organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(2,4-di­methyl­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 November 2007; accepted 23 November 2007; online 6 December 2007)

The conformation of the N—H bond in the structure of the title compound, C10H12ClNO, is syn to the ortho methyl group, similar to that observed with respect to the meta methyl group in 2-chloro-N-(3-methyl­phen­yl)acetamide and the ortho-chloro group in 2-chloro-N-(2-chloro­phen­yl)acetamide. The geometric parameters are similar to those of other acetanilides. The mol­ecules are linked into chains through inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o1975-o1976.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2335-o2336.],c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o3364.],d[Gowda, B. T., Foro, S. & Fuess, H. (2007d). Acta Cryst. E63, o2333-o2334.],e[Gowda, B. T., Foro, S. & Fuess, H. (2007e). Acta Cryst. E63, o4488.],f[Gowda, B. T., Foro, S. & Fuess, H. (2007f). Acta Cryst. E63, o4611.], 2008[Gowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008). Acta Cryst. E64. Submitted.]); Shilpa & Gowda (2007[Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84-90.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12ClNO

  • Mr = 197.66

  • Triclinic, [P \overline 1]

  • a = 4.7235 (7) Å

  • b = 10.407 (2) Å

  • c = 11.451 (2) Å

  • α = 67.07 (2)°

  • β = 86.84 (1)°

  • γ = 78.95 (2)°

  • V = 508.69 (15) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.00 mm−1

  • T = 299 (2) K

  • 0.60 × 0.06 × 0.04 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.803, Tmax = 0.895

  • 2059 measured reflections

  • 1817 independent reflections

  • 1394 reflections with I > 2σ(I)

  • Rint = 0.015

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.190

  • S = 1.09

  • 1817 reflections

  • 123 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (4) 2.04 (4) 2.853 (3) 165 (3)
Symmetry code: (i) x+1, y, z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of 2-chloro-N-(2,4-dimethylphenyl)- acetamide (24DMPCA) has been determined as part of a study of the effect of ring and side chain substitutions on the solid state geometry of aromatic amides (Gowda et al., 2007a, b, c, d, e). The conformation of the N—H bond in the structure of 24DMPCA is syn to the ortho methyl group (Fig. 1), similar to that observed with respect to the meta methyl group in the 2-chloro- N-(3-methylphenyl)acetamide (3MPCA)(Gowda et al., 2007e). and ortho chloro group in the 2-chloro-N-(2-chlorophenyl)- acetamide(2CPCA)(Gowda et al., 2007d). The geometric parameters in 24DMPCA are similar to those in 3MPCA (Gowda et al., 2007e), 2CPCA (Gowda et al., 2007d), 2-chloro-N-(4-methylphenyl)- acetamide (Gowda et al., 2007b), 2-chloro-N- (4-chlorophenyl)-acetamide (Gowda et al., 2007c) and other acetanilides (Gowda et al. , 2007a). The molecules in the structure are linked into chains through intermolecular N—H···O hydrogen bonding (Table 1 and Fig.2).

Related literature top

For related literature, see: Gowda et al. (2007a, 2007b, 2007c, 2007d, 2007e, 2007f), 2008); Shilpa & Gowda (2007).

Experimental top

The title compound was prepared according to the literature method (Shilpa and Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa and Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The CH atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. The NH atom was located in difference map and its coordinates were refined. Uiso(H) values were set equal to 1.2 Ueq(C,N) or 1.2 Ueq(Cmethyl).

Structure description top

In the present work, the structure of 2-chloro-N-(2,4-dimethylphenyl)- acetamide (24DMPCA) has been determined as part of a study of the effect of ring and side chain substitutions on the solid state geometry of aromatic amides (Gowda et al., 2007a, b, c, d, e). The conformation of the N—H bond in the structure of 24DMPCA is syn to the ortho methyl group (Fig. 1), similar to that observed with respect to the meta methyl group in the 2-chloro- N-(3-methylphenyl)acetamide (3MPCA)(Gowda et al., 2007e). and ortho chloro group in the 2-chloro-N-(2-chlorophenyl)- acetamide(2CPCA)(Gowda et al., 2007d). The geometric parameters in 24DMPCA are similar to those in 3MPCA (Gowda et al., 2007e), 2CPCA (Gowda et al., 2007d), 2-chloro-N-(4-methylphenyl)- acetamide (Gowda et al., 2007b), 2-chloro-N- (4-chlorophenyl)-acetamide (Gowda et al., 2007c) and other acetanilides (Gowda et al. , 2007a). The molecules in the structure are linked into chains through intermolecular N—H···O hydrogen bonding (Table 1 and Fig.2).

For related literature, see: Gowda et al. (2007a, 2007b, 2007c, 2007d, 2007e, 2007f), 2008); Shilpa & Gowda (2007).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
2-Chloro-N-(2,4-dimethylphenyl)acetamide top
Crystal data top
C10H12ClNOZ = 2
Mr = 197.66F(000) = 208
Triclinic, P1Dx = 1.290 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 4.7235 (7) ÅCell parameters from 25 reflections
b = 10.407 (2) Åθ = 4.2–26.4°
c = 11.451 (2) ŵ = 3.00 mm1
α = 67.07 (2)°T = 299 K
β = 86.84 (1)°Needle, colourless
γ = 78.95 (2)°0.60 × 0.06 × 0.04 mm
V = 508.69 (15) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1394 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 66.9°, θmin = 4.2°
ω/2θ scansh = 05
Absorption correction: ψ scan
North et al. (1968)
k = 1212
Tmin = 0.803, Tmax = 0.895l = 1313
2059 measured reflections3 standard reflections every 120 min
1817 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1035P)2 + 0.2646P]
where P = (Fo2 + 2Fc2)/3
1817 reflections(Δ/σ)max = 0.044
123 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C10H12ClNOγ = 78.95 (2)°
Mr = 197.66V = 508.69 (15) Å3
Triclinic, P1Z = 2
a = 4.7235 (7) ÅCu Kα radiation
b = 10.407 (2) ŵ = 3.00 mm1
c = 11.451 (2) ÅT = 299 K
α = 67.07 (2)°0.60 × 0.06 × 0.04 mm
β = 86.84 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1394 reflections with I > 2σ(I)
Absorption correction: ψ scan
North et al. (1968)
Rint = 0.015
Tmin = 0.803, Tmax = 0.8953 standard reflections every 120 min
2059 measured reflections intensity decay: 1.0%
1817 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.45 e Å3
1817 reflectionsΔρmin = 0.47 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.5208 (2)0.02640 (14)0.75189 (11)0.1062 (6)
O10.2611 (4)0.1946 (3)0.5165 (2)0.0695 (8)
N10.6642 (5)0.2847 (3)0.4451 (2)0.0411 (6)
H1N0.842 (8)0.271 (3)0.453 (3)0.049*
C10.5306 (5)0.4140 (3)0.3481 (3)0.0380 (6)
C20.6351 (5)0.4545 (3)0.2256 (3)0.0426 (7)
C30.5019 (7)0.5837 (3)0.1357 (3)0.0520 (8)
H30.57110.61300.05360.062*
C40.2697 (7)0.6709 (3)0.1634 (3)0.0539 (8)
C50.1706 (7)0.6261 (3)0.2857 (3)0.0536 (8)
H50.01420.68220.30620.064*
C60.2985 (6)0.5003 (3)0.3774 (3)0.0461 (7)
H60.23000.47240.45970.055*
C70.5218 (5)0.1865 (3)0.5227 (3)0.0449 (7)
C80.7104 (6)0.0592 (4)0.6200 (3)0.0590 (9)
H8A0.86810.09010.64620.071*
H8B0.79270.00720.58120.071*
C90.8830 (7)0.3623 (4)0.1907 (3)0.0569 (8)
H9A1.05650.35900.23250.085*
H9B0.90690.40110.10060.085*
H9C0.84350.26810.21680.085*
C100.1310 (10)0.8109 (4)0.0632 (4)0.0815 (12)
H10A0.27750.85600.01040.122*
H10B0.02870.87120.10320.122*
H10C0.00130.79440.01210.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0551 (6)0.1112 (9)0.0893 (8)0.0082 (5)0.0147 (5)0.0236 (6)
O10.0134 (9)0.0749 (15)0.0926 (17)0.0115 (9)0.0051 (10)0.0006 (13)
N10.0138 (9)0.0512 (13)0.0519 (13)0.0051 (9)0.0010 (9)0.0132 (11)
C10.0211 (12)0.0446 (15)0.0476 (15)0.0062 (10)0.0031 (10)0.0166 (12)
C20.0263 (13)0.0534 (17)0.0504 (15)0.0104 (11)0.0017 (11)0.0213 (13)
C30.0456 (17)0.0573 (18)0.0484 (16)0.0122 (14)0.0006 (13)0.0141 (14)
C40.0493 (18)0.0474 (17)0.0599 (18)0.0044 (13)0.0087 (14)0.0160 (14)
C50.0394 (16)0.0548 (18)0.0628 (19)0.0047 (13)0.0037 (13)0.0242 (15)
C60.0278 (13)0.0567 (17)0.0503 (16)0.0021 (12)0.0016 (11)0.0195 (13)
C70.0174 (12)0.0522 (16)0.0586 (17)0.0060 (11)0.0004 (11)0.0147 (13)
C80.0233 (13)0.0593 (19)0.073 (2)0.0076 (12)0.0009 (13)0.0021 (16)
C90.0369 (16)0.072 (2)0.0603 (18)0.0050 (14)0.0090 (14)0.0270 (16)
C100.087 (3)0.059 (2)0.075 (2)0.006 (2)0.009 (2)0.0087 (19)
Geometric parameters (Å, º) top
Cl1—C81.728 (3)C5—C61.371 (4)
O1—C71.223 (3)C5—H50.9300
N1—C71.333 (4)C6—H60.9300
N1—C11.425 (3)C7—C81.516 (4)
N1—H1N0.83 (4)C8—H8A0.9700
C1—C21.389 (4)C8—H8B0.9700
C1—C61.392 (4)C9—H9A0.9600
C2—C31.390 (4)C9—H9B0.9600
C2—C91.506 (4)C9—H9C0.9600
C3—C41.390 (5)C10—H10A0.9600
C3—H30.9300C10—H10B0.9600
C4—C51.378 (5)C10—H10C0.9600
C4—C101.511 (5)
C7—N1—C1124.3 (2)O1—C7—N1123.9 (3)
C7—N1—H1N119 (2)O1—C7—C8121.4 (3)
C1—N1—H1N117 (2)N1—C7—C8114.6 (2)
C2—C1—C6120.4 (3)C7—C8—Cl1112.3 (2)
C2—C1—N1120.0 (2)C7—C8—H8A109.1
C6—C1—N1119.6 (2)Cl1—C8—H8A109.1
C1—C2—C3117.6 (3)C7—C8—H8B109.1
C1—C2—C9121.6 (3)Cl1—C8—H8B109.1
C3—C2—C9120.9 (3)H8A—C8—H8B107.9
C4—C3—C2122.8 (3)C2—C9—H9A109.5
C4—C3—H3118.6C2—C9—H9B109.5
C2—C3—H3118.6H9A—C9—H9B109.5
C5—C4—C3117.8 (3)C2—C9—H9C109.5
C5—C4—C10120.9 (3)H9A—C9—H9C109.5
C3—C4—C10121.2 (3)H9B—C9—H9C109.5
C6—C5—C4121.2 (3)C4—C10—H10A109.5
C6—C5—H5119.4C4—C10—H10B109.5
C4—C5—H5119.4H10A—C10—H10B109.5
C5—C6—C1120.3 (3)C4—C10—H10C109.5
C5—C6—H6119.9H10A—C10—H10C109.5
C1—C6—H6119.9H10B—C10—H10C109.5
C7—N1—C1—C2130.4 (3)C3—C4—C5—C60.7 (5)
C7—N1—C1—C650.8 (4)C10—C4—C5—C6179.0 (3)
C6—C1—C2—C30.7 (4)C4—C5—C6—C10.8 (5)
N1—C1—C2—C3178.1 (2)C2—C1—C6—C50.1 (4)
C6—C1—C2—C9179.1 (3)N1—C1—C6—C5178.9 (3)
N1—C1—C2—C92.1 (4)C1—N1—C7—O12.5 (5)
C1—C2—C3—C40.9 (4)C1—N1—C7—C8178.9 (3)
C9—C2—C3—C4178.9 (3)O1—C7—C8—Cl125.2 (4)
C2—C3—C4—C50.2 (5)N1—C7—C8—Cl1156.2 (3)
C2—C3—C4—C10179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (4)2.04 (4)2.853 (3)165 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H12ClNO
Mr197.66
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)4.7235 (7), 10.407 (2), 11.451 (2)
α, β, γ (°)67.07 (2), 86.84 (1), 78.95 (2)
V3)508.69 (15)
Z2
Radiation typeCu Kα
µ (mm1)3.00
Crystal size (mm)0.60 × 0.06 × 0.04
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
North et al. (1968)
Tmin, Tmax0.803, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
2059, 1817, 1394
Rint0.015
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.190, 1.09
No. of reflections1817
No. of parameters123
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.47

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (4)2.04 (4)2.853 (3)165 (3)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Version 1.2. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o1975–o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2335–o2336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o3364.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007d). Acta Cryst. E63, o2333–o2334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007e). Acta Cryst. E63, o4488.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007f). Acta Cryst. E63, o4611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008). Acta Cryst. E64. Submitted.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds