Download citation
Download citation
link to html
In the title compound, C13H14N2O3, the morpholine ring adopts the usual chair conformation. The crystal structure is stabilized by weak C—H...O hydrogen-bond inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807048738/bt2525sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807048738/bt2525Isup2.hkl
Contains datablock I

CCDC reference: 667329

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.044
  • wR factor = 0.145
  • Data-to-parameter ratio = 21.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.60 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for C3 - C4 .. 5.84 su PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.17
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Morpholine is used as an important chemical intermediate in the preparation of pesticides. Drugs containing the morpholine ring have established activities that include the reduction of blood sugar and lipid levels (Yoshioka, 1995), and amelioration of obesity and insulin resistance (Fisher & Wyvratt, 1990). Owing to their pharmacological activities the morpholine derivatives have received a great deal of attention in respect of their synthesis and crystal structures. Phthalimides and N-substituted phthalimides are an important class of compounds because of their interesting biological activities (Lima et al., 2002; Orzeszka et al., 2000; Bailleux et al., 1993).

Phthalimides have also served as starting materials and intermediates for synthesis of alkaloids (Couture et al., 1998) and pharmacophores (Couture et al., 1997).

The molecular structure of the title compound is illustrated in Fig. 1.

In the morpholine ring the average C—N, C—C and C—O bond distances [1.457 (2), 1.504 (2), 1.421 (2) A°] are in good agreement with earlier reports (Ramnathan et al., 1996). The morpholine ring adopts the usual chair conformation. This is in good agreement with structural data available from version 5.14 of the Cambridge Structural Database (Allen, 2002). The geometry of the phthalimide ring system is close to that in the related compound 4-(1,3-dioxoisoindolin-2-yl)benzaldehyde (Liu et al., 2004).

The sum of the angles around N1 is 358.60 (10)° indicating sp2 hybridization. However the N1—C1 [1.399 (2) A° and N1—C8 [1.402 (2) A°] distances are intermediate between the average Car—Nsp3(pyramidal) [1.419 (17) A°]and Car—Nsp2(planar) [1.353 (7) A°] distances reported by Allen et al. (1987).

The crystal structure is stabilized by weak C—H···O hydrogen bonds (Table 1).

Related literature top

For related literature, see: Allen (2002); Allen et al. (1987); Bailleux et al. (1993); Couture et al. (1997, 1998); Fisher & Wyvratt (1990); Lima et al. (2002); Liu et al. (2004); Orzeszka et al. (2000); Ramnathan et al. (1996); Yoshioka (1995).

Experimental top

Phthalimide (14.7 g, 0.1mole) taken in a 250 ml beaker was dissolved in 20 ml dimethylformamide and 9.5 ml of 37%(w/v) aqueous formaldehyde (0.1 mole) was added and stirred well. Morpholine (9.0 ml, 0.1 mole) was slowly added to the beaker with stirring. The clear solution became oily. The oily mixture on continuous stirring gave the colourless solid product. The solid product was washed with cold water and finally with diethyl ether. The crude product was recrystallized from ethanol. It melts at 114°C.

Refinement top

All H atoms were refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] using a riding model with C—H(aromatic) = 0.93 Å. The two methylene H atoms were freely refined.

Structure description top

Morpholine is used as an important chemical intermediate in the preparation of pesticides. Drugs containing the morpholine ring have established activities that include the reduction of blood sugar and lipid levels (Yoshioka, 1995), and amelioration of obesity and insulin resistance (Fisher & Wyvratt, 1990). Owing to their pharmacological activities the morpholine derivatives have received a great deal of attention in respect of their synthesis and crystal structures. Phthalimides and N-substituted phthalimides are an important class of compounds because of their interesting biological activities (Lima et al., 2002; Orzeszka et al., 2000; Bailleux et al., 1993).

Phthalimides have also served as starting materials and intermediates for synthesis of alkaloids (Couture et al., 1998) and pharmacophores (Couture et al., 1997).

The molecular structure of the title compound is illustrated in Fig. 1.

In the morpholine ring the average C—N, C—C and C—O bond distances [1.457 (2), 1.504 (2), 1.421 (2) A°] are in good agreement with earlier reports (Ramnathan et al., 1996). The morpholine ring adopts the usual chair conformation. This is in good agreement with structural data available from version 5.14 of the Cambridge Structural Database (Allen, 2002). The geometry of the phthalimide ring system is close to that in the related compound 4-(1,3-dioxoisoindolin-2-yl)benzaldehyde (Liu et al., 2004).

The sum of the angles around N1 is 358.60 (10)° indicating sp2 hybridization. However the N1—C1 [1.399 (2) A° and N1—C8 [1.402 (2) A°] distances are intermediate between the average Car—Nsp3(pyramidal) [1.419 (17) A°]and Car—Nsp2(planar) [1.353 (7) A°] distances reported by Allen et al. (1987).

The crystal structure is stabilized by weak C—H···O hydrogen bonds (Table 1).

For related literature, see: Allen (2002); Allen et al. (1987); Bailleux et al. (1993); Couture et al. (1997, 1998); Fisher & Wyvratt (1990); Lima et al. (2002); Liu et al. (2004); Orzeszka et al. (2000); Ramnathan et al. (1996); Yoshioka (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT-NT (Bruker,2004); data reduction: SAINT-NT (Bruker,2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom numbering scheme with 30% probability displacement ellipsoids.
2-(Morpholin-4-ylmethyl)isoindole-1,3-dione top
Crystal data top
C13H14N2O3F(000) = 520
Mr = 246.26Dx = 1.354 Mg m3
Monoclinic, P21/cMelting point: 114 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.3891 (6) ÅCell parameters from 5593 reflections
b = 5.4617 (3) Åθ = 1.7–31.0°
c = 23.5796 (16) ŵ = 0.10 mm1
β = 92.209 (2)°T = 293 K
V = 1208.27 (13) Å3Prism, colorless
Z = 40.30 × 0.22 × 0.22 mm
Data collection top
Bruker APEXII
diffractometer
3753 independent reflections
Radiation source: fine-focus sealed tube2518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scansθmax = 31.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.971, Tmax = 0.979k = 77
15502 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.1528P]
where P = (Fo2 + 2Fc2)/3
3753 reflections(Δ/σ)max = 0.003
171 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H14N2O3V = 1208.27 (13) Å3
Mr = 246.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3891 (6) ŵ = 0.10 mm1
b = 5.4617 (3) ÅT = 293 K
c = 23.5796 (16) Å0.30 × 0.22 × 0.22 mm
β = 92.209 (2)°
Data collection top
Bruker APEXII
diffractometer
3753 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2518 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.979Rint = 0.026
15502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
3753 reflectionsΔρmin = 0.19 e Å3
171 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53689 (11)0.2316 (2)0.06952 (5)0.0644 (4)
O20.83043 (11)0.4355 (2)0.07666 (4)0.0618 (3)
O30.82872 (11)0.1431 (2)0.27481 (4)0.0616 (4)
N10.67568 (11)0.11172 (19)0.08750 (4)0.0430 (3)
N20.66236 (10)0.11859 (18)0.19243 (4)0.0375 (3)
C10.62829 (15)0.0907 (3)0.05571 (5)0.0484 (4)
C20.71093 (16)0.0865 (3)0.00319 (5)0.0572 (5)
C30.7080 (2)0.2493 (4)0.04214 (7)0.0810 (7)
C40.7964 (3)0.1936 (6)0.08606 (8)0.1082 (10)
C50.8805 (3)0.0147 (6)0.08507 (8)0.1069 (9)
C60.88466 (19)0.1762 (4)0.03932 (7)0.0804 (7)
C70.79708 (16)0.1177 (3)0.00476 (5)0.0575 (5)
C80.77630 (14)0.2498 (3)0.05890 (5)0.0474 (4)
C90.60573 (13)0.2024 (2)0.13835 (5)0.0417 (3)
C100.81102 (12)0.1807 (3)0.20460 (5)0.0455 (4)
C110.85198 (16)0.1099 (3)0.26483 (6)0.0592 (5)
C120.68315 (16)0.2018 (3)0.26299 (6)0.0584 (5)
C130.63978 (15)0.1416 (2)0.20251 (6)0.0493 (4)
H3A0.650070.387550.042950.0972*
H4A0.799220.298760.117000.1298*
H5A0.936130.047790.115960.1282*
H6A0.942460.314580.038390.0965*
H9A0.6128 (14)0.381 (3)0.1371 (6)0.048 (4)*
H9B0.5058 (16)0.150 (3)0.1337 (6)0.048 (4)*
H10A0.824990.355200.199490.0546*
H10B0.870980.094690.178580.0546*
H11A0.951830.147680.272470.0711*
H11B0.796430.205520.290680.0711*
H12A0.623980.110680.288400.0700*
H12B0.668170.374980.269710.0700*
H13A0.695870.237400.176890.0592*
H13B0.540080.181880.195390.0592*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0630 (6)0.0573 (7)0.0717 (7)0.0000 (5)0.0109 (5)0.0117 (5)
O20.0655 (6)0.0595 (6)0.0608 (6)0.0033 (5)0.0090 (5)0.0098 (5)
O30.0570 (6)0.0753 (7)0.0528 (6)0.0141 (5)0.0057 (4)0.0212 (5)
N10.0499 (6)0.0448 (6)0.0343 (5)0.0069 (4)0.0036 (4)0.0027 (4)
N20.0392 (5)0.0383 (5)0.0352 (5)0.0018 (4)0.0053 (4)0.0002 (4)
C10.0546 (7)0.0486 (7)0.0411 (6)0.0166 (6)0.0102 (5)0.0056 (5)
C20.0682 (9)0.0679 (9)0.0346 (6)0.0358 (7)0.0094 (6)0.0042 (6)
C30.1056 (13)0.0921 (13)0.0432 (8)0.0564 (11)0.0238 (8)0.0191 (8)
C40.141 (2)0.148 (2)0.0343 (8)0.0961 (18)0.0133 (10)0.0177 (11)
C50.1146 (18)0.169 (2)0.0385 (9)0.0920 (18)0.0198 (10)0.0219 (12)
C60.0766 (10)0.1193 (15)0.0467 (8)0.0509 (11)0.0190 (7)0.0288 (9)
C70.0620 (8)0.0761 (10)0.0345 (6)0.0342 (8)0.0048 (5)0.0101 (6)
C80.0489 (7)0.0546 (8)0.0388 (6)0.0134 (6)0.0035 (5)0.0098 (5)
C90.0439 (6)0.0431 (6)0.0383 (6)0.0084 (5)0.0048 (5)0.0027 (5)
C100.0421 (6)0.0508 (7)0.0438 (7)0.0042 (5)0.0045 (5)0.0046 (5)
C110.0522 (7)0.0769 (10)0.0481 (8)0.0025 (7)0.0041 (6)0.0049 (7)
C120.0638 (8)0.0591 (9)0.0532 (8)0.0003 (7)0.0154 (6)0.0170 (7)
C130.0535 (7)0.0430 (7)0.0518 (7)0.0061 (5)0.0058 (6)0.0038 (5)
Geometric parameters (Å, º) top
O1—C11.2068 (18)C7—C81.4858 (19)
O2—C81.2025 (19)C10—C111.5074 (19)
O3—C111.420 (2)C12—C131.504 (2)
O3—C121.4210 (18)C3—H3A0.9300
N1—C11.3987 (18)C4—H4A0.9300
N1—C81.4018 (17)C5—H5A0.9300
N1—C91.4748 (15)C6—H6A0.9300
N2—C91.4374 (15)C9—H9A0.978 (16)
N2—C101.4542 (15)C9—H9B0.983 (15)
N2—C131.4577 (15)C10—H10A0.9700
C1—C21.4867 (18)C10—H10B0.9700
C2—C31.390 (2)C11—H11A0.9700
C2—C71.377 (2)C11—H11B0.9700
C3—C41.386 (3)C12—H12A0.9700
C4—C51.385 (4)C12—H12B0.9700
C5—C61.393 (3)C13—H13A0.9700
C6—C71.387 (2)C13—H13B0.9700
O1···C133.2825 (18)C4···H9Bi3.021 (15)
O1···C2i3.3263 (18)C8···H10B3.0500
O2···C1ii3.2358 (19)C9···H12Aix2.9900
O2···C103.3336 (16)C12···H4Avii2.9900
O2···C2ii3.3054 (19)C13···H9Aiv3.035 (16)
O3···N22.8323 (14)H3A···O1iii2.7800
O1···H9B2.599 (16)H4A···O3x2.6000
O1···H13A2.8900H4A···C12x2.9900
O1···H3Aiii2.7800H5A···H10Bviii2.5000
O1···H9Aiv2.727 (16)H6A···O2v2.7200
O2···H9A2.553 (14)H9A···O1ii2.727 (16)
O2···H6Av2.7200H9A···O22.553 (14)
O3···H11Avi2.6400H9A···C13ii3.035 (16)
O3···H4Avii2.6000H9A···H10A2.4300
N2···O32.8323 (14)H9A···H13Aii2.4000
N1···H10B2.7700H9B···O12.599 (16)
N1···H13A2.8400H9B···H13B2.3400
C1···O2iv3.2358 (19)H9B···H12Aix2.6000
C1···C133.4702 (19)H9B···C3i2.941 (15)
C1···C2i3.559 (2)H9B···C4i3.021 (15)
C2···O1i3.3263 (18)H10A···H9A2.4300
C2···O2iv3.3054 (19)H10A···H13Aii2.5800
C2···C1i3.559 (2)H10B···N12.7700
C3···C6iv3.549 (3)H10B···C83.0500
C5···C8viii3.563 (3)H10B···H13A2.4500
C5···C7viii3.582 (3)H10B···H5Aviii2.5000
C6···C7viii3.462 (2)H11A···O3xi2.6400
C6···C3ii3.549 (3)H11B···H12A2.3700
C6···C6viii3.395 (3)H12A···H11B2.3700
C7···C6viii3.462 (2)H12A···C9xii2.9900
C7···C5viii3.582 (3)H12A···H9Bxii2.6000
C8···C103.4591 (17)H13A···O12.8900
C8···C5viii3.563 (3)H13A···N12.8400
C10···C83.4591 (17)H13A···C13.0100
C10···O23.3336 (16)H13A···H9Aiv2.4000
C13···O13.2825 (18)H13A···H10Aiv2.5800
C13···C13.4702 (19)H13A···H10B2.4500
C1···H13A3.0100H13B···H9B2.3400
C3···H9Bi2.941 (15)
C11—O3—C12109.87 (11)C5—C4—H4A119.00
C1—N1—C8111.95 (10)C4—C5—H5A119.00
C1—N1—C9123.97 (10)C6—C5—H5A119.00
C8—N1—C9122.68 (10)C5—C6—H6A122.00
C9—N2—C10114.85 (9)C7—C6—H6A122.00
C9—N2—C13113.83 (10)N1—C9—H9A106.1 (8)
C10—N2—C13109.86 (10)N1—C9—H9B105.3 (9)
O1—C1—N1125.05 (12)N2—C9—H9A108.7 (8)
O1—C1—C2129.35 (14)N2—C9—H9B109.0 (9)
N1—C1—C2105.59 (12)H9A—C9—H9B110.6 (12)
C1—C2—C3129.44 (15)N2—C10—H10A110.00
C1—C2—C7108.36 (12)N2—C10—H10B110.00
C3—C2—C7122.20 (14)C11—C10—H10A110.00
C2—C3—C4116.1 (2)C11—C10—H10B110.00
C3—C4—C5121.7 (2)H10A—C10—H10B108.00
C4—C5—C6122.2 (2)O3—C11—H11A109.00
C5—C6—C7115.8 (2)O3—C11—H11B109.00
C2—C7—C6122.06 (14)C10—C11—H11A109.00
C2—C7—C8108.65 (12)C10—C11—H11B109.00
C6—C7—C8129.29 (15)H11A—C11—H11B108.00
O2—C8—N1124.74 (12)O3—C12—H12A109.00
O2—C8—C7129.87 (13)O3—C12—H12B109.00
N1—C8—C7105.39 (12)C13—C12—H12A109.00
N1—C9—N2116.95 (10)C13—C12—H12B109.00
N2—C10—C11109.52 (11)H12A—C12—H12B108.00
O3—C11—C10111.75 (12)N2—C13—H13A110.00
O3—C12—C13111.09 (12)N2—C13—H13B110.00
N2—C13—C12109.39 (11)C12—C13—H13A110.00
C2—C3—H3A122.00C12—C13—H13B110.00
C4—C3—H3A122.00H13A—C13—H13B108.00
C3—C4—H4A119.00
C12—O3—C11—C1058.12 (14)N1—C1—C2—C3178.32 (16)
C11—O3—C12—C1358.81 (14)N1—C1—C2—C72.42 (16)
C8—N1—C1—C22.55 (15)C1—C2—C7—C6178.17 (15)
C8—N1—C1—O1176.23 (14)C3—C2—C7—C8179.25 (15)
C9—N1—C1—O19.5 (2)C7—C2—C3—C40.4 (3)
C1—N1—C9—N295.41 (14)C1—C2—C3—C4178.78 (19)
C8—N1—C9—N299.23 (13)C1—C2—C7—C81.42 (17)
C1—N1—C8—C71.72 (15)C3—C2—C7—C61.2 (2)
C1—N1—C8—O2178.10 (13)C2—C3—C4—C51.2 (4)
C9—N1—C8—O211.2 (2)C3—C4—C5—C62.0 (4)
C9—N1—C8—C7168.67 (11)C4—C5—C6—C71.2 (4)
C9—N1—C1—C2169.30 (11)C5—C6—C7—C8179.85 (18)
C10—N2—C13—C1257.89 (13)C5—C6—C7—C20.3 (3)
C9—N2—C13—C12171.72 (11)C6—C7—C8—O20.2 (3)
C10—N2—C9—N159.89 (14)C2—C7—C8—O2179.71 (15)
C13—N2—C9—N167.98 (13)C6—C7—C8—N1179.66 (16)
C9—N2—C10—C11173.24 (11)C2—C7—C8—N10.10 (16)
C13—N2—C10—C1156.92 (14)N2—C10—C11—O357.48 (15)
O1—C1—C2—C7176.30 (15)O3—C12—C13—N259.08 (15)
O1—C1—C2—C33.0 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y1, z; (iv) x, y1, z; (v) x+2, y+1, z; (vi) x+2, y1/2, z+1/2; (vii) x, y1/2, z+1/2; (viii) x+2, y, z; (ix) x+1, y+1/2, z+1/2; (x) x, y1/2, z1/2; (xi) x+2, y+1/2, z+1/2; (xii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3x0.93002.60003.424 (2)149.00
C9—H9A···O20.978 (16)2.553 (14)2.9025 (16)100.9 (9)
Symmetry code: (x) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H14N2O3
Mr246.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.3891 (6), 5.4617 (3), 23.5796 (16)
β (°) 92.209 (2)
V3)1208.27 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.22 × 0.22
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.971, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
15502, 3753, 2518
Rint0.026
(sin θ/λ)max1)0.724
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.145, 1.03
No. of reflections3753
No. of parameters171
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: APEX2 (Bruker, 2004) and SAINT-NT (Bruker,2004), SAINT-NT (Bruker,2004) and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3i0.93002.60003.424 (2)149.00
C9—H9A···O20.978 (16)2.553 (14)2.9025 (16)100.9 (9)
Symmetry code: (i) x, y1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds