Download citation
Download citation
link to html
The title rare earth metal coordination polymer, [Er2(C14H8O4)3(H2O)2]n, has been synthesized through a hydro­thermal reaction and characterized by thermogravimetric analysis and single-crystal X-ray diffraction. The ErIII ions both lie on crystallographic twofold rotation axes. There are one and a half organic ligands in the asymmetric unit. Both Er ions are coordinated by eight O atoms. Whereas one is bonded only to organic ligands, the other is also coordinated by two water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807054633/bt2544sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807054633/bt2544Isup2.hkl
Contains datablock I

CCDC reference: 625165

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.029
  • wR factor = 0.069
  • Data-to-parameter ratio = 15.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT420_ALERT_2_B D-H Without Acceptor O5 - H5A ... ? PLAT420_ALERT_2_B D-H Without Acceptor O5 - H5C ... ?
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Er1 (3) 2.91 PLAT794_ALERT_5_G Check Predicted Bond Valency for Er2 (3) 3.12
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

The wide spread contemporary interest in organic–inorganic hybrid material reflects their potential applications as molecular adsorption, catalysis, electromagnetism and photochemistry (Moulton & Zaworotko, 2001; Cao et al., 2002). To get insight into their intriguing frameworks and properties, an enormous amount of research is being focused in using versatile organic ligands and functional metal ions to construct the novel polymers (Chang et al., 2005). The role of organic carboxylic acid ligand in synthesis such materials are of great interest. In this report, we use 2,2'-biphenyldicarboxylic acid as structural directors to construct frameworks. They can compensate charges, fill space and coordinate directly to the metal center (Thirumurugan et al., 2003). Recently, a series of coordination polymers of diphenic acid were reported. Most of them are based on transitional metal with diphenic acid such as [Mn2(2,2'-dipha)2(phen)]n (Ren et al., 2005) [M2(O2CC12H8CO2)2(H2O)8] [M = Cobalt(II), Nickel(II)] (Rueff et al., 2002), M(bpdc)1.5(H2O).0.5DMF (M)= Tb (1), Ho (2), Er(3), or Y (4)) (Guo et al., 2005) etc. As the functional metal centers, rare earth metals are attracting more attention for their coordination properties and chemical characteristics (Wang et al., 2002). Considering rare earth metal has high affinity for multicarboxylic acid, diphenic acid has been used as ligands for construct new frame work (Serre & Ferey, 2002; Zhao et al., 2004; Serpaggi & Ferey, 1999). In this communication, hydrothermal technique has been used for their great advantages over other methods for syntheses of high-dimensional coordination compounds. We herein reported a diphenic acid compound [Er2(H2O)2(C14H8O4)3]n (1) with one-dimensional chain employing hydrothermal method.

As illustrated in Fig. 1, in the asymmetric unit there are two crystalographically distinct Er(III) ions. The Er1 center is coordinated by eight oxygen atoms from three diphenic acid anions and two coordinated water moleculars, while the Er2 center is eight coordinated as well surrounded by eight oxygen atoms from four diphenic acid anions. The coordination geometry around them may be described as a square antiprism. The distances of Er—O bonds range from 2.237 (3) Å to 2.563 (3) Å. The O—Er—O bond angles are in the range 52.62 (9)° to 149.88 (11)°. All of them are a little bigger than those observed for other related Ln(III) complexes (Thirumurugan et al., 2003, 2004). All carboxyl groups of diphenate anion ligand are deprotonated. Er ions are interconnected through –COO- groups of two diphenylcarboxylate anion ligands forming chains (Fig. 2). The phenyl rings of the ligands which are around the Er ions in adjacent chains are interdigitated and form channels in the c direction (Fig. 2)

Thermogravimetric analyses (TGA) of compound (1) were performed in air in the temperature range 35 to 500°C. It is seen from the TGA curve of [Er2(H2O)2(C14H8O4)3]n which indicates two weight losses. The first weight loss of 3.9% around 231°C corresponds to removal of the coordinating water molecules. The second weight loss of 68.91% around 478°C is attributed to the loss of diphenate.

Related literature top

For related literature, see: Chang et al. (2005); Cao et al. (2002); Guo et al. (2005); Moulton & Zaworotko (2001); Ren et al. (2005); Rueff et al. (2002); Serpaggi & Ferey (1999); Serre & Ferey (2002); Thirumurugan et al. (2003, 2004); Wang et al. (2002); Zhao et al. (2004).

Experimental top

The title compound was synthesized hydrothermally from Er(NO3)3.6H2O, diphenic acid, distilled water (molar ratio: 1:1.5:10) and adding 1,3-diaminopropane until the pH value of the reaction mixture was adjusted to about 6. The resulting mixture was stirred for about one hour at room temperature, sealed in a 25 mL Teflon tined stainless steel autoclave and heated at 170 °C for three days. After the reaction mixture was gradually cooled to room temperature, crystals suitable for single-crystal X-ray diffraction analysis were achieved.

Refinement top

H atoms bonded to C were included in calculated positions, constrained to an ideal geometry with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecules could not be located in a difference map and were omitted from refinement.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL (Bruker, 2002).

Figures top
[Figure 1] Fig. 1. Coordination environment of the Er ions in the compound (1) with thermal ellipsoid at 50% probability; all hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. Packing of compound (1) viewed along the c direction.
catena-Poly[diaquatris(µ3-biphenyl-2,2'-dicarboxylato)dierbium(III)] top
Crystal data top
[Er2(C14H8O4)3(H2O)2]Z = 8
Mr = 545.58F(000) = 2112
Monoclinic, C2/cDx = 2.057 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 20.9203 (19) Åθ = 1.9–28.3°
b = 21.295 (2) ŵ = 4.81 mm1
c = 8.1553 (8) ÅT = 298 K
β = 104.149 (1)°Block, pink
V = 3522.9 (6) Å30.25 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4076 independent reflections
Radiation source: fine-focus sealed tube3041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2621
Tmin = 0.330, Tmax = 0.424k = 2727
11380 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0301P)2 + 1.0657P]
where P = (Fo2 + 2Fc2)/3
4076 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
[Er2(C14H8O4)3(H2O)2]V = 3522.9 (6) Å3
Mr = 545.58Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.9203 (19) ŵ = 4.81 mm1
b = 21.295 (2) ÅT = 298 K
c = 8.1553 (8) Å0.25 × 0.20 × 0.18 mm
β = 104.149 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4076 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3041 reflections with I > 2σ(I)
Tmin = 0.330, Tmax = 0.424Rint = 0.035
11380 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.00Δρmax = 0.92 e Å3
4076 reflectionsΔρmin = 0.92 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.00000.286068 (11)0.25000.01742 (8)
Er20.00000.207737 (11)0.25000.01666 (8)
O10.03360 (15)0.35226 (14)0.0038 (4)0.0270 (7)
O20.06559 (15)0.28775 (12)0.2149 (4)0.0224 (7)
O30.09534 (15)0.16647 (14)0.0661 (4)0.0294 (8)
O40.05676 (14)0.24656 (14)0.0475 (3)0.0231 (7)
O60.06811 (15)0.21025 (12)0.3784 (4)0.0237 (7)
O70.04653 (16)0.14925 (14)0.5796 (4)0.0272 (7)
O50.08921 (17)0.35709 (16)0.2627 (4)0.0426 (10)
H5A0.10420.38220.18120.051*
H5C0.10560.35680.34830.051*
C10.0780 (2)0.39592 (19)0.2697 (5)0.0208 (9)
C20.0360 (2)0.44492 (19)0.2913 (5)0.0214 (10)
C30.0629 (2)0.4955 (2)0.3965 (6)0.0311 (12)
H3A0.03580.52860.41120.037*
C40.1290 (3)0.4967 (2)0.4785 (6)0.0379 (13)
H4A0.14610.53100.54570.045*
C50.1697 (3)0.4476 (2)0.4613 (6)0.0365 (12)
H5B0.21390.44810.51880.044*
C60.1440 (2)0.3975 (2)0.3575 (6)0.0282 (11)
H6A0.17140.36430.34630.034*
C70.0566 (2)0.34130 (19)0.1496 (6)0.0194 (9)
C80.1672 (2)0.2098 (2)0.1767 (6)0.0236 (10)
C90.2079 (3)0.2597 (2)0.1626 (6)0.0355 (12)
H9A0.19210.29130.08450.043*
C100.2720 (3)0.2636 (3)0.2632 (7)0.0431 (14)
H10A0.29950.29660.25020.052*
C110.2937 (3)0.2176 (3)0.3821 (7)0.0406 (15)
H11A0.33590.22020.45250.049*
C120.2537 (2)0.1673 (2)0.3985 (6)0.0328 (12)
H12A0.26970.13660.47920.039*
C130.1897 (2)0.1619 (2)0.2959 (5)0.0234 (10)
C140.1518 (2)0.1043 (2)0.3118 (5)0.0255 (10)
C150.1762 (3)0.0473 (2)0.2683 (6)0.0381 (13)
H15A0.21350.04770.22540.046*
C160.1473 (3)0.0094 (2)0.2866 (6)0.0430 (14)
H16A0.16450.04640.25480.052*
C170.0926 (3)0.0112 (2)0.3524 (7)0.0415 (14)
H17A0.07190.04910.36250.050*
C180.0690 (3)0.0440 (2)0.4027 (6)0.0329 (12)
H18A0.03320.04260.45130.039*
C190.0969 (2)0.1018 (2)0.3835 (5)0.0218 (10)
C200.1019 (2)0.20617 (19)0.0487 (6)0.0220 (10)
C210.0687 (2)0.15816 (19)0.4508 (5)0.0204 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.02072 (17)0.01736 (14)0.01423 (15)0.0000.00441 (12)0.000
Er20.02009 (16)0.01609 (14)0.01403 (15)0.0000.00461 (12)0.000
O10.040 (2)0.0251 (17)0.0147 (16)0.0022 (14)0.0055 (15)0.0003 (12)
O20.0242 (18)0.0203 (16)0.0225 (17)0.0009 (12)0.0056 (14)0.0025 (12)
O30.0293 (19)0.0292 (18)0.0260 (18)0.0065 (14)0.0004 (15)0.0065 (14)
O40.0234 (18)0.0301 (17)0.0150 (16)0.0055 (13)0.0032 (14)0.0009 (12)
O60.0251 (18)0.0239 (17)0.0243 (18)0.0046 (12)0.0101 (15)0.0036 (12)
O70.041 (2)0.0248 (16)0.0201 (17)0.0063 (14)0.0161 (16)0.0021 (13)
O50.050 (2)0.051 (2)0.033 (2)0.0262 (18)0.0206 (18)0.0179 (17)
C10.026 (3)0.020 (2)0.019 (2)0.0024 (18)0.010 (2)0.0031 (17)
C20.032 (3)0.018 (2)0.018 (2)0.0043 (17)0.012 (2)0.0005 (16)
C30.037 (3)0.023 (2)0.040 (3)0.005 (2)0.022 (3)0.008 (2)
C40.046 (4)0.035 (3)0.036 (3)0.013 (2)0.016 (3)0.016 (2)
C50.029 (3)0.050 (3)0.029 (3)0.008 (2)0.005 (2)0.013 (2)
C60.032 (3)0.030 (3)0.025 (3)0.001 (2)0.012 (2)0.005 (2)
C70.016 (2)0.018 (2)0.028 (2)0.0001 (17)0.0117 (19)0.0004 (17)
C80.017 (2)0.033 (3)0.020 (2)0.0025 (18)0.005 (2)0.0062 (18)
C90.037 (3)0.045 (3)0.028 (3)0.007 (2)0.016 (3)0.006 (2)
C100.030 (3)0.057 (4)0.049 (4)0.012 (3)0.023 (3)0.018 (3)
C110.017 (3)0.068 (4)0.037 (3)0.005 (2)0.005 (2)0.024 (3)
C120.024 (3)0.048 (3)0.023 (3)0.011 (2)0.000 (2)0.010 (2)
C130.017 (2)0.033 (2)0.022 (2)0.0061 (19)0.0065 (19)0.0066 (19)
C140.026 (3)0.032 (3)0.013 (2)0.013 (2)0.004 (2)0.0005 (18)
C150.037 (3)0.047 (3)0.030 (3)0.017 (2)0.006 (2)0.008 (2)
C160.061 (4)0.028 (3)0.033 (3)0.017 (3)0.001 (3)0.012 (2)
C170.058 (4)0.024 (3)0.037 (3)0.008 (3)0.000 (3)0.001 (2)
C180.046 (3)0.029 (3)0.021 (3)0.005 (2)0.003 (2)0.000 (2)
C190.023 (2)0.027 (2)0.014 (2)0.0055 (18)0.0020 (19)0.0021 (17)
C200.021 (2)0.028 (2)0.018 (2)0.0008 (18)0.007 (2)0.0044 (17)
C210.020 (2)0.023 (2)0.017 (2)0.0014 (18)0.0013 (19)0.0039 (17)
Geometric parameters (Å, º) top
Er1—O62.237 (3)C2—C2ii1.492 (9)
Er1—O6i2.237 (3)C3—C41.381 (7)
Er1—O4i2.409 (3)C3—H3A0.9300
Er1—O42.409 (3)C4—C51.377 (7)
Er1—O12.413 (3)C4—H4A0.9300
Er1—O1i2.413 (3)C5—C61.386 (6)
Er1—O52.424 (3)C5—H5B0.9300
Er1—O5i2.424 (3)C6—H6A0.9300
Er2—O22.250 (3)C8—C91.384 (6)
Er2—O2ii2.250 (3)C8—C131.408 (6)
Er2—O7iii2.256 (3)C8—C201.505 (6)
Er2—O7i2.256 (3)C9—C101.393 (7)
Er2—O32.353 (3)C9—H9A0.9300
Er2—O3ii2.353 (3)C10—C111.376 (8)
Er2—O4ii2.563 (3)C10—H10A0.9300
Er2—O42.563 (3)C11—C121.384 (7)
Er2—C202.817 (5)C11—H11A0.9300
Er2—C20ii2.817 (5)C12—C131.399 (6)
O1—C71.248 (5)C12—H12A0.9300
O2—C71.253 (5)C13—C141.485 (6)
O3—C201.244 (5)C14—C151.396 (6)
O4—C201.275 (5)C14—C191.410 (6)
O6—C211.255 (5)C15—C161.374 (7)
O7—C211.263 (5)C15—H15A0.9300
O7—Er2iv2.256 (3)C16—C171.378 (7)
O5—H5A0.8501C16—H16A0.9300
O5—H5C0.8499C17—C181.376 (6)
C1—C61.391 (6)C17—H17A0.9300
C1—C21.403 (6)C18—C191.387 (6)
C1—C71.516 (6)C18—H18A0.9300
C2—C31.406 (6)C19—C211.500 (5)
O6—Er1—O6i87.60 (15)C20—O3—Er298.4 (3)
O6—Er1—O4i77.96 (10)C20—O4—Er1135.9 (3)
O6i—Er1—O4i72.81 (10)C20—O4—Er287.7 (3)
O6—Er1—O472.81 (10)Er1—O4—Er2124.72 (12)
O6i—Er1—O477.96 (10)C21—O6—Er1142.2 (3)
O4i—Er1—O4139.12 (14)C21—O7—Er2iv137.0 (3)
O6—Er1—O1146.49 (10)Er1—O5—H5A120.0
O6i—Er1—O190.54 (11)Er1—O5—H5C120.0
O4i—Er1—O1133.02 (10)H5A—O5—H5C120.0
O4—Er1—O174.08 (10)C6—C1—C2119.4 (4)
O6—Er1—O1i90.54 (11)C6—C1—C7116.8 (4)
O6i—Er1—O1i146.49 (10)C2—C1—C7123.8 (4)
O4i—Er1—O1i74.08 (10)C1—C2—C3118.5 (4)
O4—Er1—O1i133.02 (10)C1—C2—C2ii122.5 (3)
O1—Er1—O1i108.51 (14)C3—C2—C2ii119.0 (3)
O6—Er1—O5147.08 (11)C4—C3—C2120.9 (4)
O6i—Er1—O593.51 (12)C4—C3—H3A119.5
O4i—Er1—O571.04 (10)C2—C3—H3A119.5
O4—Er1—O5139.53 (10)C5—C4—C3120.5 (5)
O1—Er1—O566.43 (10)C5—C4—H4A119.8
O1i—Er1—O570.78 (11)C3—C4—H4A119.8
O6—Er1—O5i93.51 (12)C4—C5—C6119.3 (5)
O6i—Er1—O5i147.08 (11)C4—C5—H5B120.3
O4i—Er1—O5i139.53 (10)C6—C5—H5B120.3
O4—Er1—O5i71.04 (10)C5—C6—C1121.4 (4)
O1—Er1—O5i70.78 (11)C5—C6—H6A119.3
O1i—Er1—O5i66.43 (10)C1—C6—H6A119.3
O5—Er1—O5i102.79 (17)O1—C7—O2125.2 (4)
O2—Er2—O2ii81.52 (14)O1—C7—C1119.0 (4)
O2—Er2—O7iii149.88 (11)O2—C7—C1115.7 (4)
O2ii—Er2—O7iii88.36 (11)C9—C8—C13120.3 (5)
O2—Er2—O7i88.36 (11)C9—C8—C20117.0 (4)
O2ii—Er2—O7i149.88 (11)C13—C8—C20122.4 (4)
O7iii—Er2—O7i112.99 (15)C8—C9—C10121.3 (5)
O2—Er2—O3130.55 (11)C8—C9—H9A119.3
O2ii—Er2—O385.16 (11)C10—C9—H9A119.3
O7iii—Er2—O376.13 (11)C11—C10—C9118.5 (5)
O7i—Er2—O380.06 (11)C11—C10—H10A120.8
O2—Er2—O3ii85.16 (11)C9—C10—H10A120.8
O2ii—Er2—O3ii130.55 (11)C10—C11—C12121.0 (5)
O7iii—Er2—O3ii80.06 (11)C10—C11—H11A119.5
O7i—Er2—O3ii76.13 (11)C12—C11—H11A119.5
O3—Er2—O3ii136.14 (15)C11—C12—C13121.2 (5)
O2—Er2—O4ii73.76 (10)C11—C12—H12A119.4
O2ii—Er2—O4ii77.94 (10)C13—C12—H12A119.4
O7iii—Er2—O4ii76.40 (10)C12—C13—C8117.6 (4)
O7i—Er2—O4ii126.24 (10)C12—C13—C14118.0 (4)
O3—Er2—O4ii148.00 (10)C8—C13—C14124.2 (4)
O3ii—Er2—O4ii52.62 (9)C15—C14—C19117.3 (4)
O2—Er2—O477.94 (10)C15—C14—C13117.4 (4)
O2ii—Er2—O473.76 (10)C19—C14—C13125.1 (4)
O7iii—Er2—O4126.24 (10)C16—C15—C14122.5 (5)
O7i—Er2—O476.40 (10)C16—C15—H15A118.8
O3—Er2—O452.62 (9)C14—C15—H15A118.8
O3ii—Er2—O4148.00 (10)C15—C16—C17119.8 (5)
O4ii—Er2—O4142.37 (13)C15—C16—H16A120.1
O2—Er2—C20104.77 (12)C17—C16—H16A120.1
O2ii—Er2—C2076.29 (11)C16—C17—C18119.0 (5)
O7iii—Er2—C20100.19 (12)C16—C17—H17A120.5
O7i—Er2—C2079.05 (12)C18—C17—H17A120.5
O3—Er2—C2025.90 (10)C17—C18—C19122.2 (5)
O3ii—Er2—C20152.97 (11)C17—C18—H18A118.9
O4ii—Er2—C20154.10 (10)C19—C18—H18A118.9
O4—Er2—C2026.89 (10)C18—C19—C14119.2 (4)
O2—Er2—C20ii76.29 (11)C18—C19—C21117.0 (4)
O2ii—Er2—C20ii104.77 (12)C14—C19—C21123.6 (4)
O7iii—Er2—C20ii79.05 (12)O3—C20—O4120.5 (4)
O7i—Er2—C20ii100.19 (12)O3—C20—C8118.1 (4)
O3—Er2—C20ii152.97 (11)O4—C20—C8121.0 (4)
O3ii—Er2—C20ii25.90 (10)O3—C20—Er255.7 (2)
O4ii—Er2—C20ii26.89 (10)O4—C20—Er265.4 (2)
O4—Er2—C20ii154.10 (10)C8—C20—Er2164.9 (3)
C20—Er2—C20ii178.64 (17)O6—C21—O7124.1 (4)
C7—O1—Er1133.4 (3)O6—C21—C19119.7 (4)
C7—O2—Er2135.3 (3)O7—C21—C19116.2 (4)
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2; (iii) x, y, z+1; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formula[Er2(C14H8O4)3(H2O)2]
Mr545.58
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)20.9203 (19), 21.295 (2), 8.1553 (8)
β (°) 104.149 (1)
V3)3522.9 (6)
Z8
Radiation typeMo Kα
µ (mm1)4.81
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.330, 0.424
No. of measured, independent and
observed [I > 2σ(I)] reflections
11380, 4076, 3041
Rint0.035
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 1.00
No. of reflections4076
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.92

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2002).

Selected geometric parameters (Å, º) top
Er1—O62.237 (3)Er2—O22.250 (3)
Er1—O42.409 (3)Er2—O2i2.250 (3)
Er1—O12.413 (3)Er2—O32.353 (3)
Er1—O52.424 (3)Er2—O4i2.563 (3)
O6—Er1—O6ii87.60 (15)O1—Er1—O1ii108.51 (14)
O6—Er1—O4ii77.96 (10)O6—Er1—O5147.08 (11)
O6—Er1—O472.81 (10)O4—Er1—O5139.53 (10)
O4ii—Er1—O4139.12 (14)O6ii—Er1—O5ii147.08 (11)
O6—Er1—O1146.49 (10)O1ii—Er1—O5ii66.43 (10)
O6ii—Er1—O190.54 (11)O2—Er2—O7iii149.88 (11)
O4ii—Er1—O1133.02 (10)O7ii—Er2—O4i126.24 (10)
O4—Er1—O174.08 (10)O3—Er2—O4i148.00 (10)
O6—Er1—O1ii90.54 (11)O3i—Er2—O4i52.62 (9)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2; (iii) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds