Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The asymmetric unit of the crystal structure of the title compound, [Sn(C8H5)4], consists of one fourth of a discrete tin complex and one half of another which both possess nearly ideal tetra­hedral symmetry; the site symmetries of the two Sn atoms are \overline4 and 2. The bond angles at all acetyl­ide C atoms are almost linear. The Sn—C distances [2.076 (6) and 2.065 (6)–2.069 (6) Å in the two complexes) are short when compared to the sum of the covalent radii of C and Sn (2.177 Å), but consistent with another tetra­kis(alkyn­yl)tin complex. The acetyl­enic bond distances [1.196 (7) and 1.183 (7)–1.207 (7) Å] are consistent with a triple C[triple bond]C bond. Therefore, despite the short Sn—C distances, the ligands are mainly σ-bonded to the metal. In the solid state, these complexes form a three-dimensional network via agostic C—H inter­actions as a phenyl proton in the ortho position inter­acts with the acetyl­enic carbon in the α position to the tin center.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807050507/bt2532sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807050507/bt2532Isup2.hkl
Contains datablock I

CCDC reference: 667185

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.011 Å
  • R factor = 0.049
  • wR factor = 0.078
  • Data-to-parameter ratio = 19.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.64 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C25 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 11 PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C2 - C3 ... 1.47 Ang. PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C12 - C13 ... 1.43 Ang. PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C22 - C23 ... 1.46 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H28A .. C1 .. 2.92 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H18A .. C11 .. 2.89 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H8A .. C21 .. 2.85 Ang. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 1 C1 -SN1 -C1 -C2 -145.00 9.00 3.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 2 C1 -SN1 -C1 -C2 -24.00 9.00 2.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 3 C1 -SN1 -C1 -C2 97.00 9.00 4.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 4 SN1 -C1 -C2 -C3 -37.00 17.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 5 C1 -C2 -C3 -C8 34.00 11.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 6 C1 -C2 -C3 -C4 -150.00 10.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 15 C21 -SN2 -C11 -C12 -141.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 16 C21 -SN2 -C11 -C12 100.00 3.00 2.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 17 C11 -SN2 -C11 -C12 -21.00 3.00 2.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 18 SN2 -C11 -C12 -C13 2.00 23.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 19 C11 -C12 -C13 -C18 4.00 21.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 20 C11 -C12 -C13 -C14 17.00 0.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 29 C21 -SN2 -C21 -C22 -71.00 13.00 2.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 30 C11 -SN2 -C21 -C22 168.00 13.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 31 C11 -SN2 -C21 -C22 51.00 13.00 2.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 32 SN2 -C21 -C22 -C23 53.00 21.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 33 C21 -C22 -C23 -C28 45.00 12.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 34 C21 -C22 -C23 -C24 -142.00 11.00 1.555 1.555 1.555 1.555 PLAT850_ALERT_2_C Check Flack Parameter Exact Value 0.00 and su .. 0.03
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.60 From the CIF: _reflns_number_total 4311 Count of symmetry unique reflns 2253 Completeness (_total/calc) 191.34% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2058 Fraction of Friedel pairs measured 0.913 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 29 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 22 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

There has been much recent interest in tetrakis(alkynyl)tin(IV) as new precursor for preparation of tin-alkoxide and sol-gel chemistry for the preparation of tin-oxide (Jousseaume et al., 1998). Recently, we demonstrated that tetrakis(phenylethynyl)tin(IV) is an efficient initiator for ring-opening polymerization of lactide and ε-caprolactone providing high activity and high molar mass polymers (Lahcini et al., 2004). Here, we describe the crystal structure of tetrakis(phenylethynyl)tin. It crystallized in a tetragonal space group I4, which reflects high symmetry of the molecule. The asymmetric unit cell consists of one fourth of a discrete tin complex (labeled as a Sn1 in Fig. 1) and one half of another one (Sn2) which both posses nearly ideal tetrahedral symmetry. The Sn(1)—C(1)—C(2) (176.5 (5)°) and C(1)—C(2)—C(3) (176.0 (7)°) angles in Sn1 and the Sn(2)—C(11)—C(12) (171.1 (5)°) and C(11)—C(12)—C(13) (178.0 (8)°) as well as the Sn(2)—C(21)—C(22) (177.4 (6)°) and C(21)—C(22)—C(23) (176.2 (8)°) angles in Sn2 illustrate a rather linear coordination of the acetylides on the Sn centers. The Sn—C distances (2.076 Å in Sn1 and 2.065–2.069 Å in Sn2) are short when compared to the sum of the covalent radii of C and Sn (2.177 Å), but coherent with another tetrakis(alkynyl)Sn complex, Me3Si—CC—Sn (2.067 Å) (Dallaire et al., 1993). The acetylenic bond distances (1.196 (7) Å in Sn1 and 1.183 (7)–1.207 (7) Å in Sn2) are consistent with a triple CC bond and comparable to previously reported phenylethynyl complexes, e.g. trans-[(NH3)Ru(C CPh)(Ph2PCH2CH2PPH2)2] (1.187 (7) Å) (Touchard et al., 1997) and amidotin porphyrin (TTP)Sn(CCPh)2 (1.197 (3) Å) (Chen & Woo, 1998). Therefore, despite of the short Sn—C distances, the ligands are mainly σ-bonded to the metal. In the solid state these complexes form a three-dimensional network via agostic C—H interactions as illustrated in Fig. 1; a phenyl proton in ortho position interacts with the acetylenic carbon in α position to the tin center (see table of hydrogen bonds).

Related literature top

For related literature, see: Chen & Woo 1998; Dallaire et al. 1993; Jousseaume et al. 1998; Lahcini et al. 2004; Touchard et al. 1997.

For related literature, see: Kottke & Stalke (1993).

Experimental top

The title compound was synthesized according to a published procedure (Dallaire et al., 1993). Treatment of tin tetrachloride with 4 equivalents of phenyllithium in toluene led to a corresponding tetrakis(alkynyl)tin(IV). Crystals suitable for solid state structure determination were obtained by recrystallization from toluene.

Refinement top

Crystal selected for the X-ray measurement at 120 K was mounted on a glass fibre using the oil drop method (Kottke & Stalke, 1993). All H atoms were introduced in their calculated positions (C—H = 0.95 Å, Uiso=1.2 times the Ueq of the carrier atom) and refined with fixed geometry with respect to their carrier atoms.

Structure description top

There has been much recent interest in tetrakis(alkynyl)tin(IV) as new precursor for preparation of tin-alkoxide and sol-gel chemistry for the preparation of tin-oxide (Jousseaume et al., 1998). Recently, we demonstrated that tetrakis(phenylethynyl)tin(IV) is an efficient initiator for ring-opening polymerization of lactide and ε-caprolactone providing high activity and high molar mass polymers (Lahcini et al., 2004). Here, we describe the crystal structure of tetrakis(phenylethynyl)tin. It crystallized in a tetragonal space group I4, which reflects high symmetry of the molecule. The asymmetric unit cell consists of one fourth of a discrete tin complex (labeled as a Sn1 in Fig. 1) and one half of another one (Sn2) which both posses nearly ideal tetrahedral symmetry. The Sn(1)—C(1)—C(2) (176.5 (5)°) and C(1)—C(2)—C(3) (176.0 (7)°) angles in Sn1 and the Sn(2)—C(11)—C(12) (171.1 (5)°) and C(11)—C(12)—C(13) (178.0 (8)°) as well as the Sn(2)—C(21)—C(22) (177.4 (6)°) and C(21)—C(22)—C(23) (176.2 (8)°) angles in Sn2 illustrate a rather linear coordination of the acetylides on the Sn centers. The Sn—C distances (2.076 Å in Sn1 and 2.065–2.069 Å in Sn2) are short when compared to the sum of the covalent radii of C and Sn (2.177 Å), but coherent with another tetrakis(alkynyl)Sn complex, Me3Si—CC—Sn (2.067 Å) (Dallaire et al., 1993). The acetylenic bond distances (1.196 (7) Å in Sn1 and 1.183 (7)–1.207 (7) Å in Sn2) are consistent with a triple CC bond and comparable to previously reported phenylethynyl complexes, e.g. trans-[(NH3)Ru(C CPh)(Ph2PCH2CH2PPH2)2] (1.187 (7) Å) (Touchard et al., 1997) and amidotin porphyrin (TTP)Sn(CCPh)2 (1.197 (3) Å) (Chen & Woo, 1998). Therefore, despite of the short Sn—C distances, the ligands are mainly σ-bonded to the metal. In the solid state these complexes form a three-dimensional network via agostic C—H interactions as illustrated in Fig. 1; a phenyl proton in ortho position interacts with the acetylenic carbon in α position to the tin center (see table of hydrogen bonds).

For related literature, see: Chen & Woo 1998; Dallaire et al. 1993; Jousseaume et al. 1998; Lahcini et al. 2004; Touchard et al. 1997.

For related literature, see: Kottke & Stalke (1993).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: COLLECT (Nonius, 2002); data reduction: COLLECT (Nonius, 2002); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELX97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELX97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of tetrakis(phenylethynyl)tin(IV), showing the atom-labelling scheme. Thermal ellipsoids are depicted at 50% propability level. Atoms C11A—C18A and C21A—C28A are generated with (-x,-y,z) and atoms C1AA—C8AA and C1B—C8B with (x,-y,-z) symmetry operator.
[Figure 2] Fig. 2. Intermolecular agostic interactions in the structure of tetrakis(phenylethynyl)tin(IV) are shown as dotted lines. These distances are close to the sum of van der Waals radius of carbon and hydrogen atoms, namely C1—H28A 2.923 Å, C11—H18A (y,-x,1 - z) 2.888 Å and C21—H8A (-x,-y,z) 2.853 Å.
Tetrakis(phenylethynyl)tin(IV) top
Crystal data top
[Sn(C8H5)4]Dx = 1.384 Mg m3
Mr = 523.17Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 9860 reflections
Hall symbol: I -4θ = 3.4–27.6°
a = 13.689 (1) ŵ = 1.03 mm1
c = 20.098 (1) ÅT = 173 K
V = 3766.1 (4) Å3Needle, colourless
Z = 60.30 × 0.10 × 0.10 mm
F(000) = 1572
Data collection top
Nonius KappaCCD
diffractometer
4311 independent reflections
Radiation source: fine-focus sealed tube2474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
φ and ω scansθmax = 27.6°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1517
Tmin = 0.747, Tmax = 0.904k = 1710
9860 measured reflectionsl = 2517
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.01P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
4311 reflectionsΔρmax = 0.75 e Å3
224 parametersΔρmin = 0.78 e Å3
0 restraintsAbsolute structure: Flack (1983), 2075 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
[Sn(C8H5)4]Z = 6
Mr = 523.17Mo Kα radiation
Tetragonal, I4µ = 1.03 mm1
a = 13.689 (1) ÅT = 173 K
c = 20.098 (1) Å0.30 × 0.10 × 0.10 mm
V = 3766.1 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
4311 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2474 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.904Rint = 0.070
9860 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.75 e Å3
S = 0.93Δρmin = 0.78 e Å3
4311 reflectionsAbsolute structure: Flack (1983), 2075 Friedel pairs
224 parametersAbsolute structure parameter: 0.00 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.00000.00000.00000.02556 (18)
C10.1148 (4)0.0423 (4)0.0610 (2)0.0315 (16)
C20.1773 (5)0.0677 (4)0.0988 (3)0.0268 (15)
C30.2494 (6)0.1040 (7)0.1469 (5)0.028 (2)
C40.3493 (5)0.0952 (5)0.1299 (3)0.0392 (16)
H4A0.36870.06640.08900.047*
C50.4185 (7)0.1299 (7)0.1749 (4)0.049 (2)
H5A0.48600.12780.16400.058*
C60.3886 (6)0.1674 (5)0.2356 (3)0.0466 (19)
H6A0.43610.19040.26640.056*
C70.2913 (6)0.1719 (5)0.2520 (3)0.0474 (18)
H7A0.27120.19750.29380.057*
C80.2228 (5)0.1384 (5)0.2065 (3)0.0328 (17)
H8A0.15550.14000.21800.039*
Sn20.00000.00000.312944 (19)0.03048 (15)
C110.1112 (4)0.0463 (4)0.3751 (3)0.0328 (15)
C120.1652 (5)0.0739 (4)0.4170 (3)0.0345 (16)
C130.2279 (7)0.1074 (7)0.4695 (5)0.033 (3)
C140.3267 (6)0.1345 (5)0.4593 (3)0.0381 (19)
H14A0.35440.12890.41610.046*
C150.3827 (5)0.1684 (5)0.5105 (5)0.048 (2)
H15A0.44910.18530.50270.058*
C160.3428 (5)0.1786 (5)0.5744 (3)0.0395 (17)
H16A0.38230.20220.60980.047*
C170.2456 (5)0.1544 (5)0.5862 (3)0.0458 (19)
H17A0.21750.16230.62910.055*
C180.1915 (7)0.1186 (7)0.5338 (4)0.039 (2)
H18A0.12560.10050.54190.047*
C210.0450 (4)0.1128 (5)0.2520 (3)0.0374 (17)
C220.0675 (5)0.1793 (5)0.2157 (3)0.0389 (17)
C230.0911 (7)0.2566 (7)0.1682 (4)0.034 (2)
C240.0938 (6)0.3541 (6)0.1889 (4)0.072 (3)
H24A0.07820.37180.23330.086*
C250.1202 (9)0.4245 (7)0.1420 (4)0.082 (4)
H25A0.11940.49150.15430.098*
C260.1471 (5)0.3998 (5)0.0790 (3)0.050 (2)
H26A0.16490.44950.04830.060*
C270.1488 (4)0.3049 (5)0.0597 (3)0.0363 (16)
H27A0.16800.28780.01580.044*
C280.1220 (5)0.2327 (5)0.1051 (3)0.0315 (17)
H28A0.12520.16600.09230.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0240 (3)0.0240 (3)0.0287 (4)0.0000.0000.000
C10.032 (4)0.039 (4)0.024 (4)0.007 (3)0.001 (3)0.000 (3)
C20.030 (4)0.025 (4)0.025 (4)0.000 (3)0.001 (3)0.001 (3)
C30.020 (5)0.028 (5)0.037 (6)0.002 (4)0.001 (4)0.017 (4)
C40.027 (4)0.051 (5)0.040 (4)0.003 (4)0.004 (4)0.001 (4)
C50.040 (5)0.060 (6)0.046 (6)0.000 (4)0.001 (4)0.014 (4)
C60.050 (5)0.030 (4)0.060 (5)0.012 (4)0.025 (4)0.008 (3)
C70.059 (6)0.036 (4)0.046 (4)0.004 (4)0.009 (4)0.003 (3)
C80.027 (4)0.039 (5)0.033 (4)0.003 (4)0.004 (3)0.005 (3)
Sn20.0280 (8)0.0333 (8)0.0302 (3)0.0035 (9)0.0000.000
C110.033 (4)0.045 (4)0.020 (3)0.004 (3)0.003 (3)0.009 (3)
C120.034 (5)0.037 (4)0.032 (4)0.007 (3)0.003 (3)0.007 (3)
C130.037 (6)0.021 (5)0.043 (5)0.005 (4)0.001 (4)0.002 (3)
C140.040 (6)0.036 (5)0.039 (4)0.007 (4)0.005 (4)0.000 (3)
C150.038 (4)0.042 (4)0.065 (7)0.009 (3)0.005 (5)0.000 (5)
C160.043 (5)0.031 (4)0.045 (4)0.007 (4)0.011 (4)0.006 (3)
C170.062 (6)0.038 (5)0.037 (4)0.004 (4)0.004 (4)0.002 (3)
C180.034 (6)0.028 (5)0.055 (6)0.000 (5)0.005 (4)0.004 (3)
C210.035 (5)0.043 (5)0.034 (4)0.004 (4)0.003 (3)0.001 (3)
C220.032 (5)0.049 (5)0.036 (4)0.009 (4)0.003 (3)0.009 (3)
C230.016 (4)0.043 (6)0.044 (7)0.002 (4)0.009 (3)0.002 (4)
C240.114 (8)0.043 (6)0.058 (6)0.010 (5)0.029 (6)0.005 (5)
C250.153 (10)0.032 (6)0.061 (7)0.008 (6)0.031 (6)0.002 (5)
C260.070 (6)0.031 (5)0.050 (5)0.008 (4)0.011 (4)0.003 (3)
C270.025 (4)0.054 (5)0.030 (4)0.005 (3)0.001 (3)0.005 (3)
C280.030 (4)0.029 (5)0.035 (4)0.010 (3)0.006 (3)0.000 (3)
Geometric parameters (Å, º) top
Sn1—C12.076 (6)C13—C141.417 (11)
Sn1—C1i2.076 (6)C14—C151.364 (10)
Sn1—C1ii2.076 (6)C14—H14A0.9500
Sn1—C1iii2.076 (6)C15—C161.404 (12)
C1—C21.196 (7)C15—H15A0.9500
C2—C31.467 (10)C16—C171.391 (9)
C3—C81.339 (10)C16—H16A0.9500
C3—C41.415 (10)C17—C181.379 (10)
C4—C51.393 (10)C17—H17A0.9500
C4—H4A0.9500C18—H18A0.9500
C5—C61.387 (9)C21—C221.207 (7)
C5—H5A0.9500C22—C231.461 (11)
C6—C71.374 (8)C23—C281.377 (10)
C6—H6A0.9500C23—C241.398 (12)
C7—C81.387 (8)C24—C251.396 (10)
C7—H7A0.9500C24—H24A0.9500
C8—H8A0.9500C25—C261.360 (9)
Sn2—C212.065 (6)C25—H25A0.9500
Sn2—C21ii2.065 (6)C26—C271.356 (8)
Sn2—C112.069 (6)C26—H26A0.9500
Sn2—C11ii2.069 (6)C27—C281.394 (8)
C11—C121.183 (7)C27—H27A0.9500
C12—C131.435 (10)C28—H28A0.9500
C13—C181.393 (8)
C1—Sn1—C1i110.43 (15)C14—C13—C12123.3 (8)
C1—Sn1—C1ii107.6 (3)C15—C14—C13121.1 (7)
C1i—Sn1—C1ii110.43 (15)C15—C14—H14A119.4
C1—Sn1—C1iii110.43 (15)C13—C14—H14A119.4
C1i—Sn1—C1iii107.6 (3)C14—C15—C16120.4 (7)
C1ii—Sn1—C1iii110.43 (15)C14—C15—H15A119.8
C2—C1—Sn1176.5 (5)C16—C15—H15A119.8
C1—C2—C3176.0 (7)C17—C16—C15120.3 (6)
C8—C3—C4120.5 (8)C17—C16—H16A119.9
C8—C3—C2121.8 (8)C15—C16—H16A119.9
C4—C3—C2117.5 (8)C18—C17—C16118.0 (7)
C5—C4—C3118.2 (8)C18—C17—H17A121.0
C5—C4—H4A120.9C16—C17—H17A121.0
C3—C4—H4A120.9C17—C18—C13123.7 (9)
C6—C5—C4119.8 (8)C17—C18—H18A118.1
C6—C5—H5A120.1C13—C18—H18A118.1
C4—C5—H5A120.1C22—C21—Sn2177.4 (6)
C7—C6—C5121.0 (7)C21—C22—C23176.2 (8)
C7—C6—H6A119.5C28—C23—C24119.5 (9)
C5—C6—H6A119.5C28—C23—C22119.8 (8)
C6—C7—C8118.8 (6)C24—C23—C22120.2 (8)
C6—C7—H7A120.6C25—C24—C23117.7 (9)
C8—C7—H7A120.6C25—C24—H24A121.1
C3—C8—C7121.6 (7)C23—C24—H24A121.1
C3—C8—H8A119.2C26—C25—C24121.8 (9)
C7—C8—H8A119.2C26—C25—H25A119.1
C21—Sn2—C21ii107.2 (3)C24—C25—H25A119.1
C21—Sn2—C11111.6 (2)C27—C26—C25120.6 (7)
C21ii—Sn2—C11110.4 (2)C27—C26—H26A119.7
C21—Sn2—C11ii110.4 (2)C25—C26—H26A119.7
C21ii—Sn2—C11ii111.6 (2)C26—C27—C28119.1 (6)
C11—Sn2—C11ii105.7 (3)C26—C27—H27A120.4
C12—C11—Sn2171.1 (5)C28—C27—H27A120.4
C11—C12—C13178.0 (8)C23—C28—C27121.0 (7)
C18—C13—C14116.6 (8)C23—C28—H28A119.5
C18—C13—C12120.1 (9)C27—C28—H28A119.5
C1i—Sn1—C1—C2145 (9)C12—C13—C14—C15178.2 (8)
C1ii—Sn1—C1—C224 (9)C13—C14—C15—C161.0 (11)
C1iii—Sn1—C1—C297 (9)C14—C15—C16—C170.2 (10)
Sn1—C1—C2—C337 (17)C15—C16—C17—C181.4 (10)
C1—C2—C3—C834 (11)C16—C17—C18—C131.5 (13)
C1—C2—C3—C4150 (10)C14—C13—C18—C170.4 (16)
C8—C3—C4—C54.6 (12)C12—C13—C18—C17177.0 (7)
C2—C3—C4—C5179.6 (7)C21ii—Sn2—C21—C2271 (13)
C3—C4—C5—C63.0 (11)C11—Sn2—C21—C22168 (13)
C4—C5—C6—C70.7 (11)C11ii—Sn2—C21—C2251 (13)
C5—C6—C7—C80.2 (10)Sn2—C21—C22—C2353 (21)
C4—C3—C8—C73.8 (12)C21—C22—C23—C2845 (12)
C2—C3—C8—C7179.5 (7)C21—C22—C23—C24142 (11)
C6—C7—C8—C31.4 (10)C28—C23—C24—C255.4 (14)
C21—Sn2—C11—C12141 (3)C22—C23—C24—C25177.7 (9)
C21ii—Sn2—C11—C12100 (3)C23—C24—C25—C263.1 (16)
C11ii—Sn2—C11—C1221 (3)C24—C25—C26—C270.2 (15)
Sn2—C11—C12—C132 (23)C25—C26—C27—C280.4 (11)
C11—C12—C13—C184 (21)C24—C23—C28—C275.1 (13)
C11—C12—C13—C14173 (100)C22—C23—C28—C27177.4 (6)
C18—C13—C14—C150.9 (14)C26—C27—C28—C232.1 (10)
Symmetry codes: (i) y, x, z; (ii) x, y, z; (iii) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28A···C10.952.923.869 (9)174
C18—H18A···C11iv0.952.893.736 (11)149
C8—H8A···C21ii0.952.853.795 (9)171
Symmetry codes: (ii) x, y, z; (iv) y, x, z+1.

Experimental details

Crystal data
Chemical formula[Sn(C8H5)4]
Mr523.17
Crystal system, space groupTetragonal, I4
Temperature (K)173
a, c (Å)13.689 (1), 20.098 (1)
V3)3766.1 (4)
Z6
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.747, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
9860, 4311, 2474
Rint0.070
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.078, 0.93
No. of reflections4311
No. of parameters224
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.78
Absolute structureFlack (1983), 2075 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: COLLECT (Nonius, 2002), SIR2002 (Burla et al., 2003), SHELX97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28A···C10.952.923.869 (9)173.7
C18—H18A···C11i0.952.893.736 (11)149.4
C8—H8A···C21ii0.952.853.795 (9)171.2
Symmetry codes: (i) y, x, z+1; (ii) x, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds