Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The dihedral angle between the naphthalene and benzene planes in the title compound, C18H14N2O3, is 4.3 (2)°. The mol­ecular conformation is characterized by an N—H...O hydrogen bond and the crystal packing is stabilized by N—H...O and O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045497/bt2506sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045497/bt2506Isup2.hkl
Contains datablock I

CCDC reference: 664213

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.054
  • wR factor = 0.117
  • Data-to-parameter ratio = 9.0

checkCIF/PLATON results

No syntax errors found



Alert level C REFNR01_ALERT_3_C Ratio of reflections to parameters is < 10 for a centrosymmetric structure sine(theta)/lambda 0.6516 Proportion of unique data used 0.5516 Ratio reflections to parameters 9.0192 PLAT088_ALERT_3_C Poor Data / Parameter Ratio .................... 9.02
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Metallacrowns are a new class of metallamacrocycles, which have gained increasing attention over the past decade because of their unique properties (Alexiou et al., 2002; Gaynor et al., 2002; Lah & Pecoraro, 1989; Lehaire et al., 2002; Liu et al., 2001; Saalfrank et al., 2001). These metallacrowns exhibit selective recognition of cations and anions (Saalfrank et al., 2001; Lehaire et al., 2002), can display intramolecular magnetic exchange interactions (Liu et al., 2001), and can be used as building blocks for twodimensional or three-dimensional network structures (Gaynor et al., 2002; Lah & Pecoraro, 1989; Lehaire et al., 2002). The ability to control the generation of metallacrowns with different nuclear numbers, desired structures, and properties is still a substantial challenge. We now report structure of a designed pentadentate ligand.

The molecular structure of the title compound is illustrated in Fig.1. The bond lengths and bond angles are within normal ranges. The dihedral angel between the naphthalene and benzene planes is 4.3 (2)°. The molecular conformation is characterized by an N—H···O hydrogen bond and the crystal packing is stabilized by N—H···O and O—H···O hydrogen bonds.

Related literature top

For related literature, see: Alexiou et al. (2002); Gaynor et al. (2002); Lah & Pecoraro (1989); Lehaire et al. (2002); Liu et al. (2001); Saalfrank et al. (2001).

Experimental top

Benzoic acid anhydride (13.56 g, 60.0 mmol) and 3-hydroxynaphthalene-2-carbohydrazide (11.3 g, 56.0 mmol) were added to 120 ml of chloroform with an external ice-water bath. The reaction mixture was slowly warmed to room temperature and stirred for 8 h. After leaving overnight in a refrigerator, the resulting white precipitate was filtered off and rinsed with chloroform and diethyl ether (yield: 95.3%; m.p. 492–496 K). Calculatedd for C18H14N2O3: C 70.58, H 4.61, N 9.15%; found: C 70.24, H 4.75, N 9.02%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93%A; N—H = 0.86 Å; O—H = 0.82 Å) and Uiso(H) values weren set equal to 1.2 Ueq(C, N) and 1.5Ueq(O).

Structure description top

Metallacrowns are a new class of metallamacrocycles, which have gained increasing attention over the past decade because of their unique properties (Alexiou et al., 2002; Gaynor et al., 2002; Lah & Pecoraro, 1989; Lehaire et al., 2002; Liu et al., 2001; Saalfrank et al., 2001). These metallacrowns exhibit selective recognition of cations and anions (Saalfrank et al., 2001; Lehaire et al., 2002), can display intramolecular magnetic exchange interactions (Liu et al., 2001), and can be used as building blocks for twodimensional or three-dimensional network structures (Gaynor et al., 2002; Lah & Pecoraro, 1989; Lehaire et al., 2002). The ability to control the generation of metallacrowns with different nuclear numbers, desired structures, and properties is still a substantial challenge. We now report structure of a designed pentadentate ligand.

The molecular structure of the title compound is illustrated in Fig.1. The bond lengths and bond angles are within normal ranges. The dihedral angel between the naphthalene and benzene planes is 4.3 (2)°. The molecular conformation is characterized by an N—H···O hydrogen bond and the crystal packing is stabilized by N—H···O and O—H···O hydrogen bonds.

For related literature, see: Alexiou et al. (2002); Gaynor et al. (2002); Lah & Pecoraro (1989); Lehaire et al. (2002); Liu et al. (2001); Saalfrank et al. (2001).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
3-Hydroxy-N'-phenylnaphthalene-2-carbohydrazide top
Crystal data top
C18H14N2O3F(000) = 640
Mr = 306.31Dx = 1.389 Mg m3
Monoclinic, P21/cMelting point = 219–223 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.8473 (10) ÅCell parameters from 8325 reflections
b = 33.907 (7) Åθ = 6.0–27.6°
c = 8.9148 (18) ŵ = 0.10 mm1
β = 91.61 (3)°T = 273 K
V = 1464.6 (5) Å3Block, colourless
Z = 40.57 × 0.39 × 0.31 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3401 independent reflections
Radiation source: fine-focus sealed tube2414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 0 pixels mm-1θmax = 27.6°, θmin = 3.3°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 4444
Tmin = 0.936, Tmax = 0.976l = 1111
7743 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.5358P]
where P = (Fo2 + 2Fc2)/3
3401 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C18H14N2O3V = 1464.6 (5) Å3
Mr = 306.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.8473 (10) ŵ = 0.10 mm1
b = 33.907 (7) ÅT = 273 K
c = 8.9148 (18) Å0.57 × 0.39 × 0.31 mm
β = 91.61 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3401 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2414 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.976Rint = 0.069
7743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
3401 reflectionsΔρmin = 0.18 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3553 (9)0.97519 (9)0.8154 (4)0.0902 (12)
H1B0.44860.99570.86390.108*
C20.0784 (6)0.91469 (9)0.6775 (4)0.0685 (9)
H2B0.01800.89430.63010.082*
C30.0072 (7)0.95336 (11)0.6456 (4)0.0884 (11)
H3B0.13600.95890.57730.106*
C40.1484 (9)0.98325 (10)0.7151 (5)0.0905 (12)
H4A0.10251.00930.69350.109*
C50.4286 (7)0.93649 (8)0.8464 (4)0.0707 (9)
H5A0.57340.93110.91400.085*
C60.2887 (5)0.90608 (7)0.7777 (3)0.0464 (7)
C70.3757 (5)0.86499 (7)0.8103 (3)0.0435 (6)
C80.1220 (5)0.76940 (7)0.7606 (3)0.0403 (6)
C90.2169 (5)0.72870 (7)0.7964 (3)0.0385 (6)
C100.5067 (5)0.68088 (7)0.9256 (3)0.0469 (7)
H10A0.64670.67520.99570.056*
C110.4322 (5)0.71903 (7)0.9015 (3)0.0417 (6)
C120.0889 (5)0.69841 (7)0.7208 (3)0.0454 (7)
H12A0.05370.70440.65270.054*
C130.1627 (5)0.65876 (7)0.7414 (3)0.0431 (6)
C140.3760 (5)0.64988 (7)0.8464 (3)0.0457 (7)
C150.4518 (6)0.60999 (8)0.8667 (4)0.0624 (8)
H15A0.59280.60360.93530.075*
C160.0314 (6)0.62774 (8)0.6613 (3)0.0576 (8)
H16A0.11120.63330.59270.069*
C170.1121 (6)0.58983 (8)0.6841 (3)0.0638 (8)
H17A0.02610.56960.62990.077*
C180.3226 (6)0.58093 (8)0.7879 (4)0.0673 (9)
H18A0.37500.55480.80330.081*
O10.6144 (3)0.85645 (5)0.8467 (2)0.0635 (6)
O20.0689 (4)0.77662 (5)0.6712 (2)0.0607 (6)
O30.5609 (3)0.74934 (5)0.9766 (2)0.0548 (5)
H3A0.67580.74041.03670.082*
N10.1807 (4)0.83749 (6)0.7983 (2)0.0471 (6)
H1A0.01450.84360.77100.056*
N20.2512 (4)0.79894 (6)0.8305 (2)0.0474 (6)
H2A0.37970.79400.89630.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.135 (3)0.045 (2)0.090 (3)0.012 (2)0.001 (3)0.0035 (19)
C20.0663 (19)0.0537 (18)0.085 (2)0.0009 (15)0.0127 (18)0.0181 (16)
C30.086 (2)0.068 (2)0.110 (3)0.012 (2)0.015 (2)0.032 (2)
C40.119 (3)0.054 (2)0.100 (3)0.021 (2)0.020 (3)0.020 (2)
C50.083 (2)0.0514 (19)0.077 (2)0.0081 (17)0.0127 (18)0.0005 (16)
C60.0409 (15)0.0427 (15)0.0557 (18)0.0002 (12)0.0008 (14)0.0035 (13)
C70.0352 (15)0.0459 (15)0.0488 (16)0.0003 (13)0.0062 (12)0.0019 (12)
C80.0356 (13)0.0444 (15)0.0404 (15)0.0007 (12)0.0094 (13)0.0014 (12)
C90.0350 (13)0.0407 (14)0.0394 (15)0.0005 (11)0.0060 (12)0.0016 (12)
C100.0439 (14)0.0448 (16)0.0511 (16)0.0045 (12)0.0141 (13)0.0051 (13)
C110.0411 (14)0.0410 (15)0.0424 (15)0.0030 (12)0.0070 (12)0.0020 (12)
C120.0426 (15)0.0472 (16)0.0457 (16)0.0019 (12)0.0101 (13)0.0019 (13)
C130.0447 (15)0.0402 (15)0.0443 (15)0.0039 (12)0.0011 (13)0.0016 (12)
C140.0426 (15)0.0427 (15)0.0518 (16)0.0031 (12)0.0001 (13)0.0031 (13)
C150.0633 (19)0.0454 (17)0.078 (2)0.0051 (14)0.0099 (16)0.0045 (15)
C160.0643 (19)0.0491 (18)0.0589 (18)0.0085 (14)0.0060 (15)0.0029 (14)
C170.072 (2)0.0476 (18)0.072 (2)0.0113 (15)0.0003 (18)0.0118 (15)
C180.074 (2)0.0413 (16)0.087 (2)0.0031 (16)0.0009 (19)0.0037 (16)
O10.0357 (10)0.0544 (12)0.0995 (17)0.0012 (9)0.0154 (10)0.0020 (11)
O20.0610 (12)0.0479 (11)0.0709 (14)0.0019 (9)0.0377 (11)0.0008 (9)
O30.0550 (11)0.0443 (10)0.0634 (12)0.0041 (9)0.0303 (10)0.0009 (9)
N10.0340 (11)0.0389 (12)0.0673 (15)0.0032 (10)0.0172 (10)0.0033 (11)
N20.0442 (12)0.0371 (12)0.0593 (14)0.0040 (10)0.0249 (11)0.0021 (11)
Geometric parameters (Å, º) top
C1—C41.352 (5)C10—C141.407 (3)
C1—C51.385 (4)C10—H10A0.9300
C1—H1B0.9300C11—O31.368 (3)
C2—C61.368 (4)C12—C131.402 (3)
C2—C31.383 (4)C12—H12A0.9300
C2—H2B0.9300C13—C141.408 (4)
C3—C41.362 (5)C13—C161.413 (4)
C3—H3B0.9300C14—C151.412 (4)
C4—H4A0.9300C15—C181.353 (4)
C5—C61.369 (4)C15—H15A0.9300
C5—H5A0.9300C16—C171.357 (4)
C6—C71.482 (3)C16—H16A0.9300
C7—O11.227 (3)C17—C181.392 (4)
C7—N11.330 (3)C17—H17A0.9300
C8—O21.229 (3)C18—H18A0.9300
C8—N21.327 (3)O3—H3A0.8200
C8—C91.487 (3)N1—N21.379 (3)
C9—C121.367 (3)N1—H1A0.8600
C9—C111.421 (3)N2—H2A0.8600
C10—C111.358 (3)
C4—C1—C5120.3 (3)C10—C11—C9120.7 (2)
C4—C1—H1B119.8O3—C11—C9117.8 (2)
C5—C1—H1B119.8C9—C12—C13123.0 (2)
C6—C2—C3120.9 (3)C9—C12—H12A118.5
C6—C2—H2B119.6C13—C12—H12A118.5
C3—C2—H2B119.6C12—C13—C14118.2 (2)
C4—C3—C2119.5 (3)C12—C13—C16122.6 (2)
C4—C3—H3B120.2C14—C13—C16119.3 (2)
C2—C3—H3B120.2C10—C14—C13119.1 (2)
C1—C4—C3120.3 (3)C10—C14—C15122.7 (2)
C1—C4—H4A119.9C13—C14—C15118.3 (2)
C3—C4—H4A119.9C18—C15—C14121.1 (3)
C6—C5—C1120.2 (3)C18—C15—H15A119.5
C6—C5—H5A119.9C14—C15—H15A119.5
C1—C5—H5A119.9C17—C16—C13120.4 (3)
C2—C6—C5118.8 (3)C17—C16—H16A119.8
C2—C6—C7122.1 (2)C13—C16—H16A119.8
C5—C6—C7119.0 (2)C16—C17—C18120.5 (3)
O1—C7—N1121.2 (2)C16—C17—H17A119.7
O1—C7—C6122.3 (2)C18—C17—H17A119.7
N1—C7—C6116.4 (2)C15—C18—C17120.5 (3)
O2—C8—N2119.4 (2)C15—C18—H18A119.8
O2—C8—C9123.1 (2)C17—C18—H18A119.8
N2—C8—C9117.4 (2)C11—O3—H3A109.5
C12—C9—C11117.8 (2)C7—N1—N2118.4 (2)
C12—C9—C8117.3 (2)C7—N1—H1A120.8
C11—C9—C8124.9 (2)N2—N1—H1A120.8
C11—C10—C14121.2 (2)C8—N2—N1120.4 (2)
C11—C10—H10A119.4C8—N2—H2A119.8
C14—C10—H10A119.4N1—N2—H2A119.8
C10—C11—O3121.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.122.864 (3)145
N2—H2A···O30.861.882.582 (3)138
O3—H3A···O2ii0.821.792.613 (3)177
Symmetry codes: (i) x1, y, z; (ii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H14N2O3
Mr306.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)4.8473 (10), 33.907 (7), 8.9148 (18)
β (°) 91.61 (3)
V3)1464.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.57 × 0.39 × 0.31
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.936, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
7743, 3401, 2414
Rint0.069
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.117, 1.03
No. of reflections3401
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.86002.12002.864 (3)145.00
N2—H2A···O30.86001.88002.582 (3)138.00
O3—H3A···O2ii0.82001.79002.613 (3)177.00
Symmetry codes: (i) x1, y, z; (ii) x+1, y+3/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds