.23150.11890.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1a0.059 (2)0.0364 (19)0.059 (2)0.0009 (17)0.0007 (18)0.0023 (17)
C2a0.052 (3)0.038 (2)0.079 (3)0.001 (2)0.015 (2)0.002 (2)
O21a0.074 (2)0.045 (2)0.104 (3)0.0080 (18)0.006 (2)0.008 (2)
C3a0.065 (3)0.041 (3)0.075 (3)0.006 (2)0.016 (3)0.012 (3)
O31a0.094 (3)0.0413 (19)0.116 (4)0.0057 (19)0.011 (3)0.027 (2)
C4a0.062 (3)0.040 (3)0.059 (3)0.008 (2)0.008 (2)0.008 (2)
C5a0.076 (4)0.056 (3)0.064 (3)0.021 (3)0.003 (3)0.009 (3)
C6a0.065 (3)0.073 (4)0.065 (3)0.015 (3)0.003 (3)0.000 (3)
Br6A0.1135 (6)0.1265 (7)0.0846 (5)0.0145 (5)0.0355 (4)0.0150 (5)
C7a0.059 (3)0.048 (3)0.074 (3)0.002 (2)0.005 (3)0.008 (2)
C8a0.059 (3)0.035 (2)0.067 (3)0.004 (2)0.002 (2)0.004 (2)
C9a0.047 (2)0.040 (2)0.053 (2)0.0066 (19)0.005 (2)0.005 (2)
C10a0.059 (3)0.042 (2)0.054 (3)0.003 (2)0.000 (2)0.006 (2)
C11a0.069 (3)0.075 (4)0.057 (3)0.014 (3)0.017 (3)0.006 (3)
C12a0.048 (2)0.053 (3)0.062 (3)0.002 (2)0.009 (2)0.003 (3)
O12a0.074 (2)0.100 (3)0.066 (2)0.025 (2)0.0229 (19)0.011 (2)
O13a0.062 (2)0.073 (2)0.061 (2)0.0174 (18)0.0030 (17)0.0111 (18)
C14a0.061 (3)0.091 (4)0.078 (4)0.031 (3)0.013 (3)0.021 (3)
C15a0.071 (4)0.102 (5)0.092 (5)0.023 (4)0.006 (3)0.029 (4)
N1b0.058 (2)0.051 (2)0.063 (3)0.000 (2)0.003 (2)0.0029 (19)
C2b0.055 (3)0.050 (3)0.093 (4)0.003 (2)0.004 (3)0.010 (3)
O21b0.077 (3)0.078 (3)0.125 (4)0.009 (2)0.011 (3)0.035 (3)
C3b0.057 (3)0.048 (3)0.099 (4)0.006 (2)0.018 (3)0.002 (3)
O31b0.085 (3)0.044 (2)0.142 (4)0.002 (2)0.022 (3)0.016 (2)
C4b0.054 (3)0.051 (3)0.066 (3)0.007 (2)0.009 (2)0.012 (2)
C5b0.060 (3)0.076 (4)0.071 (3)0.011 (3)0.003 (3)0.027 (3)
C6b0.056 (3)0.093 (4)0.057 (3)0.004 (3)0.001 (2)0.006 (3)
Br6b0.1132 (6)0.1801 (10)0.0686 (4)0.0217 (6)0.0264 (4)0.0147 (6)
C7b0.058 (3)0.077 (4)0.066 (3)0.010 (3)0.005 (3)0.003 (3)
C8b0.056 (3)0.055 (3)0.055 (3)0.000 (2)0.005 (2)0.003 (2)
C9b0.042 (2)0.045 (2)0.051 (2)0.0056 (19)0.0017 (18)0.0036 (19)
C10b0.052 (3)0.071 (3)0.054 (2)0.002 (3)0.003 (2)0.006 (3)
C11b0.088 (5)0.164 (8)0.069 (4)0.043 (5)0.022 (3)0.027 (5)
C12b0.058 (3)0.059 (3)0.051 (3)0.000 (2)0.003 (2)0.001 (2)
O12b0.072 (2)0.084 (3)0.082 (3)0.013 (2)0.027 (2)0.018 (2)
O13b0.054 (2)0.099 (3)0.072 (2)0.013 (2)0.0042 (18)0.018 (2)
C14b0.061 (4)0.143 (7)0.112 (6)0.028 (4)0.016 (4)0.037 (5)
C15b0.086 (5)0.117 (6)0.140 (7)0.035 (5)0.017 (5)0.049 (6)
Geometric parameters (Å, º) top
N1a—C2a1.372 (6)N1b—C2b1.373 (7)
N1a—C9a1.412 (6)N1b—C9b1.405 (6)
N1a—C10a1.434 (6)N1b—C10b1.457 (6)
C2a—O21a1.202 (6)C2b—O21b1.201 (7)
C2a—C3a1.548 (7)C2b—C3b1.547 (9)
C3a—O31a1.209 (6)C3b—O31b1.197 (6)
C3a—C4a1.447 (7)C3b—C4b1.471 (8)
C4a—C5a1.370 (7)C4b—C5b1.364 (8)
C4a—C9a1.392 (6)C4b—C9b1.386 (7)
C5a—C6a1.361 (8)C5b—C6b1.378 (9)
C5a—H5a0.9300C5b—H5b0.9300
C6a—C7a1.390 (8)C6b—C7b1.369 (8)
C6a—Br6a1.897 (6)C6b—Br6b1.901 (5)
C7a—C8a1.365 (7)C7b—C8b1.378 (7)
C7a—H7a0.9300C7b—H7b0.9300
C8a—C9a1.391 (7)C8b—C9b1.388 (7)
C8a—H8a0.9300C8b—H8b0.9300
C10a—C11a1.526 (7)C10b—C11b1.504 (8)
C10a—C12a1.531 (7)C10b—C12b1.526 (7)
C10a—H10a0.9800C10b—H10b0.9800
C11a—H11a0.9600C11b—H11d0.9600
C11a—H11b0.9600C11b—H11e0.9600
C11a—H11c0.9600C11b—H11f0.9600
C12a—O12a1.182 (6)C12b—O12b1.185 (6)
C12a—O13a1.329 (6)C12b—O13b1.321 (6)
O13a—C14a1.455 (6)O13b—C14b1.462 (7)
C14a—C15a1.469 (8)C14b—C15b1.424 (10)
C14a—H14a0.9700C14b—H14c0.9700
C14a—H14b0.9700C14b—H14d0.9700
C15a—H15a0.9600C15b—H15d0.9600
C15a—H15b0.9600C15b—H15e0.9600
C15a—H15c0.9600C15b—H15f0.9600
C2a—N1a—C9a110.7 (4)C2b—N1b—C9b111.2 (4)
C2a—N1a—C10a121.2 (4)C2b—N1b—C10b124.5 (5)
C9a—N1a—C10a128.1 (4)C9b—N1b—C10b124.0 (4)
O21a—C2a—N1a126.3 (5)O21b—C2b—N1b127.5 (6)
O21a—C2a—C3a128.1 (5)O21b—C2b—C3b127.1 (6)
N1a—C2a—C3a105.6 (4)N1b—C2b—C3b105.3 (5)
O31a—C3a—C4a132.0 (5)O31b—C3b—C4b130.9 (7)
O31a—C3a—C2a122.6 (5)O31b—C3b—C2b123.8 (6)
C4a—C3a—C2a105.4 (4)C4b—C3b—C2b105.3 (5)
C5a—C4a—C9a121.2 (5)C5b—C4b—C9b121.4 (5)
C5a—C4a—C3a131.0 (5)C5b—C4b—C3b131.6 (5)
C9a—C4a—C3a107.8 (4)C9b—C4b—C3b107.0 (5)
C4a—C5a—C6a118.4 (5)C4b—C5b—C6b117.7 (5)
C4a—C5a—H5a120.8C4b—C5b—H5b121.2
C6a—C5a—H5a120.8C6b—C5b—H5b121.2
C5a—C6a—C7a121.2 (5)C5b—C6b—C7b121.6 (5)
C5a—C6a—Br6a119.8 (4)C5b—C6b—Br6b119.7 (5)
C7a—C6a—Br6a118.9 (4)C7b—C6b—Br6b118.7 (5)
C8a—C7a—C6a121.0 (5)C8b—C7b—C6b121.3 (6)
C8a—C7a—H7a119.5C8b—C7b—H7b119.3
C6a—C7a—H7a119.5C6b—C7b—H7b119.3
C7a—C8a—C9a118.2 (4)C7b—C8b—C9b117.2 (5)
C7a—C8a—H8a120.9C7b—C8b—H8b121.4
C9a—C8a—H8a120.9C9b—C8b—H8b121.4
C8a—C9a—C4a120.0 (4)C8b—C9b—C4b120.8 (4)
C8a—C9a—N1a129.6 (4)C8b—C9b—N1b128.1 (4)
C4a—C9a—N1a110.4 (4)C4b—C9b—N1b111.1 (4)
N1a—C10a—C11a113.7 (4)N1b—C10b—C11b113.1 (5)
N1a—C10a—C12a109.6 (4)N1b—C10b—C12b108.7 (4)
C11a—C10a—C12a115.0 (4)C11b—C10b—C12b115.1 (5)
N1a—C10a—H10a105.9N1b—C10b—H10b106.4
C11a—C10a—H10a105.9C11b—C10b—H10b106.4
C12a—C10a—H10a105.9C12b—C10b—H10b106.4
C10a—C11a—H11a109.5C10b—C11b—H11d109.5
C10a—C11a—H11b109.5C10b—C11b—H11e109.5
H11a—C11a—H11b109.5H11d—C11b—H11e109.5
C10a—C11a—H11c109.5C10b—C11b—H11f109.5
H11a—C11a—H11c109.5H11d—C11b—H11f109.5
H11b—C11a—H11c109.5H11e—C11b—H11f109.5
O12a—C12a—O13a124.6 (5)O12b—C12b—O13b125.3 (5)
O12a—C12a—C10a124.8 (5)O12b—C12b—C10b124.6 (5)
O13a—C12a—C10a110.6 (4)O13b—C12b—C10b110.0 (5)
C12a—O13a—C14a115.6 (4)C12b—O13b—C14b115.7 (5)
C15a—C14a—O13a107.7 (5)C15b—C14b—O13b110.0 (6)
C15a—C14a—H14a110.2C15b—C14b—H14c109.7
O13a—C14a—H14a110.2O13b—C14b—H14c109.7
C15a—C14a—H14b110.2C15b—C14b—H14d109.7
O13a—C14a—H14b110.2O13b—C14b—H14d109.7
H14a—C14a—H14b108.5H14c—C14b—H14d108.2
C14a—C15a—H15a109.5C14b—C15b—H15d109.5
C14a—C15a—H15b109.5C14b—C15b—H15e109.5
H15a—C15a—H15b109.5H15d—C15b—H15e109.5
C14a—C15a—H15c109.5C14b—C15b—H15f109.5
H15a—C15a—H15c109.5H15d—C15b—H15f109.5
H15b—C15a—H15c109.5H15e—C15b—H15f109.5
C9a—N1a—C2a—O21a178.3 (5)C9b—N1b—C2b—O21b176.9 (6)
C10a—N1a—C2a—O21a1.7 (8)C10b—N1b—C2b—O21b2.6 (9)
C9a—N1a—C2a—C3a0.9 (5)C9b—N1b—C2b—C3b1.4 (6)
C10a—N1a—C2a—C3a179.0 (4)C10b—N1b—C2b—C3b175.7 (4)
O21a—C2a—C3a—O31a2.6 (9)O21b—C2b—C3b—O31b2.5 (10)
N1a—C2a—C3a—O31a178.2 (5)N1b—C2b—C3b—O31b179.2 (6)
O21a—C2a—C3a—C4a177.6 (5)O21b—C2b—C3b—C4b177.8 (6)
N1a—C2a—C3a—C4a1.7 (5)N1b—C2b—C3b—C4b0.5 (6)
O31a—C3a—C4a—C5a1.2 (11)O31b—C3b—C4b—C5b0.0 (11)
C2a—C3a—C4a—C5a179.0 (6)C2b—C3b—C4b—C5b179.7 (6)
O31a—C3a—C4a—C9a178.0 (6)O31b—C3b—C4b—C9b179.8 (6)
C2a—C3a—C4a—C9a1.8 (6)C2b—C3b—C4b—C9b0.5 (6)
C9a—C4a—C5a—C6a0.7 (8)C9b—C4b—C5b—C6b1.3 (9)
C3a—C4a—C5a—C6a178.4 (6)C3b—C4b—C5b—C6b179.0 (6)
C4a—C5a—C6a—C7a1.3 (9)C4b—C5b—C6b—C7b1.9 (9)
C4a—C5a—C6a—Br6a178.7 (4)C4b—C5b—C6b—Br6b178.5 (4)
C5a—C6a—C7a—C8a0.5 (9)C5b—C6b—C7b—C8b1.3 (9)
Br6a—C6a—C7a—C8a177.8 (4)Br6b—C6b—C7b—C8b179.1 (4)
C6a—C7a—C8a—C9a1.0 (8)C6b—C7b—C8b—C9b0.0 (8)
C7a—C8a—C9a—C4a1.5 (7)C7b—C8b—C9b—C4b0.6 (8)
C7a—C8a—C9a—N1a180.0 (5)C7b—C8b—C9b—N1b178.0 (5)
C5a—C4a—C9a—C8a0.7 (8)C5b—C4b—C9b—C8b0.1 (8)
C3a—C4a—C9a—C8a180.0 (5)C3b—C4b—C9b—C8b179.8 (5)
C5a—C4a—C9a—N1a179.4 (5)C5b—C4b—C9b—N1b178.8 (5)
C3a—C4a—C9a—N1a1.3 (6)C3b—C4b—C9b—N1b1.4 (6)
C2a—N1a—C9a—C8a178.8 (5)C2b—N1b—C9b—C8b179.5 (5)
C10a—N1a—C9a—C8a1.3 (8)C10b—N1b—C9b—C8b5.1 (8)
C2a—N1a—C9a—C4a0.2 (6)C2b—N1b—C9b—C4b1.8 (6)
C10a—N1a—C9a—C4a179.9 (5)C10b—N1b—C9b—C4b176.2 (5)
C2a—N1a—C10a—C11a119.8 (5)C2b—N1b—C10b—C11b60.4 (7)
C9a—N1a—C10a—C11a60.1 (6)C9b—N1b—C10b—C11b125.9 (6)
C2a—N1a—C10a—C12a109.9 (5)C2b—N1b—C10b—C12b68.7 (6)
C9a—N1a—C10a—C12a70.1 (6)C9b—N1b—C10b—C12b104.9 (5)
N1a—C10a—C12a—O12a2.3 (7)N1b—C10b—C12b—O12b12.8 (8)
C11a—C10a—C12a—O12a131.8 (6)C11b—C10b—C12b—O12b140.8 (7)
N1a—C10a—C12a—O13a179.0 (4)N1b—C10b—C12b—O13b171.3 (4)
C11A—C10a—C12a—O13a49.5 (6)C11b—C10b—C12b—O13b43.3 (7)
O12A—C12a—O13a—C14a1.8 (8)O12b—C12b—O13b—C14b5.3 (9)
C10A—C12a—O13a—C14a179.5 (5)C10b—C12b—O13b—C14b170.6 (6)
C12A—O13a—C14a—C15a177.7 (5)C12b—O13b—C14b—C15b173.2 (7)

Experimental details

Crystal data
Chemical formulaC13H12BrNO4
Mr326.14
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.7390 (13), 14.355 (2), 9.8361 (10)
β (°) 95.779 (9)
V3)1368.1 (3)
Z4
Radiation typeCu Kα
µ (mm1)4.20
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.385, 0.432
No. of measured, independent and
observed [I > 2σ(I)] reflections
6047, 5502, 3935
Rint0.020
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.140, 1.02
No. of reflections5502
No. of parameters348
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.38
Absolute structureFlack (1983)
Absolute structure parameter0.06 (3)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database.

References

First citationAkkurt, M., Türktekin, S., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1575–o1577.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMiehe, G., Susse, P., Kupcik, V., Egert, E., Nieger, M., Kunz, G., Gerke, R., Knieriem, B., Niemeyer, M. & Luttke, W. (1991). Angew. Chem. Int. Ed. Engl. 30, 964–967.  CSD CrossRef Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRobeyns, K., Rohand, T., Bouhfid, R., Essassi, E. L. M. & Van Meervelt, L. (2007). Acta Cryst. E63, o1747–o1748.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSandmeyer, T. (1919). Helv. Chim. Acta, 2, 234–242.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, J. F., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CrossRef Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds