Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [MnCl2(C10H11N3)2]·2CH3OH, both naphthyridine ligands coordinate to the MnII ion via two N atoms in a bidentate chelating mode. The MnII centre is furthermore coordinated by two Cl ligands to form an octahedral geometry. In addition, there are two methanol mol­ecules in the asymmetric unit. The crystal packing is stabilized by O—H...Cl, N—H...O and N—H...Cl hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807055262/bt2572sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807055262/bt2572Isup2.hkl
Contains datablock I

CCDC reference: 672672

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.047
  • wR factor = 0.125
  • Data-to-parameter ratio = 15.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 400 Deg. PLAT230_ALERT_2_C Hirshfeld Test Diff for C4 - C5 .. 6.03 su PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C20
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Mn1 (2) 2.00
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Molecular structures and chemical properties of transition metal complexes of 1,8-naphthyridine (napy) and its derivatives have received much attention, because the ligands can link to metals with several coordination modes such as monodentate, chelating bidentate, and dinuclear bridging binding fashion (Gavrilova & Bosnich, 2004). 5,7-dimethyl-1,8-naphthyridin-2-amine are potentially tridentate ligands and are capable of linking two to four metal atoms together to form metal aggregates having metal–metal interactions (Oskui et al., 1999; Mintert & Sheldrick, 1995a,b; Oskui & Sheldrick, 1999). The coordination chemistry of 5,7-dimethyl-1,8-naphthyridine-2-amine (L) has not been well studied before although a Mn(II) complex (Mn(L)2Cl2) (Bayer, 1979) was once described in a US patent. As an extension of our work (Jin et al., 2007), the title complex (Mn(L)2(Cl)2)·2(CH3OH) is reported here.

The complex was obtained as colorless crystals by reacting of manganese chloride tetrahydrate and L in methanol. The compound is air stable and light insensitive. The complex does not dissolve in water and common organic solvent. The molecular structure of the compound is shown in Fig. 1. Both of the two L coordinate to the metal with two N atoms in a bidentate chelating fashion. Two chloride anions coordinate to the Mn ion to complete its octahedral geometry. The amine group of 5,7-dimethyl-1,8-naphthyridin-2-amine does not show any bonding interaction with the Mn atoms. The Mn—N bond distances range from 2.231 (3) to 2.453 (3) Å. The Mn—Cl bond distances are 2.4166 (14) and 2.4699 (12) Å. The two naphthyridine rings are almost perpendicular to each other.

Related literature top

For related literature, see: Bayer (1979); Gavrilova & Bosnich (2004); Jin et al. (2007); Mintert & Sheldrick (1995a,b); Oskui et al. (1999); Oskui & Sheldrick (1999).

Experimental top

All reagents and solvents were used as obtained without further purification. The CHN elemental analyses were performed on a Perkin–Elmer elemental analyzer.

To an methanol solution of manganese chloride tetrahydrate (40 mg, 0.2 mmol) was added L (34.8 mg, 0.2 mmol) in 10 ml of methanol. The solution was stirred for a few minutes, then the solution was filtered. After standing the solution at room temperature for several days, colorless block crystals were isolated. Yield: 32.2 mg, 60%. Anal. Calcd. for C22H30Cl2MnN6O2: C, 49.22; H, 5.59; N, 15.66. Found: C, 49.17; H, 5.50; N, 15.62.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with O—H = 0.82 Å, N—H = 0.90 Å and C—H = 0.96 Å and U(H) set to 1.2Ueq(C,N,O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Three dimensional network structure connected via pi-pi interaction and hydrogen bonds.
Bis(7-amino-2,4-dimethyl-1,8-naphthyridine)dichloridomanganese(II) methanol disolvate top
Crystal data top
[MnCl2(C10H11N3)2]·2CH3OHZ = 2
Mr = 536.36F(000) = 558
Triclinic, P1Dx = 1.354 Mg m3
a = 9.637 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.649 (3) ÅCell parameters from 1874 reflections
c = 14.442 (4) Åθ = 2.4–23.2°
α = 79.178 (4)°µ = 0.73 mm1
β = 78.343 (4)°T = 298 K
γ = 65.894 (4)°Block, colourless
V = 1315.7 (7) Å30.41 × 0.22 × 0.17 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4597 independent reflections
Radiation source: fine-focus sealed tube2867 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 911
Tmin = 0.753, Tmax = 0.885k = 1211
6933 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.4067P]
where P = (Fo2 + 2Fc2)/3
4597 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[MnCl2(C10H11N3)2]·2CH3OHγ = 65.894 (4)°
Mr = 536.36V = 1315.7 (7) Å3
Triclinic, P1Z = 2
a = 9.637 (3) ÅMo Kα radiation
b = 10.649 (3) ŵ = 0.73 mm1
c = 14.442 (4) ÅT = 298 K
α = 79.178 (4)°0.41 × 0.22 × 0.17 mm
β = 78.343 (4)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4597 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2867 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 0.885Rint = 0.020
6933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
4597 reflectionsΔρmin = 0.24 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.03600 (6)0.77674 (5)0.25965 (4)0.04575 (19)
Cl10.05456 (13)0.98490 (10)0.29881 (7)0.0636 (3)
Cl20.24018 (12)0.85917 (13)0.27296 (7)0.0760 (4)
N10.2973 (3)0.7055 (3)0.1725 (2)0.0449 (7)
N20.0861 (3)0.7875 (3)0.10128 (19)0.0449 (7)
N30.1387 (4)0.8679 (4)0.0390 (2)0.0736 (10)
H3A0.18790.87410.09580.088*
H3B0.18800.89110.00900.088*
N40.0720 (3)0.5423 (3)0.29246 (19)0.0434 (7)
N50.1309 (3)0.6444 (3)0.39243 (19)0.0440 (7)
N60.1863 (4)0.7605 (3)0.4883 (2)0.0711 (10)
H6A0.15320.83480.44970.085*
H6B0.22060.76200.53850.085*
O10.2760 (4)0.7735 (3)0.6695 (2)0.0863 (10)
H10.20540.84660.68220.130*
O20.7131 (4)0.9445 (4)0.8698 (2)0.0924 (10)
H20.76550.97400.82660.139*
C10.2407 (4)0.7379 (3)0.0889 (2)0.0436 (8)
C20.0140 (5)0.8224 (4)0.0253 (3)0.0544 (10)
C30.0983 (5)0.8106 (4)0.0680 (3)0.0621 (11)
H30.04700.83670.12090.075*
C40.2517 (5)0.7617 (4)0.0791 (3)0.0625 (11)
H40.30630.75390.14010.075*
C50.3329 (5)0.7213 (4)0.0003 (2)0.0497 (9)
C60.4929 (5)0.6667 (4)0.0013 (3)0.0596 (11)
C70.5471 (5)0.6343 (4)0.0835 (3)0.0644 (11)
H70.65260.59810.08430.077*
C80.4486 (5)0.6537 (4)0.1696 (3)0.0554 (10)
C90.6011 (5)0.6424 (5)0.0936 (3)0.0815 (14)
H9A0.60510.72890.12510.122*
H9B0.56500.60340.13390.122*
H9C0.70180.57960.08060.122*
C100.5090 (5)0.6191 (5)0.2626 (3)0.0782 (13)
H10A0.42750.66250.31110.117*
H10B0.58960.65220.25720.117*
H10C0.54850.52050.27940.117*
C110.1292 (4)0.5249 (3)0.3733 (2)0.0414 (8)
C120.1846 (4)0.6429 (4)0.4704 (3)0.0502 (9)
C130.2383 (4)0.5185 (4)0.5337 (3)0.0564 (10)
H130.27500.51890.58840.068*
C140.2361 (4)0.4015 (4)0.5147 (3)0.0568 (10)
H140.27130.32110.55650.068*
C150.1809 (4)0.3981 (4)0.4314 (2)0.0485 (9)
C160.1720 (5)0.2840 (4)0.4025 (3)0.0572 (10)
C170.1094 (5)0.3053 (4)0.3206 (3)0.0591 (11)
H170.10080.23130.30020.071*
C180.0586 (4)0.4350 (4)0.2675 (3)0.0517 (9)
C190.2261 (6)0.1429 (4)0.4589 (3)0.0798 (14)
H19A0.31530.12890.48590.120*
H19B0.25150.07320.41780.120*
H19C0.14610.13670.50910.120*
C200.0165 (5)0.4602 (5)0.1806 (3)0.0722 (12)
H20A0.10790.44080.19790.108*
H20B0.05320.40080.13460.108*
H20C0.04280.55520.15360.108*
C210.4129 (6)0.7950 (6)0.6425 (4)0.1003 (17)
H21A0.41270.86160.67910.150*
H21B0.42200.82900.57600.150*
H21C0.49800.70910.65370.150*
C220.5636 (6)1.0004 (5)0.8526 (5)0.118 (2)
H22A0.50280.96400.90240.177*
H22B0.55880.97710.79260.177*
H22C0.52471.09930.85070.177*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0506 (4)0.0454 (3)0.0389 (3)0.0156 (3)0.0108 (2)0.0012 (2)
Cl10.0821 (8)0.0473 (6)0.0639 (6)0.0256 (5)0.0129 (6)0.0079 (5)
Cl20.0492 (6)0.1008 (9)0.0613 (7)0.0161 (6)0.0116 (5)0.0040 (6)
N10.0466 (19)0.0405 (17)0.0457 (17)0.0131 (15)0.0121 (14)0.0028 (13)
N20.0467 (19)0.0462 (18)0.0384 (16)0.0137 (15)0.0107 (14)0.0013 (13)
N30.057 (2)0.104 (3)0.051 (2)0.018 (2)0.0218 (18)0.0040 (19)
N40.0463 (18)0.0482 (18)0.0388 (16)0.0209 (15)0.0084 (14)0.0033 (13)
N50.0527 (19)0.0428 (17)0.0413 (16)0.0222 (15)0.0124 (14)0.0005 (13)
N60.109 (3)0.069 (2)0.055 (2)0.045 (2)0.034 (2)0.0028 (17)
O10.065 (2)0.101 (2)0.080 (2)0.0100 (19)0.0094 (17)0.0327 (18)
O20.073 (2)0.132 (3)0.074 (2)0.046 (2)0.0337 (18)0.0206 (19)
C10.049 (2)0.0359 (19)0.045 (2)0.0161 (17)0.0083 (18)0.0013 (16)
C20.057 (3)0.050 (2)0.054 (3)0.018 (2)0.015 (2)0.0012 (18)
C30.078 (3)0.068 (3)0.039 (2)0.026 (2)0.016 (2)0.0006 (19)
C40.081 (3)0.063 (3)0.041 (2)0.031 (2)0.007 (2)0.0085 (19)
C50.060 (3)0.044 (2)0.044 (2)0.0191 (19)0.007 (2)0.0045 (17)
C60.061 (3)0.047 (2)0.067 (3)0.023 (2)0.004 (2)0.008 (2)
C70.043 (2)0.066 (3)0.077 (3)0.017 (2)0.002 (2)0.010 (2)
C80.050 (3)0.050 (2)0.067 (3)0.019 (2)0.017 (2)0.0002 (19)
C90.070 (3)0.084 (3)0.081 (3)0.032 (3)0.024 (3)0.021 (3)
C100.059 (3)0.092 (3)0.083 (3)0.026 (3)0.032 (2)0.007 (3)
C110.040 (2)0.044 (2)0.040 (2)0.0179 (17)0.0021 (16)0.0032 (16)
C120.056 (2)0.056 (2)0.044 (2)0.026 (2)0.0086 (18)0.0068 (18)
C130.061 (3)0.068 (3)0.040 (2)0.024 (2)0.0177 (19)0.0034 (19)
C140.056 (3)0.053 (2)0.048 (2)0.014 (2)0.0062 (19)0.0090 (18)
C150.050 (2)0.043 (2)0.045 (2)0.0143 (18)0.0051 (18)0.0002 (17)
C160.057 (3)0.047 (2)0.061 (3)0.019 (2)0.002 (2)0.0045 (19)
C170.061 (3)0.048 (2)0.071 (3)0.025 (2)0.003 (2)0.018 (2)
C180.048 (2)0.058 (3)0.054 (2)0.024 (2)0.0019 (18)0.0147 (19)
C190.098 (4)0.047 (3)0.088 (3)0.026 (3)0.012 (3)0.002 (2)
C200.069 (3)0.091 (3)0.072 (3)0.037 (3)0.015 (2)0.025 (2)
C210.083 (4)0.107 (4)0.108 (4)0.027 (3)0.017 (3)0.023 (3)
C220.090 (4)0.080 (4)0.190 (7)0.035 (3)0.058 (4)0.014 (4)
Geometric parameters (Å, º) top
Mn1—N22.231 (3)C7—C81.395 (5)
Mn1—N52.267 (3)C7—H70.9300
Mn1—N42.344 (3)C8—C101.495 (5)
Mn1—Cl22.4166 (14)C9—H9A0.9600
Mn1—N12.453 (3)C9—H9B0.9600
Mn1—Cl12.4699 (12)C9—H9C0.9600
N1—C81.327 (5)C10—H10A0.9600
N1—C11.353 (4)C10—H10B0.9600
N2—C21.331 (4)C10—H10C0.9600
N2—C11.347 (4)C11—C151.403 (5)
N3—C21.332 (5)C12—C131.426 (5)
N3—H3A0.8600C13—C141.333 (5)
N3—H3B0.8600C13—H130.9300
N4—C181.322 (4)C14—C151.422 (5)
N4—C111.341 (4)C14—H140.9300
N5—C121.326 (4)C15—C161.396 (5)
N5—C111.359 (4)C16—C171.374 (5)
N6—C121.332 (4)C16—C191.505 (5)
N6—H6A0.8600C17—C181.392 (5)
N6—H6B0.8600C17—H170.9300
O1—C211.396 (5)C18—C201.501 (5)
O1—H10.8200C19—H19A0.9600
O2—C221.371 (5)C19—H19B0.9600
O2—H20.8200C19—H19C0.9600
C1—C51.398 (5)C20—H20A0.9600
C2—C31.424 (5)C20—H20B0.9600
C3—C41.338 (5)C20—H20C0.9600
C3—H30.9300C21—H21A0.9600
C4—C51.420 (5)C21—H21B0.9600
C4—H40.9300C21—H21C0.9600
C5—C61.405 (5)C22—H22A0.9600
C6—C71.359 (6)C22—H22B0.9600
C6—C91.509 (5)C22—H22C0.9600
N2—Mn1—N5140.98 (10)C6—C9—H9B109.5
N2—Mn1—N497.82 (10)H9A—C9—H9B109.5
N5—Mn1—N458.08 (9)C6—C9—H9C109.5
N2—Mn1—Cl297.46 (8)H9A—C9—H9C109.5
N5—Mn1—Cl2113.38 (8)H9B—C9—H9C109.5
N4—Mn1—Cl294.45 (8)C8—C10—H10A109.5
N2—Mn1—N156.89 (10)C8—C10—H10B109.5
N5—Mn1—N189.71 (10)H10A—C10—H10B109.5
N4—Mn1—N188.28 (9)C8—C10—H10C109.5
Cl2—Mn1—N1154.31 (8)H10A—C10—H10C109.5
N2—Mn1—Cl1105.51 (8)H10B—C10—H10C109.5
N5—Mn1—Cl193.36 (7)N4—C11—N5112.1 (3)
N4—Mn1—Cl1151.42 (8)N4—C11—C15123.8 (3)
Cl2—Mn1—Cl198.59 (5)N5—C11—C15124.1 (3)
N1—Mn1—Cl190.77 (7)N5—C12—N6118.4 (3)
C8—N1—C1117.8 (3)N5—C12—C13120.6 (3)
C8—N1—Mn1151.8 (3)N6—C12—C13121.0 (3)
C1—N1—Mn190.4 (2)C14—C13—C12120.3 (3)
C2—N2—C1119.0 (3)C14—C13—H13119.9
C2—N2—Mn1140.4 (3)C12—C13—H13119.9
C1—N2—Mn1100.6 (2)C13—C14—C15120.9 (3)
C2—N3—H3A120.0C13—C14—H14119.5
C2—N3—H3B120.0C15—C14—H14119.5
H3A—N3—H3B120.0C16—C15—C11117.6 (3)
C18—N4—C11118.2 (3)C16—C15—C14127.2 (3)
C18—N4—Mn1148.4 (2)C11—C15—C14115.2 (3)
C11—N4—Mn193.44 (19)C17—C16—C15117.4 (3)
C12—N5—C11118.8 (3)C17—C16—C19120.7 (4)
C12—N5—Mn1144.8 (2)C15—C16—C19121.8 (4)
C11—N5—Mn196.3 (2)C16—C17—C18121.6 (3)
C12—N6—H6A120.0C16—C17—H17119.2
C12—N6—H6B120.0C18—C17—H17119.2
H6A—N6—H6B120.0N4—C18—C17121.3 (4)
C21—O1—H1109.5N4—C18—C20116.9 (3)
C22—O2—H2109.5C17—C18—C20121.7 (4)
N2—C1—N1112.1 (3)C16—C19—H19A109.5
N2—C1—C5124.4 (3)C16—C19—H19B109.5
N1—C1—C5123.5 (3)H19A—C19—H19B109.5
N2—C2—N3118.2 (4)C16—C19—H19C109.5
N2—C2—C3120.7 (4)H19A—C19—H19C109.5
N3—C2—C3121.1 (4)H19B—C19—H19C109.5
C4—C3—C2119.5 (4)C18—C20—H20A109.5
C4—C3—H3120.2C18—C20—H20B109.5
C2—C3—H3120.2H20A—C20—H20B109.5
C3—C4—C5121.5 (4)C18—C20—H20C109.5
C3—C4—H4119.3H20A—C20—H20C109.5
C5—C4—H4119.3H20B—C20—H20C109.5
C1—C5—C6117.9 (3)O1—C21—H21A109.5
C1—C5—C4115.0 (4)O1—C21—H21B109.5
C6—C5—C4127.1 (4)H21A—C21—H21B109.5
C7—C6—C5117.5 (4)O1—C21—H21C109.5
C7—C6—C9121.1 (4)H21A—C21—H21C109.5
C5—C6—C9121.4 (4)H21B—C21—H21C109.5
C6—C7—C8121.7 (4)O2—C22—H22A109.5
C6—C7—H7119.1O2—C22—H22B109.5
C8—C7—H7119.1H22A—C22—H22B109.5
N1—C8—C7121.6 (4)O2—C22—H22C109.5
N1—C8—C10117.0 (4)H22A—C22—H22C109.5
C7—C8—C10121.5 (4)H22B—C22—H22C109.5
C6—C9—H9A109.5
N2—Mn1—N1—C8177.8 (5)N3—C2—C3—C4178.5 (4)
N5—Mn1—N1—C819.2 (5)C2—C3—C4—C50.1 (6)
N4—Mn1—N1—C877.3 (5)N2—C1—C5—C6179.3 (3)
Cl2—Mn1—N1—C8174.0 (4)N1—C1—C5—C60.7 (5)
Cl1—Mn1—N1—C874.1 (5)N2—C1—C5—C40.2 (5)
N2—Mn1—N1—C10.35 (18)N1—C1—C5—C4179.8 (3)
N5—Mn1—N1—C1158.21 (19)C3—C4—C5—C10.5 (5)
N4—Mn1—N1—C1100.13 (19)C3—C4—C5—C6178.9 (4)
Cl2—Mn1—N1—C13.4 (3)C1—C5—C6—C70.3 (5)
Cl1—Mn1—N1—C1108.44 (18)C4—C5—C6—C7179.7 (4)
N5—Mn1—N2—C2143.0 (3)C1—C5—C6—C9178.6 (3)
N4—Mn1—N2—C295.7 (4)C4—C5—C6—C90.8 (6)
Cl2—Mn1—N2—C20.2 (4)C5—C6—C7—C80.2 (6)
N1—Mn1—N2—C2178.5 (4)C9—C6—C7—C8178.8 (4)
Cl1—Mn1—N2—C2100.9 (4)C1—N1—C8—C70.7 (5)
N5—Mn1—N2—C135.1 (3)Mn1—N1—C8—C7177.8 (3)
N4—Mn1—N2—C182.4 (2)C1—N1—C8—C10179.8 (3)
Cl2—Mn1—N2—C1177.99 (19)Mn1—N1—C8—C103.1 (7)
N1—Mn1—N2—C10.36 (18)C6—C7—C8—N10.3 (6)
Cl1—Mn1—N2—C180.9 (2)C6—C7—C8—C10179.4 (4)
N2—Mn1—N4—C1835.6 (5)C18—N4—C11—N5177.5 (3)
N5—Mn1—N4—C18177.5 (5)Mn1—N4—C11—N51.7 (3)
Cl2—Mn1—N4—C1862.6 (5)C18—N4—C11—C152.4 (5)
N1—Mn1—N4—C1891.8 (5)Mn1—N4—C11—C15178.4 (3)
Cl1—Mn1—N4—C18179.8 (4)C12—N5—C11—N4180.0 (3)
N2—Mn1—N4—C11145.8 (2)Mn1—N5—C11—N41.8 (3)
N5—Mn1—N4—C111.12 (19)C12—N5—C11—C150.1 (5)
Cl2—Mn1—N4—C11115.98 (19)Mn1—N5—C11—C15178.4 (3)
N1—Mn1—N4—C1189.6 (2)C11—N5—C12—N6179.7 (3)
Cl1—Mn1—N4—C111.2 (3)Mn1—N5—C12—N62.7 (7)
N2—Mn1—N5—C12119.4 (4)C11—N5—C12—C130.6 (5)
N4—Mn1—N5—C12178.5 (5)Mn1—N5—C12—C13177.6 (3)
Cl2—Mn1—N5—C12101.3 (4)N5—C12—C13—C140.5 (6)
N1—Mn1—N5—C1290.3 (4)N6—C12—C13—C14179.8 (4)
Cl1—Mn1—N5—C120.5 (4)C12—C13—C14—C150.1 (6)
N2—Mn1—N5—C1158.0 (3)N4—C11—C15—C160.2 (5)
N4—Mn1—N5—C111.11 (18)N5—C11—C15—C16180.0 (3)
Cl2—Mn1—N5—C1181.3 (2)N4—C11—C15—C14179.4 (3)
N1—Mn1—N5—C1187.1 (2)N5—C11—C15—C140.4 (5)
Cl1—Mn1—N5—C11177.80 (19)C13—C14—C15—C16180.0 (4)
C2—N2—C1—N1179.2 (3)C13—C14—C15—C110.5 (5)
Mn1—N2—C1—N10.6 (3)C11—C15—C16—C171.7 (5)
C2—N2—C1—C50.8 (5)C14—C15—C16—C17177.8 (4)
Mn1—N2—C1—C5179.5 (3)C11—C15—C16—C19179.2 (3)
C8—N1—C1—N2179.1 (3)C14—C15—C16—C191.3 (6)
Mn1—N1—C1—N20.5 (3)C15—C16—C17—C180.9 (6)
C8—N1—C1—C50.9 (5)C19—C16—C17—C18179.9 (4)
Mn1—N1—C1—C5179.5 (3)C11—N4—C18—C173.3 (5)
C1—N2—C2—N3178.2 (3)Mn1—N4—C18—C17178.3 (3)
Mn1—N2—C2—N30.3 (6)C11—N4—C18—C20175.6 (3)
C1—N2—C2—C31.4 (5)Mn1—N4—C18—C202.8 (7)
Mn1—N2—C2—C3179.4 (3)C16—C17—C18—N41.7 (6)
N2—C2—C3—C41.1 (6)C16—C17—C18—C20177.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl1i0.822.353.162 (3)169
O1—H1···Cl1ii0.822.413.183 (3)158
N6—H6B···O10.862.102.960 (4)173
N6—H6A···Cl10.862.553.359 (4)158
N3—H3B···O2iii0.862.042.895 (4)175
N3—H3A···Cl20.862.493.318 (4)161
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formula[MnCl2(C10H11N3)2]·2CH3OH
Mr536.36
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.637 (3), 10.649 (3), 14.442 (4)
α, β, γ (°)79.178 (4), 78.343 (4), 65.894 (4)
V3)1315.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.41 × 0.22 × 0.17
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.753, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
6933, 4597, 2867
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.02
No. of reflections4597
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl1i0.822.353.162 (3)169.3
O1—H1···Cl1ii0.822.413.183 (3)157.6
N6—H6B···O10.862.102.960 (4)172.9
N6—H6A···Cl10.862.553.359 (4)157.5
N3—H3B···O2iii0.862.042.895 (4)174.9
N3—H3A···Cl20.862.493.318 (4)160.6
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x1, y, z1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds