Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [RuCl2(C15H13N3O2)(C10H8N2)]·CH2Cl2, has a pseudo-octa­hedral coordination environment made up of two trans chloride ligands and four N-donor atoms, two of which belong to the azoimine bidentate ligand and two to the bipyridyl mol­ecule. The ester group is disordered over two positions; the site occupancy factors are ca 0.6 and 0.4.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807049239/bt2529sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807049239/bt2529Isup2.hkl
Contains datablock I

CCDC reference: 667147

Key indicators

  • Single-crystal X-ray study
  • T = 183 K
  • Mean [sigma](C-C) = 0.010 Å
  • Disorder in main residue
  • R factor = 0.066
  • wR factor = 0.169
  • Data-to-parameter ratio = 18.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT201_ALERT_2_B Isotropic non-H Atoms in Main Residue(s) ....... 3
Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.120 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.12 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.32 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.25 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.23 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for O2A PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C1M PLAT301_ALERT_3_C Main Residue Disorder ......................... 8.00 Perc. PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 10 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 5 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 23.60 Deg. O1 -C2 -O1A 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 29.10 Deg. O2 -C2 -O2A 1.555 1.555 1.555
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 12 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Ruthenium (II) complexes containing the azoimine (N=N—C=N) functional unit are light-sensitive, redox-active, and efficient colorant materials (Kaim, 2001). This function is π-acidic and has successfully been used to stabilize the low-valent metal redox state. The importance of azoimine chemistry encourages us to develop a new ligand containing an azoimine unit. The new unsymmetrical bidentate ligand, methyl-1-(phenylimino)-1-(phenylhydrazono)-acetate (L), lacks a twofold symmetry axis and on complexation with ruthenium (II), affords a pseudo-octahedral, trans-[Ru(bpy)LCl2] complex. The five membered rings formed by the coordination of azoimine and bpy are planar and have almost equivalent coordination bite-angles N1—Ru—N2 = 75.9 (2)°, and N4—Ru—N5 = 76.6 (2)°, respectively, whereas Cl2—Ru—Cl1 angle is 169.52 (6)°. However, it is interesting to note that the bond lengths of Ru(II) and azoimine N atoms, (Ru—N1) = 2.009 (5) Å and (Ru—N2) = 1.953 (5) (4) Å are significantly shorter than those of Ru(II) and the bpy N atoms, (Ru—N4) = 2.145 (5) Å and (Ru—N5) = 2.123 (5) Å indicated preferential π-bonding of Ru(II) with the azo group.

Related literature top

For related literature, see: Al-Noaimi et al. (2007); Kaim (2001).

Experimental top

Trans-2,2'-bipyridinedichloromethyl-1-(phenylimino)-1-(phenylhydrazono)-acetate ruthenium(II) was prepared according to literature procedure (Al-Noaimi et al.,2007) and recrystallized by slowly evaporating a solution of dichloromethane.

Refinement top

The methylyester group has a 0.591 (18):0.409 (18) occupancy disorder over two positions. The disordered atoms were refined isotropically. The O2A—C3A distance was restrained to 1.433 (9) Å. All hydrogen atoms were set to idealized positions and were refined with 1.2 times (1.5 for the methyl group) the isotropic displacement parameter of the corresponding carbon atom.

Structure description top

Ruthenium (II) complexes containing the azoimine (N=N—C=N) functional unit are light-sensitive, redox-active, and efficient colorant materials (Kaim, 2001). This function is π-acidic and has successfully been used to stabilize the low-valent metal redox state. The importance of azoimine chemistry encourages us to develop a new ligand containing an azoimine unit. The new unsymmetrical bidentate ligand, methyl-1-(phenylimino)-1-(phenylhydrazono)-acetate (L), lacks a twofold symmetry axis and on complexation with ruthenium (II), affords a pseudo-octahedral, trans-[Ru(bpy)LCl2] complex. The five membered rings formed by the coordination of azoimine and bpy are planar and have almost equivalent coordination bite-angles N1—Ru—N2 = 75.9 (2)°, and N4—Ru—N5 = 76.6 (2)°, respectively, whereas Cl2—Ru—Cl1 angle is 169.52 (6)°. However, it is interesting to note that the bond lengths of Ru(II) and azoimine N atoms, (Ru—N1) = 2.009 (5) Å and (Ru—N2) = 1.953 (5) (4) Å are significantly shorter than those of Ru(II) and the bpy N atoms, (Ru—N4) = 2.145 (5) Å and (Ru—N5) = 2.123 (5) Å indicated preferential π-bonding of Ru(II) with the azo group.

For related literature, see: Al-Noaimi et al. (2007); Kaim (2001).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Siemens, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% prabability displacement ellipsoides and the atom-numbering scheme. Solvente molecule and one of the disordered parts of the methylester group have been omitted for clarity.
trans-(2,2'-bipyridine)dichlorido[methyl 1-(phenylhydrazono)-1-(phenylimino)acetato]ruthenium(II) dichloromethane solvate top
Crystal data top
[RuCl2(C15H13N3O2)(C10H8N2)]·CH2Cl2F(000) = 1368
Mr = 680.36Dx = 1.635 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18205 reflections
a = 12.1073 (7) Åθ = 2.5–27.5°
b = 11.4851 (5) ŵ = 0.99 mm1
c = 20.2336 (9) ÅT = 183 K
β = 100.858 (3)°Prism, red-brown
V = 2763.2 (2) Å30.05 × 0.05 × 0.04 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3610 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.120
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
φ and ω scansh = 1515
18205 measured reflectionsk = 1414
6319 independent reflectionsl = 2624
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0705P)2 + 2.7651P]
where P = (Fo2 + 2Fc2)/3
6319 reflections(Δ/σ)max = 0.002
341 parametersΔρmax = 2.18 e Å3
1 restraintΔρmin = 0.94 e Å3
Crystal data top
[RuCl2(C15H13N3O2)(C10H8N2)]·CH2Cl2V = 2763.2 (2) Å3
Mr = 680.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1073 (7) ŵ = 0.99 mm1
b = 11.4851 (5) ÅT = 183 K
c = 20.2336 (9) Å0.05 × 0.05 × 0.04 mm
β = 100.858 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3610 reflections with I > 2σ(I)
18205 measured reflectionsRint = 0.120
6319 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0661 restraint
wR(F2) = 0.169H-atom parameters constrained
S = 1.02Δρmax = 2.18 e Å3
6319 reflectionsΔρmin = 0.94 e Å3
341 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.80699 (4)0.05555 (4)0.84888 (3)0.02344 (17)
Cl10.79947 (13)0.00091 (14)0.73396 (8)0.0302 (4)
Cl20.81852 (13)0.14379 (14)0.95461 (8)0.0314 (4)
O10.4366 (8)0.0154 (8)0.9012 (6)0.031 (3)*0.591 (18)
O20.5162 (8)0.1884 (7)0.9350 (5)0.028 (2)*0.591 (18)
C30.4083 (9)0.2204 (9)0.9550 (6)0.026 (3)*0.591 (18)
H3A0.41510.29800.97560.039*0.591 (18)
H3B0.34810.22090.91520.039*0.591 (18)
H3C0.39060.16350.98760.039*0.591 (18)
O1A0.4517 (12)0.0003 (12)0.9250 (9)0.035 (4)*0.409 (18)
O2A0.4811 (12)0.1968 (10)0.9050 (9)0.035 (4)*0.409 (18)
C3A0.3700 (15)0.244 (2)0.9125 (15)0.075 (8)*0.409 (18)
H3AA0.37130.32890.90970.113*0.409 (18)
H3AB0.31170.21300.87650.113*0.409 (18)
H3AC0.35380.22030.95630.113*0.409 (18)
N10.6430 (4)0.0329 (4)0.8503 (3)0.0234 (11)
N20.7989 (4)0.1010 (4)0.8852 (3)0.0253 (12)
N30.7061 (4)0.1351 (4)0.9053 (3)0.0300 (13)
N40.8169 (4)0.2264 (4)0.8076 (3)0.0267 (12)
N50.9826 (4)0.0887 (4)0.8655 (3)0.0258 (12)
C10.6232 (5)0.0568 (6)0.8861 (3)0.0286 (14)
C20.5114 (5)0.0823 (6)0.9070 (4)0.0332 (16)
C40.5537 (5)0.1105 (5)0.8210 (3)0.0230 (14)
C50.4923 (6)0.0882 (6)0.7574 (4)0.0384 (18)
H5A0.50690.02000.73380.046*
C60.4104 (6)0.1649 (7)0.7284 (4)0.050 (2)
H6A0.36790.14900.68490.060*
C70.3891 (6)0.2648 (6)0.7615 (4)0.0382 (17)
H7A0.33160.31710.74150.046*
C80.4516 (6)0.2874 (6)0.8234 (4)0.0383 (18)
H8A0.43740.35630.84640.046*
C90.5349 (6)0.2124 (5)0.8534 (4)0.0344 (16)
H9A0.57910.23060.89610.041*
C100.8811 (5)0.1937 (5)0.8949 (3)0.0248 (14)
C110.9375 (6)0.2197 (6)0.8435 (4)0.0342 (16)
H11A0.92220.17710.80260.041*
C121.0165 (6)0.3083 (6)0.8520 (4)0.0415 (18)
H12A1.05400.32840.81630.050*
C131.0405 (6)0.3671 (6)0.9123 (4)0.0419 (19)
H13A1.09700.42560.91890.050*
C140.9829 (6)0.3416 (6)0.9634 (4)0.0363 (17)
H14A0.99790.38481.00410.044*
C150.9035 (5)0.2534 (6)0.9554 (3)0.0331 (16)
H15A0.86510.23430.99080.040*
C160.7321 (5)0.2876 (6)0.7724 (3)0.0345 (16)
H16A0.65940.25340.76300.041*
C170.7458 (6)0.3988 (6)0.7490 (4)0.0386 (18)
H17A0.68350.43960.72390.046*
C180.8492 (6)0.4493 (6)0.7624 (3)0.0337 (16)
H18A0.85980.52710.74900.040*
C190.9369 (5)0.3855 (5)0.7953 (3)0.0298 (15)
H19A1.01000.41860.80410.036*
C200.9216 (5)0.2729 (5)0.8164 (3)0.0270 (14)
C211.0138 (5)0.1957 (5)0.8469 (3)0.0231 (14)
C221.1254 (5)0.2272 (5)0.8559 (3)0.0292 (15)
H22A1.14560.30110.84080.035*
C231.2088 (5)0.1510 (6)0.8871 (3)0.0323 (16)
H23A1.28610.17080.89200.039*
C241.1769 (5)0.0480 (6)0.9100 (3)0.0292 (14)
H24A1.23170.00420.93330.035*
C251.0633 (5)0.0189 (6)0.8993 (3)0.0314 (15)
H25A1.04190.05290.91660.038*
C1M0.6506 (8)0.0735 (7)0.4544 (5)0.060 (2)
H1MA0.68350.14670.44090.072*
H1MB0.57030.07110.43240.072*
Cl1M0.7200 (2)0.0438 (2)0.42859 (13)0.0728 (7)
Cl2M0.6616 (3)0.0711 (2)0.54335 (14)0.0908 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0180 (3)0.0213 (3)0.0314 (3)0.0000 (2)0.0057 (2)0.0029 (2)
Cl10.0284 (8)0.0302 (8)0.0333 (9)0.0007 (7)0.0092 (7)0.0002 (7)
Cl20.0279 (8)0.0333 (9)0.0321 (9)0.0002 (7)0.0035 (7)0.0009 (7)
N10.019 (3)0.025 (3)0.026 (3)0.000 (2)0.003 (2)0.004 (2)
N20.024 (3)0.017 (2)0.037 (3)0.000 (2)0.010 (3)0.002 (2)
N30.025 (3)0.030 (3)0.037 (3)0.004 (2)0.010 (3)0.006 (3)
N40.021 (3)0.026 (3)0.032 (3)0.000 (2)0.002 (2)0.001 (2)
N50.019 (3)0.026 (3)0.032 (3)0.006 (2)0.005 (2)0.005 (2)
C10.022 (3)0.033 (4)0.032 (4)0.004 (3)0.008 (3)0.003 (3)
C20.018 (3)0.040 (4)0.042 (4)0.005 (3)0.007 (3)0.007 (3)
C40.017 (3)0.018 (3)0.035 (4)0.004 (2)0.007 (3)0.003 (3)
C50.028 (4)0.032 (4)0.051 (5)0.007 (3)0.003 (3)0.003 (3)
C60.039 (4)0.057 (5)0.045 (5)0.012 (4)0.012 (4)0.005 (4)
C70.036 (4)0.030 (4)0.050 (5)0.009 (3)0.011 (4)0.008 (4)
C80.048 (4)0.028 (4)0.044 (5)0.012 (3)0.022 (4)0.000 (3)
C90.040 (4)0.025 (3)0.035 (4)0.008 (3)0.000 (3)0.002 (3)
C100.015 (3)0.020 (3)0.039 (4)0.002 (2)0.005 (3)0.004 (3)
C110.040 (4)0.030 (4)0.035 (4)0.007 (3)0.010 (3)0.003 (3)
C120.036 (4)0.039 (4)0.050 (5)0.014 (3)0.011 (4)0.003 (4)
C130.033 (4)0.028 (4)0.063 (5)0.008 (3)0.005 (4)0.001 (4)
C140.038 (4)0.025 (3)0.041 (4)0.006 (3)0.006 (3)0.002 (3)
C150.027 (4)0.037 (4)0.034 (4)0.001 (3)0.001 (3)0.001 (3)
C160.024 (4)0.040 (4)0.040 (4)0.001 (3)0.007 (3)0.009 (3)
C170.033 (4)0.037 (4)0.046 (5)0.004 (3)0.008 (3)0.022 (4)
C180.039 (4)0.026 (3)0.038 (4)0.002 (3)0.013 (3)0.008 (3)
C190.028 (4)0.028 (3)0.033 (4)0.005 (3)0.004 (3)0.002 (3)
C200.022 (3)0.028 (3)0.031 (4)0.000 (3)0.006 (3)0.002 (3)
C210.018 (3)0.024 (3)0.029 (4)0.002 (3)0.009 (3)0.008 (3)
C220.029 (4)0.020 (3)0.038 (4)0.003 (3)0.006 (3)0.007 (3)
C230.022 (3)0.037 (4)0.038 (4)0.005 (3)0.005 (3)0.007 (3)
C240.024 (3)0.029 (3)0.034 (4)0.005 (3)0.004 (3)0.002 (3)
C250.019 (3)0.031 (4)0.041 (4)0.002 (3)0.002 (3)0.007 (3)
C1M0.068 (6)0.047 (5)0.064 (6)0.000 (4)0.010 (5)0.000 (4)
Cl1M0.0828 (17)0.0619 (14)0.0747 (17)0.0055 (13)0.0173 (14)0.0212 (13)
Cl2M0.129 (3)0.0800 (19)0.0746 (18)0.0223 (17)0.0474 (18)0.0275 (14)
Geometric parameters (Å, º) top
Ru1—N21.951 (5)C8—C91.377 (9)
Ru1—N12.007 (5)C8—H8A0.9500
Ru1—N52.123 (5)C9—H9A0.9500
Ru1—N42.144 (5)C10—C111.379 (8)
Ru1—Cl22.3475 (17)C10—C151.385 (9)
Ru1—Cl12.3935 (17)C11—C121.385 (9)
O1—C21.176 (10)C11—H11A0.9500
O2—C21.341 (10)C12—C131.378 (10)
O2—C31.485 (12)C12—H12A0.9500
C3—H3A0.9800C13—C141.382 (10)
C3—H3B0.9800C13—H13A0.9500
C3—H3C0.9800C14—C151.385 (9)
O1A—C21.286 (15)C14—H14A0.9500
O2A—C21.364 (13)C15—H15A0.9500
O2A—C3A1.483 (9)C16—C171.383 (9)
C3A—H3AA0.9800C16—H16A0.9500
C3A—H3AB0.9800C17—C181.360 (9)
C3A—H3AC0.9800C17—H17A0.9500
N1—C11.307 (8)C18—C191.357 (9)
N1—C41.440 (8)C18—H18A0.9500
N2—N31.325 (6)C19—C201.384 (9)
N2—C101.446 (7)C19—H19A0.9500
N3—C11.350 (8)C20—C211.468 (8)
N4—C161.335 (8)C21—C221.377 (8)
N4—C201.356 (7)C22—C231.394 (9)
N5—C251.347 (8)C22—H22A0.9500
N5—C211.361 (7)C23—C241.354 (9)
C1—C21.520 (8)C23—H23A0.9500
C4—C51.384 (9)C24—C251.392 (8)
C4—C91.381 (9)C24—H24A0.9500
C5—C61.374 (10)C25—H25A0.9500
C5—H5A0.9500C1M—Cl1M1.721 (8)
C6—C71.378 (10)C1M—Cl2M1.779 (9)
C6—H6A0.9500C1M—H1MA0.9900
C7—C81.360 (10)C1M—H1MB0.9900
C7—H7A0.9500
N2—Ru1—N175.9 (2)C8—C7—C6119.0 (7)
N2—Ru1—N5103.0 (2)C8—C7—H7A120.5
N1—Ru1—N5169.8 (2)C6—C7—H7A120.5
N2—Ru1—N4179.1 (2)C7—C8—C9121.3 (7)
N1—Ru1—N4104.60 (19)C7—C8—H8A119.3
N5—Ru1—N476.70 (19)C9—C8—H8A119.3
N2—Ru1—Cl293.06 (16)C8—C9—C4119.6 (7)
N1—Ru1—Cl286.11 (15)C8—C9—H9A120.2
N5—Ru1—Cl283.84 (15)C4—C9—H9A120.2
N4—Ru1—Cl287.81 (14)C11—C10—C15121.1 (6)
N2—Ru1—Cl197.39 (16)C11—C10—N2118.9 (6)
N1—Ru1—Cl197.07 (15)C15—C10—N2120.0 (5)
N5—Ru1—Cl193.11 (15)C10—C11—C12119.7 (7)
N4—Ru1—Cl181.74 (14)C10—C11—H11A120.2
Cl2—Ru1—Cl1169.53 (6)C12—C11—H11A120.2
C2—O2—C3111.7 (7)C13—C12—C11119.7 (7)
O2—C3—H3A109.5C13—C12—H12A120.2
O2—C3—H3B109.5C11—C12—H12A120.2
H3A—C3—H3B109.5C12—C13—C14120.5 (6)
O2—C3—H3C109.5C12—C13—H13A119.8
H3A—C3—H3C109.5C14—C13—H13A119.8
H3B—C3—H3C109.5C15—C14—C13120.3 (7)
C2—O2A—C3A126.3 (14)C15—C14—H14A119.9
O2A—C3A—H3AA109.5C13—C14—H14A119.9
O2A—C3A—H3AB109.5C14—C15—C10118.8 (6)
H3AA—C3A—H3AB109.5C14—C15—H15A120.6
O2A—C3A—H3AC109.5C10—C15—H15A120.6
H3AA—C3A—H3AC109.5N4—C16—C17122.6 (6)
H3AB—C3A—H3AC109.5N4—C16—H16A118.7
C1—N1—C4120.9 (5)C17—C16—H16A118.7
C1—N1—Ru1113.3 (4)C18—C17—C16119.4 (7)
C4—N1—Ru1125.6 (4)C18—C17—H17A120.3
N3—N2—C10110.0 (5)C16—C17—H17A120.3
N3—N2—Ru1119.6 (4)C19—C18—C17118.2 (6)
C10—N2—Ru1130.4 (4)C19—C18—H18A120.9
N2—N3—C1110.0 (5)C17—C18—H18A120.9
C16—N4—C20117.9 (5)C18—C19—C20121.2 (6)
C16—N4—Ru1126.6 (4)C18—C19—H19A119.4
C20—N4—Ru1115.4 (4)C20—C19—H19A119.4
C25—N5—C21117.7 (5)N4—C20—C19120.2 (6)
C25—N5—Ru1125.6 (4)N4—C20—C21115.8 (5)
C21—N5—Ru1116.1 (4)C19—C20—C21123.9 (6)
N1—C1—N3118.7 (5)N5—C21—C22121.2 (5)
N1—C1—C2124.9 (6)N5—C21—C20115.7 (5)
N3—C1—C2116.4 (5)C22—C21—C20123.2 (5)
O1—C2—O1A23.6 (7)C21—C22—C23120.3 (6)
O1—C2—O2127.4 (7)C21—C22—H22A119.9
O1A—C2—O2122.2 (8)C23—C22—H22A119.9
O1—C2—O2A115.4 (8)C24—C23—C22118.3 (6)
O1A—C2—O2A123.9 (9)C24—C23—H23A120.8
O2—C2—O2A29.1 (6)C22—C23—H23A120.8
O1—C2—C1123.7 (7)C23—C24—C25119.6 (6)
O1A—C2—C1120.9 (8)C23—C24—H24A120.2
O2—C2—C1108.8 (6)C25—C24—H24A120.2
O2A—C2—C1115.2 (7)N5—C25—C24122.5 (6)
C5—C4—C9119.4 (6)N5—C25—H25A118.7
C5—C4—N1119.9 (5)C24—C25—H25A118.7
C9—C4—N1120.5 (6)Cl1M—C1M—Cl2M110.3 (5)
C6—C5—C4119.7 (7)Cl1M—C1M—H1MA109.6
C6—C5—H5A120.1Cl2M—C1M—H1MA109.6
C4—C5—H5A120.1Cl1M—C1M—H1MB109.6
C5—C6—C7120.9 (7)Cl2M—C1M—H1MB109.6
C5—C6—H6A119.6H1MA—C1M—H1MB108.1
C7—C6—H6A119.6

Experimental details

Crystal data
Chemical formula[RuCl2(C15H13N3O2)(C10H8N2)]·CH2Cl2
Mr680.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)183
a, b, c (Å)12.1073 (7), 11.4851 (5), 20.2336 (9)
β (°) 100.858 (3)
V3)2763.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.05 × 0.05 × 0.04
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18205, 6319, 3610
Rint0.120
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.169, 1.02
No. of reflections6319
No. of parameters341
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.18, 0.94

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Siemens, 1990).

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds