Download citation
Download citation
link to html
The title compound, [ZnI2Ni(C17H16N2O2)(C6H7N)2], is a heterodinuclear zinc–nickel complex. The NiII ion is in a distorted octa­hedral coordination environment formed by two O and two N atoms from a chelating salpd2− ligand [salpd2−= N,N′-bis­(salicyl­idene)-1,3-propane­diamine, C17H16N2O2] in the equatorial plane and two N atoms of two methyl­pyridine ligands (C6H7N) in the axial positions. The coordination around the ZnII ion is distorted tetra­hedral, with two bridging O atoms of the chelating salpd2− ligand and two I atoms. The average Zn—O and Zn—I distances are 1.986 (5) and 2.5327 (11) Å, respectively. The crystal structure is stabilized by weak C—H...N and C—H...I hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807043061/bt2490sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807043061/bt2490Isup2.hkl
Contains datablock I

CCDC reference: 663572

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.014 Å
  • R factor = 0.033
  • wR factor = 0.075
  • Data-to-parameter ratio = 10.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for C28
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.21 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C27 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Zn PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C20 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C26 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 14 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 89 C22 -N3 -NI -N4 -12.00 6.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 90 C18 -N3 -NI -N4 171.00 6.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 101 C24 -N4 -NI -N3 -141.00 6.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 102 C28 -N4 -NI -N3 35.00 6.00 1.555 1.555 1.555 1.555 PLAT850_ALERT_2_C Check Flack Parameter Exact Value 0.00 and su .. 0.02
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 27.96 From the CIF: _reflns_number_total 3745 Count of symmetry unique reflns 3727 Completeness (_total/calc) 100.48% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 18 Fraction of Friedel pairs measured 0.005 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn (2) 2.19 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni (2) 2.09 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 13 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 8 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

ZincII ion is the first in a row of essential rare elements for living beings. It has been recognized to be an activator for more than 120 hydrolytic enzymes. Nickel, which exists extremely in living organism, has allergic and cancerogen effects on skin and organism (Bertini et al., 1994). Oxygen-bridged polynuclear complexes of transition series are of interest because of their magnetic properties (Barandika et al., 1999; Atakol et al., 2006) and their structures (Colon et al., 2004; Metalobos et al., 2004; Yu et al., 2007). Dinuclear metal complexes on Schiff-base ligands have been the subject on considerable interest in our laboratory, e.g. [ZnCl2Cu(salpd2-)] (Tatar et al., 1999); [ZnCl2Zn(salpd2-)(MeOH)] (Atakol, Tatar et al., 1999); [HgCl2Cu(salpd2-)] (Atakol, Arıcı et al., 1999); [ZnBr2Cu(LDMH2)(piperidine)] (Svoboda et al., 2001); [ZnBr2Ni(salpd2-)(dmf)2] (Arıcı et al., 2001); [ZnI2Ni(salpd2-)(dmf)] (Tatar, 2002); [ZnBr2Ni(salpd2-)(dmf)] (Tatar, Atakol & Arıcı, 2002); [ZnCl2Zn(salpd2-)(dmf)] (Tatar, Atakol & Ülkü, 2002); [ZnI2Zn(salpd2-)(dmf)] (Arıcı & Aksu, 2002); [HgCl2Ni(salpd2-)] (Arıcı et al., 2006). We describe here the structure of a new heteronuclear dimeric complex, [ZnI2Ni(salpd2-)(methyl pyridine)2]. Where salpd2-= N,N'-bis(salicylidene)-1,3-propanediamine (C17H16N2O2), LDMH2 = N,N'-bis(salicylidene)-2,2'-dimethyl-1, 3-propanediamine (C19H22N2O2), dmf = dimethylformamide (C3H7NO), piperidine (C5H11N), methyl pyridine (C6H7N).

In the title complex (Fig. 1), the NiII ion is in a distorted octahedral coordination environment, formed by two O and N atoms from chelating salpd2- ligand in the equatorial plane [Ni—O1= 2.038 (5), Ni—O2= 2.029 (5), Ni—N1= 2.016 (7) and 2.021 (6) Å] and two N atoms of two symmetry-related methyl pyridine ligands in the axial positions [Ni—N3=2.177 (6) and Ni—N4= 2.214 (7) Å]. The bond angles around the Ni atom range between 79.52 (19) and 100.1 (3)°. The distance of atom Ni from the O1/O2/N1/N2 mean plane is 0.0050 (10) Å. The equatorial plane (O1/O2/N1/N2) is almost perpendicular of the (N3/Ni/N4) plane, dihedral angle between them is 89 (2)°.

The coordination around the ZnII ion is distorted tetrahedral, with two bridging O atoms of the chelating salpd2- ligand [Zn—O1=1.985 (5) and Zn—O2=1.987 (5) Å] and two iodine atoms. The bond angles around the Zn atom range between 81.9 (2) and 116.49 (16)°. The planes Zn/O1/Ni/O2 and I1/Zn/I2 are almast perpendicular each other, dihedral angle between these two plane is 88.06 (13)°.

The six-membered chelate ring (Ni, N1, C8, C9, C10, N2) adopts a boat conformation, indicated by the endocyclic torsion angles and by the deviations of para-positioned boat atoms Ni 0.0552 (10)Å and C9 0.713 (11)Å from the mean plane through N1, N2, C8 and C10. The crystal structure is stabilized by weak hydrogen bonds (Table 1). The moecule has an intermolecular hydrogen bonding set involving the two molecules: [C10—H10B···I1i] (symmetry code: (i) x + 1/2, y - 1/2, z). The molecule also has two intramolecular hydrogen bonds between the N atoms and the phenyl hydrogen atoms: [C22—H22···N2] and [C28—H28···N2].

A comparison of the space group, Mc···Mt and MtR distances are given in Table 2 for the similar oxygen-bridged dinuclear complexes reported previously. Where Mc (Cu, Zn, Ni) central metal ion, Mt (Zn, Hg) terminal metal ion and R (Cl, Br, I) is the ion which bonded to terminal metal ion. The distances from the Zn ion to I ions are longer than the distances from Zn and Hg ions to Cl and Br ions as given in the table 2.

Related literature top

For general background, see: Bertini et al. (1994); Barandika et al. (1999). For related literature, see: Tatar et al. (1999); Atakol, Tatar et al. (1999); Atakol, Arıcı et al. (1999); Svoboda et al. (2001); Arıcı et al. (2001, 2006); Arıcı & Aksu, 2002; Tatar (2002); Tatar, Atakol & Arıcı (2002); Tatar, Atakol & Ülkü (2002); Colon et al. (2004); Metalobos et al. (2004); Atakol et al. (2006); Yu et al. (2007).

Experimental top

Ammonia solution (30 ml) was added to a solution of bis(N,N'-salicylidene)-1,3-propanediamine (0.565 g, 2 mmol) in hot ethanol (75 ml) and mixture heated to boiling. A solution of NiCl2.2H2O (0.475 g, 2 mmol) in hot water (30 ml) was then added and the resulting mixture set aside. After 2 h, the light-green nickel complex was filtered off and dried at 413 K for 4 h. This complex (0.338 g, 1 mmol) was dissolved in hot dioxane (80 ml). 4-methylpyridine (0.7 ml) was added to this solution followed by ZnI2 (0.320 g, 1 mmol) in hot methanol (10 ml). This resulting mixture was set aside for 4 d and the light-pink crystals which formed were filtered off and dried in air.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Structure description top

ZincII ion is the first in a row of essential rare elements for living beings. It has been recognized to be an activator for more than 120 hydrolytic enzymes. Nickel, which exists extremely in living organism, has allergic and cancerogen effects on skin and organism (Bertini et al., 1994). Oxygen-bridged polynuclear complexes of transition series are of interest because of their magnetic properties (Barandika et al., 1999; Atakol et al., 2006) and their structures (Colon et al., 2004; Metalobos et al., 2004; Yu et al., 2007). Dinuclear metal complexes on Schiff-base ligands have been the subject on considerable interest in our laboratory, e.g. [ZnCl2Cu(salpd2-)] (Tatar et al., 1999); [ZnCl2Zn(salpd2-)(MeOH)] (Atakol, Tatar et al., 1999); [HgCl2Cu(salpd2-)] (Atakol, Arıcı et al., 1999); [ZnBr2Cu(LDMH2)(piperidine)] (Svoboda et al., 2001); [ZnBr2Ni(salpd2-)(dmf)2] (Arıcı et al., 2001); [ZnI2Ni(salpd2-)(dmf)] (Tatar, 2002); [ZnBr2Ni(salpd2-)(dmf)] (Tatar, Atakol & Arıcı, 2002); [ZnCl2Zn(salpd2-)(dmf)] (Tatar, Atakol & Ülkü, 2002); [ZnI2Zn(salpd2-)(dmf)] (Arıcı & Aksu, 2002); [HgCl2Ni(salpd2-)] (Arıcı et al., 2006). We describe here the structure of a new heteronuclear dimeric complex, [ZnI2Ni(salpd2-)(methyl pyridine)2]. Where salpd2-= N,N'-bis(salicylidene)-1,3-propanediamine (C17H16N2O2), LDMH2 = N,N'-bis(salicylidene)-2,2'-dimethyl-1, 3-propanediamine (C19H22N2O2), dmf = dimethylformamide (C3H7NO), piperidine (C5H11N), methyl pyridine (C6H7N).

In the title complex (Fig. 1), the NiII ion is in a distorted octahedral coordination environment, formed by two O and N atoms from chelating salpd2- ligand in the equatorial plane [Ni—O1= 2.038 (5), Ni—O2= 2.029 (5), Ni—N1= 2.016 (7) and 2.021 (6) Å] and two N atoms of two symmetry-related methyl pyridine ligands in the axial positions [Ni—N3=2.177 (6) and Ni—N4= 2.214 (7) Å]. The bond angles around the Ni atom range between 79.52 (19) and 100.1 (3)°. The distance of atom Ni from the O1/O2/N1/N2 mean plane is 0.0050 (10) Å. The equatorial plane (O1/O2/N1/N2) is almost perpendicular of the (N3/Ni/N4) plane, dihedral angle between them is 89 (2)°.

The coordination around the ZnII ion is distorted tetrahedral, with two bridging O atoms of the chelating salpd2- ligand [Zn—O1=1.985 (5) and Zn—O2=1.987 (5) Å] and two iodine atoms. The bond angles around the Zn atom range between 81.9 (2) and 116.49 (16)°. The planes Zn/O1/Ni/O2 and I1/Zn/I2 are almast perpendicular each other, dihedral angle between these two plane is 88.06 (13)°.

The six-membered chelate ring (Ni, N1, C8, C9, C10, N2) adopts a boat conformation, indicated by the endocyclic torsion angles and by the deviations of para-positioned boat atoms Ni 0.0552 (10)Å and C9 0.713 (11)Å from the mean plane through N1, N2, C8 and C10. The crystal structure is stabilized by weak hydrogen bonds (Table 1). The moecule has an intermolecular hydrogen bonding set involving the two molecules: [C10—H10B···I1i] (symmetry code: (i) x + 1/2, y - 1/2, z). The molecule also has two intramolecular hydrogen bonds between the N atoms and the phenyl hydrogen atoms: [C22—H22···N2] and [C28—H28···N2].

A comparison of the space group, Mc···Mt and MtR distances are given in Table 2 for the similar oxygen-bridged dinuclear complexes reported previously. Where Mc (Cu, Zn, Ni) central metal ion, Mt (Zn, Hg) terminal metal ion and R (Cl, Br, I) is the ion which bonded to terminal metal ion. The distances from the Zn ion to I ions are longer than the distances from Zn and Hg ions to Cl and Br ions as given in the table 2.

For general background, see: Bertini et al. (1994); Barandika et al. (1999). For related literature, see: Tatar et al. (1999); Atakol, Tatar et al. (1999); Atakol, Arıcı et al. (1999); Svoboda et al. (2001); Arıcı et al. (2001, 2006); Arıcı & Aksu, 2002; Tatar (2002); Tatar, Atakol & Arıcı (2002); Tatar, Atakol & Ülkü (2002); Colon et al. (2004); Metalobos et al. (2004); Atakol et al. (2006); Yu et al. (2007).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Diiodido-2κ2I-bis(4-methylpyridine-1κN)-µ-{2,2'-[1,3-propanediylbis (nitrilomethylidyne)]diphenolato-1κ4O,N,N',O':2κ2O,O'}nickel(II)zinc(II) top
Crystal data top
[ZnI2Ni(C17H16N2O2)(C6H7N)2]F(000) = 1648
Mr = 844.45Dx = 1.813 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 25 reflections
a = 9.3523 (11) Åθ = 10.8–18.2°
b = 19.615 (3) ŵ = 3.41 mm1
c = 17.4933 (10) ÅT = 293 K
β = 105.390 (12)°Prism, light pink
V = 3094.0 (6) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.052
non–profiled ω scansθmax = 28.0°, θmin = 3.0°
Absorption correction: ψ scan
North et al. (1968)
h = 1211
Tmin = 0.506, Tmax = 0.511k = 2525
7375 measured reflectionsl = 023
3745 independent reflections3 standard reflections every 120 min
2491 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geomt
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0323P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3745 reflectionsΔρmax = 0.48 e Å3
352 parametersΔρmin = 0.49 e Å3
2 restraintsAbsolute structure: Flack (1983), no Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Crystal data top
[ZnI2Ni(C17H16N2O2)(C6H7N)2]V = 3094.0 (6) Å3
Mr = 844.45Z = 4
Monoclinic, CcMo Kα radiation
a = 9.3523 (11) ŵ = 3.41 mm1
b = 19.615 (3) ÅT = 293 K
c = 17.4933 (10) Å0.2 × 0.2 × 0.2 mm
β = 105.390 (12)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2491 reflections with I > 2σ(I)
Absorption correction: ψ scan
North et al. (1968)
Rint = 0.052
Tmin = 0.506, Tmax = 0.5113 standard reflections every 120 min
7375 measured reflections intensity decay: 2%
3745 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.48 e Å3
S = 1.01Δρmin = 0.49 e Å3
3745 reflectionsAbsolute structure: Flack (1983), no Friedel pairs
352 parametersAbsolute structure parameter: 0.00 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.73246 (8)0.54913 (3)0.50165 (4)0.0737 (2)
I20.45922 (6)0.38306 (5)0.39646 (4)0.0825 (3)
N31.1124 (6)0.4104 (3)0.5796 (4)0.0402 (15)
N40.8329 (7)0.2347 (4)0.4816 (5)0.0523 (17)
C170.9014 (7)0.3837 (4)0.3684 (4)0.0339 (15)
C60.8512 (8)0.3134 (4)0.6975 (5)0.0448 (19)
C10.7703 (8)0.3564 (4)0.6384 (5)0.0418 (18)
N11.0419 (7)0.2727 (4)0.6372 (4)0.0497 (17)
C160.8181 (8)0.4269 (5)0.3089 (5)0.046 (2)
H160.74150.45250.31910.055*
N21.1280 (7)0.2918 (3)0.4796 (5)0.0469 (16)
C101.2571 (10)0.2511 (5)0.5233 (6)0.066 (3)
H10A1.34340.26530.50640.079*
H10B1.23850.20360.50890.079*
C150.8466 (10)0.4322 (5)0.2361 (5)0.054 (2)
H150.78890.46120.19810.065*
C121.0187 (8)0.3464 (4)0.3498 (5)0.0416 (18)
C20.6478 (9)0.3922 (5)0.6507 (5)0.050 (2)
H20.59160.42020.61120.06*
C70.9816 (8)0.2741 (4)0.6944 (5)0.047 (2)
H71.02490.24740.73840.057*
C81.1750 (9)0.2272 (5)0.6478 (7)0.072 (3)
H8A1.14350.18330.62380.087*
H8B1.21920.220.7040.087*
C140.9603 (10)0.3952 (5)0.2184 (5)0.059 (2)
H140.97820.39840.16870.071*
C131.0462 (9)0.3532 (5)0.2763 (5)0.050 (2)
H131.12420.3290.26560.061*
C111.1229 (8)0.3050 (4)0.4076 (6)0.050 (2)
H111.19770.28510.38920.059*
C50.8103 (11)0.3083 (5)0.7696 (5)0.060 (2)
H50.86470.28020.80970.072*
C211.2878 (9)0.4929 (5)0.5621 (5)0.055 (2)
H211.34150.51070.52890.066*
C240.7084 (11)0.2176 (5)0.4993 (8)0.075 (3)
H240.67580.24560.53420.09*
C201.3033 (9)0.5210 (5)0.6369 (5)0.050 (2)
C91.2916 (9)0.2572 (6)0.6106 (7)0.074 (3)
H9A1.30420.30510.62460.089*
H9B1.38550.23470.63360.089*
C221.1943 (8)0.4396 (4)0.5373 (5)0.0465 (19)
H221.18710.42230.4870.056*
C191.2176 (9)0.4922 (5)0.6806 (5)0.054 (2)
H191.22030.510.73020.065*
C30.6112 (11)0.3852 (5)0.7228 (6)0.065 (3)
H30.53040.4090.73080.079*
C181.1265 (9)0.4369 (5)0.6519 (5)0.054 (2)
H181.07310.41740.68420.065*
C260.6544 (10)0.1222 (5)0.4138 (5)0.054 (2)
C231.4028 (13)0.5818 (7)0.6642 (7)0.088 (4)
H23A1.34320.62140.66550.132*
H23B1.46270.58940.62820.132*
H23C1.46570.57320.71630.132*
C40.6915 (13)0.3442 (6)0.7816 (6)0.073 (3)
H40.66630.34050.82940.088*
C270.7775 (14)0.1392 (7)0.3926 (8)0.102 (3)
H270.80740.11290.35540.123*
C250.6249 (11)0.1618 (6)0.4700 (7)0.075 (3)
H250.54470.15090.48970.091*
C280.8598 (14)0.1951 (7)0.4255 (8)0.109 (5)
H280.94120.20610.40690.131*
C290.5603 (11)0.0619 (5)0.3769 (7)0.075 (3)
H29A0.48880.05240.4060.112*
H29B0.62260.02280.37840.112*
H29C0.50970.07230.32280.112*
Zn0.71340 (8)0.42196 (4)0.47615 (5)0.0380 (2)
Ni0.97304 (9)0.32289 (5)0.53338 (6)0.0385 (2)
O20.8738 (5)0.3799 (3)0.4371 (3)0.0403 (12)
O10.8033 (5)0.3648 (3)0.5702 (3)0.0394 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.1176 (5)0.0392 (3)0.0708 (4)0.0039 (4)0.0364 (4)0.0027 (3)
I20.0421 (3)0.1351 (7)0.0646 (4)0.0282 (4)0.0040 (3)0.0020 (4)
N30.034 (3)0.036 (4)0.050 (4)0.003 (3)0.011 (3)0.000 (3)
N40.046 (4)0.043 (4)0.069 (5)0.007 (3)0.015 (3)0.002 (4)
C170.033 (3)0.034 (4)0.039 (4)0.007 (3)0.015 (3)0.006 (3)
C60.048 (4)0.041 (5)0.044 (5)0.006 (4)0.010 (4)0.003 (4)
C10.036 (4)0.039 (4)0.053 (5)0.012 (3)0.016 (4)0.013 (4)
N10.045 (3)0.043 (4)0.058 (4)0.000 (3)0.008 (3)0.013 (3)
C160.038 (4)0.057 (5)0.041 (5)0.008 (4)0.007 (3)0.009 (4)
N20.034 (3)0.037 (4)0.074 (5)0.005 (3)0.021 (3)0.003 (3)
C100.057 (5)0.052 (6)0.094 (8)0.016 (5)0.029 (5)0.010 (5)
C150.051 (5)0.062 (6)0.045 (5)0.015 (4)0.006 (4)0.004 (4)
C120.040 (4)0.043 (5)0.042 (4)0.013 (4)0.010 (3)0.016 (4)
C20.047 (4)0.051 (6)0.053 (5)0.001 (4)0.016 (4)0.008 (4)
C70.044 (4)0.041 (5)0.055 (5)0.004 (4)0.010 (4)0.016 (4)
C80.056 (6)0.061 (6)0.102 (8)0.017 (5)0.025 (5)0.049 (6)
C140.058 (5)0.079 (7)0.045 (5)0.018 (5)0.023 (4)0.011 (5)
C130.043 (4)0.061 (6)0.051 (5)0.011 (4)0.019 (4)0.023 (4)
C110.033 (4)0.046 (5)0.074 (6)0.011 (3)0.022 (4)0.020 (5)
C50.073 (6)0.061 (6)0.048 (5)0.005 (5)0.017 (4)0.010 (4)
C210.049 (5)0.060 (6)0.058 (6)0.014 (4)0.020 (4)0.002 (5)
C240.064 (6)0.056 (6)0.120 (9)0.015 (5)0.049 (6)0.020 (7)
C200.045 (4)0.051 (5)0.049 (5)0.009 (4)0.002 (4)0.006 (4)
C90.038 (4)0.066 (7)0.116 (9)0.020 (4)0.015 (5)0.033 (6)
C220.053 (5)0.040 (5)0.045 (4)0.006 (4)0.011 (4)0.002 (4)
C190.055 (5)0.063 (6)0.043 (5)0.007 (4)0.009 (4)0.014 (4)
C30.080 (6)0.062 (7)0.068 (6)0.008 (5)0.042 (5)0.003 (5)
C180.048 (4)0.062 (6)0.053 (5)0.009 (4)0.017 (4)0.001 (4)
C260.060 (5)0.040 (5)0.061 (5)0.021 (4)0.016 (4)0.004 (4)
C230.088 (7)0.089 (9)0.079 (8)0.046 (7)0.010 (6)0.027 (7)
C40.099 (8)0.077 (8)0.055 (6)0.010 (6)0.039 (6)0.008 (5)
C270.1040.113 (11)0.1110.057 (7)0.065 (5)0.058 (8)
C250.059 (5)0.068 (7)0.111 (9)0.024 (5)0.041 (6)0.027 (6)
C280.117 (9)0.108 (10)0.134 (11)0.074 (8)0.089 (9)0.071 (9)
C290.072 (6)0.061 (7)0.083 (7)0.021 (5)0.005 (5)0.005 (5)
Zn0.0342 (4)0.0389 (5)0.0400 (5)0.0034 (4)0.0084 (4)0.0014 (4)
Ni0.0336 (4)0.0344 (5)0.0477 (6)0.0013 (4)0.0108 (4)0.0022 (4)
O20.037 (2)0.047 (3)0.039 (3)0.007 (2)0.011 (2)0.001 (2)
O10.040 (3)0.046 (3)0.034 (3)0.001 (2)0.013 (2)0.008 (2)
Geometric parameters (Å, º) top
I1—Zn2.5320 (11)C13—H130.93
I2—Zn2.5333 (10)C11—H110.93
N3—C221.328 (10)C5—C41.377 (15)
N3—C181.341 (11)C5—H50.93
N3—Ni2.177 (6)C21—C221.358 (11)
N4—C241.325 (11)C21—C201.392 (12)
N4—C281.326 (12)C21—H210.93
N4—Ni2.214 (7)C24—C251.363 (13)
C17—O21.296 (9)C24—H240.93
C17—C161.406 (11)C20—C191.368 (13)
C17—C121.426 (10)C20—C231.509 (13)
C6—C11.392 (11)C9—H9A0.97
C6—C51.416 (12)C9—H9B0.97
C6—C71.456 (11)C22—H220.93
C1—O11.319 (9)C19—C181.389 (12)
C1—C21.408 (11)C19—H190.93
N1—C71.272 (10)C3—C41.363 (15)
N1—C81.503 (11)C3—H30.93
N1—Ni2.016 (7)C18—H180.93
C16—C151.372 (12)C26—C251.339 (14)
C16—H160.93C26—C271.341 (13)
N2—C111.274 (11)C26—C291.513 (12)
N2—C101.479 (11)C23—H23A0.96
N2—Ni2.021 (6)C23—H23B0.96
C10—C91.480 (16)C23—H23C0.96
C10—H10A0.97C4—H40.93
C10—H10B0.97C27—C281.376 (15)
C15—C141.390 (13)C27—H270.93
C15—H150.93C25—H250.93
C12—C131.383 (11)C28—H280.93
C12—C111.452 (13)C29—H29A0.96
C2—C31.398 (12)C29—H29B0.96
C2—H20.93C29—H29C0.96
C7—H70.93Zn—O11.985 (5)
C8—C91.528 (13)Zn—O21.987 (5)
C8—H8A0.97Zn—Ni3.0634 (12)
C8—H8B0.97Ni—O22.029 (5)
C14—C131.385 (14)Ni—O12.038 (5)
C14—H140.93
C22—N3—C18115.6 (7)N3—C22—H22117.5
C22—N3—Ni120.7 (5)C21—C22—H22117.5
C18—N3—Ni123.7 (5)C20—C19—C18121.1 (8)
C24—N4—C28112.1 (8)C20—C19—H19119.5
C24—N4—Ni124.3 (7)C18—C19—H19119.5
C28—N4—Ni123.5 (6)C4—C3—C2121.4 (9)
O2—C17—C16120.9 (7)C4—C3—H3119.3
O2—C17—C12122.4 (7)C2—C3—H3119.3
C16—C17—C12116.7 (7)N3—C18—C19122.7 (8)
C1—C6—C5118.8 (8)N3—C18—H18118.6
C1—C6—C7126.1 (7)C19—C18—H18118.6
C5—C6—C7115.0 (8)C25—C26—C27114.7 (9)
O1—C1—C6122.4 (7)C25—C26—C29123.9 (8)
O1—C1—C2118.1 (7)C27—C26—C29121.4 (9)
C6—C1—C2119.5 (7)C20—C23—H23A109.5
C7—N1—C8116.2 (7)C20—C23—H23B109.5
C7—N1—Ni126.6 (6)H23A—C23—H23B109.5
C8—N1—Ni117.2 (6)C20—C23—H23C109.5
C15—C16—C17121.8 (8)H23A—C23—H23C109.5
C15—C16—H16119.1H23B—C23—H23C109.5
C17—C16—H16119.1C3—C4—C5119.4 (9)
C11—N2—C10115.6 (7)C3—C4—H4120.3
C11—N2—Ni123.7 (6)C5—C4—H4120.3
C10—N2—Ni120.7 (6)C26—C27—C28120.5 (10)
N2—C10—C9114.5 (8)C26—C27—H27119.7
N2—C10—H10A108.6C28—C27—H27119.7
C9—C10—H10A108.6C26—C25—C24122.2 (9)
N2—C10—H10B108.6C26—C25—H25118.9
C9—C10—H10B108.6C24—C25—H25118.9
H10A—C10—H10B107.6N4—C28—C27125.5 (9)
C16—C15—C14121.0 (9)N4—C28—H28117.2
C16—C15—H15119.5C27—C28—H28117.2
C14—C15—H15119.5C26—C29—H29A109.5
C13—C12—C17120.5 (8)C26—C29—H29B109.5
C13—C12—C11116.4 (7)H29A—C29—H29B109.5
C17—C12—C11122.9 (7)C26—C29—H29C109.5
C3—C2—C1119.5 (8)H29A—C29—H29C109.5
C3—C2—H2120.2H29B—C29—H29C109.5
C1—C2—H2120.2O1—Zn—O281.9 (2)
N1—C7—C6126.2 (8)O1—Zn—I1114.59 (15)
N1—C7—H7116.9O2—Zn—I1116.48 (16)
C6—C7—H7116.9O1—Zn—I2114.53 (15)
N1—C8—C9112.4 (7)O2—Zn—I2111.69 (15)
N1—C8—H8A109.1I1—Zn—I2113.93 (4)
C9—C8—H8A109.1O1—Zn—Ni41.06 (13)
N1—C8—H8B109.1O2—Zn—Ni40.81 (15)
C9—C8—H8B109.1I1—Zn—Ni123.69 (4)
H8A—C8—H8B107.9I2—Zn—Ni122.37 (4)
C13—C14—C15118.5 (8)N1—Ni—N2100.1 (3)
C13—C14—H14120.7N1—Ni—O2169.6 (2)
C15—C14—H14120.7N2—Ni—O290.3 (2)
C12—C13—C14121.5 (8)N1—Ni—O190.1 (2)
C12—C13—H13119.3N2—Ni—O1169.8 (3)
C14—C13—H13119.3O2—Ni—O179.52 (19)
N2—C11—C12130.1 (7)N1—Ni—N391.9 (3)
N2—C11—H11115N2—Ni—N388.8 (2)
C12—C11—H11115O2—Ni—N388.3 (2)
C4—C5—C6121.3 (9)O1—Ni—N390.3 (2)
C4—C5—H5119.4N1—Ni—N490.0 (3)
C6—C5—H5119.4N2—Ni—N489.6 (3)
C22—C21—C20120.2 (8)O2—Ni—N490.0 (3)
C22—C21—H21119.9O1—Ni—N491.0 (2)
C20—C21—H21119.9N3—Ni—N4177.7 (3)
N4—C24—C25124.5 (9)N1—Ni—Zn129.8 (2)
N4—C24—H24117.8N2—Ni—Zn130.1 (2)
C25—C24—H24117.8O2—Ni—Zn39.77 (14)
C19—C20—C21115.5 (8)O1—Ni—Zn39.77 (13)
C19—C20—C23123.6 (8)N3—Ni—Zn88.04 (16)
C21—C20—C23120.8 (8)N4—Ni—Zn91.72 (18)
C10—C9—C8115.1 (9)C17—O2—Zn130.5 (5)
C10—C9—H9A108.5C17—O2—Ni130.0 (5)
C8—C9—H9A108.5Zn—O2—Ni99.4 (2)
C10—C9—H9B108.5C1—O1—Zn132.2 (5)
C8—C9—H9B108.5C1—O1—Ni128.6 (5)
H9A—C9—H9B107.5Zn—O1—Ni99.2 (2)
N3—C22—C21124.9 (8)
C5—C6—C1—O1178.7 (7)C18—N3—Ni—O2126.5 (6)
C7—C6—C1—O11.7 (13)C22—N3—Ni—O1135.4 (6)
C5—C6—C1—C21.8 (12)C18—N3—Ni—O147.0 (6)
C7—C6—C1—C2178.8 (7)C22—N3—Ni—N412 (6)
O2—C17—C16—C15179.3 (7)C18—N3—Ni—N4171 (6)
C12—C17—C16—C150.9 (11)C22—N3—Ni—Zn95.7 (5)
C11—N2—C10—C9158.8 (8)C18—N3—Ni—Zn86.7 (6)
Ni—N2—C10—C921.2 (11)C24—N4—Ni—N172.8 (9)
C17—C16—C15—C140.3 (13)C28—N4—Ni—N1111.3 (10)
O2—C17—C12—C13178.6 (7)C24—N4—Ni—N2172.9 (9)
C16—C17—C12—C130.2 (10)C28—N4—Ni—N211.2 (10)
O2—C17—C12—C114.5 (11)C24—N4—Ni—O296.8 (9)
C16—C17—C12—C11173.9 (7)C28—N4—Ni—O279.2 (10)
O1—C1—C2—C3179.1 (8)C24—N4—Ni—O117.3 (9)
C6—C1—C2—C31.5 (12)C28—N4—Ni—O1158.7 (10)
C8—N1—C7—C6179.2 (8)C24—N4—Ni—N3141 (6)
Ni—N1—C7—C61.3 (12)C28—N4—Ni—N335 (6)
C1—C6—C7—N10.2 (14)C24—N4—Ni—Zn57.0 (9)
C5—C6—C7—N1177.2 (9)C28—N4—Ni—Zn118.9 (10)
C7—N1—C8—C9144.4 (9)O1—Zn—Ni—N11.9 (3)
Ni—N1—C8—C937.5 (11)O2—Zn—Ni—N1179.4 (4)
C16—C15—C14—C130.9 (13)I1—Zn—Ni—N187.9 (3)
C17—C12—C13—C141.0 (12)I2—Zn—Ni—N193.1 (3)
C11—C12—C13—C14175.5 (8)O1—Zn—Ni—N2179.5 (3)
C15—C14—C13—C121.6 (13)O2—Zn—Ni—N23.0 (3)
C10—N2—C11—C12175.9 (8)I1—Zn—Ni—N289.7 (3)
Ni—N2—C11—C124.2 (12)I2—Zn—Ni—N289.3 (3)
C13—C12—C11—N2177.6 (8)O1—Zn—Ni—O2177.5 (3)
C17—C12—C11—N23.3 (13)I1—Zn—Ni—O292.8 (2)
C1—C6—C5—C41.0 (14)I2—Zn—Ni—O286.3 (2)
C7—C6—C5—C4178.3 (9)O2—Zn—Ni—O1177.5 (3)
C28—N4—C24—C256.4 (18)I1—Zn—Ni—O189.8 (2)
Ni—N4—C24—C25177.2 (10)I2—Zn—Ni—O191.2 (2)
C22—C21—C20—C191.2 (13)O1—Zn—Ni—N392.8 (3)
C22—C21—C20—C23177.9 (10)O2—Zn—Ni—N389.8 (3)
N2—C10—C9—C866.8 (11)I1—Zn—Ni—N32.99 (17)
N1—C8—C9—C1077.1 (12)I2—Zn—Ni—N3176.05 (17)
C18—N3—C22—C210.2 (12)O1—Zn—Ni—N489.6 (3)
Ni—N3—C22—C21177.9 (7)O2—Zn—Ni—N487.9 (3)
C20—C21—C22—N30.0 (13)I1—Zn—Ni—N4179.3 (2)
C21—C20—C19—C182.5 (13)I2—Zn—Ni—N41.6 (2)
C23—C20—C19—C18179.1 (10)C16—C17—O2—Zn5.2 (10)
C1—C2—C3—C40.2 (15)C12—C17—O2—Zn176.5 (5)
C22—N3—C18—C191.5 (12)C16—C17—O2—Ni179.8 (5)
Ni—N3—C18—C19179.2 (7)C12—C17—O2—Ni1.9 (10)
C20—C19—C18—N32.8 (14)O1—Zn—O2—C17174.1 (6)
C2—C3—C4—C50.7 (17)I1—Zn—O2—C1772.4 (6)
C6—C5—C4—C30.3 (16)I2—Zn—O2—C1760.9 (6)
C25—C26—C27—C283 (2)Ni—Zn—O2—C17175.8 (7)
C29—C26—C27—C28178.5 (14)O1—Zn—O2—Ni1.7 (2)
C27—C26—C25—C244.1 (18)I1—Zn—O2—Ni111.79 (17)
C29—C26—C25—C24176.9 (11)I2—Zn—O2—Ni114.90 (16)
N4—C24—C25—C267 (2)N1—Ni—O2—C17173.1 (12)
C24—N4—C28—C275 (2)N2—Ni—O2—C176.5 (6)
Ni—N4—C28—C27178.8 (13)O1—Ni—O2—C17174.2 (6)
C26—C27—C28—N43 (3)N3—Ni—O2—C1795.2 (6)
C7—N1—Ni—N2179.6 (7)N4—Ni—O2—C1783.1 (6)
C8—N1—Ni—N21.7 (7)Zn—Ni—O2—C17175.8 (7)
C7—N1—Ni—O20.0 (19)N1—Ni—O2—Zn2.7 (15)
C8—N1—Ni—O2177.9 (12)N2—Ni—O2—Zn177.7 (3)
C7—N1—Ni—O11.0 (7)O1—Ni—O2—Zn1.6 (2)
C8—N1—Ni—O1179.0 (6)N3—Ni—O2—Zn88.9 (2)
C7—N1—Ni—N391.3 (7)N4—Ni—O2—Zn92.7 (3)
C8—N1—Ni—N390.8 (6)C6—C1—O1—Zn179.2 (5)
C7—N1—Ni—N490.0 (7)C2—C1—O1—Zn1.4 (10)
C8—N1—Ni—N487.9 (6)C6—C1—O1—Ni1.7 (10)
C7—N1—Ni—Zn2.2 (8)C2—C1—O1—Ni178.8 (5)
C8—N1—Ni—Zn179.8 (5)O2—Zn—O1—C1179.7 (6)
C11—N2—Ni—N1172.7 (7)I1—Zn—O1—C164.2 (6)
C10—N2—Ni—N17.2 (7)I2—Zn—O1—C170.2 (6)
C11—N2—Ni—O27.2 (7)Ni—Zn—O1—C1178.0 (7)
C10—N2—Ni—O2172.9 (6)O2—Zn—O1—Ni1.7 (2)
C11—N2—Ni—O111.0 (19)I1—Zn—O1—Ni113.79 (16)
C10—N2—Ni—O1169.1 (12)I2—Zn—O1—Ni111.85 (16)
C11—N2—Ni—N395.5 (7)N1—Ni—O1—C10.5 (6)
C10—N2—Ni—N384.5 (6)N2—Ni—O1—C1175.9 (13)
C11—N2—Ni—N482.8 (7)O2—Ni—O1—C1179.7 (6)
C10—N2—Ni—N497.2 (6)N3—Ni—O1—C191.5 (6)
C11—N2—Ni—Zn9.1 (8)N4—Ni—O1—C190.5 (6)
C10—N2—Ni—Zn170.9 (5)Zn—Ni—O1—C1178.1 (7)
C22—N3—Ni—N1134.5 (6)N1—Ni—O1—Zn178.5 (3)
C18—N3—Ni—N143.1 (7)N2—Ni—O1—Zn2.2 (15)
C22—N3—Ni—N234.4 (6)O2—Ni—O1—Zn1.6 (2)
C18—N3—Ni—N2143.1 (7)N3—Ni—O1—Zn86.6 (2)
C22—N3—Ni—O255.9 (6)N4—Ni—O1—Zn91.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···I1i0.973.033.981 (10)166
C22—H22···N20.932.613.078 (10)111
C28—H28···N20.932.513.086 (15)120
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[ZnI2Ni(C17H16N2O2)(C6H7N)2]
Mr844.45
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)9.3523 (11), 19.615 (3), 17.4933 (10)
β (°) 105.390 (12)
V3)3094.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.41
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
Absorption correctionψ scan
North et al. (1968)
Tmin, Tmax0.506, 0.511
No. of measured, independent and
observed [I > 2σ(I)] reflections
7375, 3745, 2491
Rint0.052
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.075, 1.01
No. of reflections3745
No. of parameters352
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.49
Absolute structureFlack (1983), no Friedel pairs
Absolute structure parameter0.00 (2)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···I1i0.973.033.981 (10)166
C22—H22···N20.932.613.078 (10)111
C28—H28···N20.932.513.086 (15)120
Symmetry code: (i) x+1/2, y1/2, z.
Table 2. Comparision of the some crystallographic properties of corresponding dinuclear complexes. top
Compound [MtR2Mc]Space GroupMc···Mt (Å)Mt-R (Å)
(I)Monoclinic Cc3.0634 (13)2.5320 (11)-2.5333 (10)
(II)Monoclinic Cc3.0738 (19)2.3412 (18)-2.3628 (16)
(III)Monoclinic Cc3.0695 (11)2.5303 (9)-2.5424 (9)
(IV)Monoclinic P21/c3.0757 (6)2.208 (1)-2.208 (1)
(V)Monoclinik P21/n3.0800 (9)2.3309 (9)-2.3508 (10)
(VI)Monoclinic P21not_given2.216 (4)-2.200 (4)
(VII)Orthorhombic P2121213.0917 (15)2.3356 (16)-2.3634 (15)
(VIII)Orthorhombic P2121213.161 (1)2.2163 (14)-2.2054 (14)
(IX)Orthorhombic P2121213.1464 (16)2.5373 (14)-2.5527 (14)
(X)Triclinic P-13.5301 (8)2.3430 (10)-2.325 (2)
(XI)Triclinic P-13.4859 (7)2.320 (2)-2.324 (2)
Notes: (II) [ZnBr2Ni(salpd2-)(DMF)2] (Arıcı et al., 2001); (III) [ZnI2Ni(salpd2-)(DMF)] (Tatar, 2002); (IV) [ZnCl2Cu(salpd2-)] (Tatar et al., 1999); (V) [ZnBr2Cu(LDMH2)(piperidine)] (Svoboda et al., 2001); (VI) [ZnCl2Zn(salpd2-)(MeOH)] (Atakol, Tatar et al., 1999); (VII) [ZnBr2Ni(salpd2-)(DMF)] (Tatar, Atakol, Arıcı, 2002); (VIII) [ZnCl2Zn(salpd2-)(DMF)] (Tatar, Atakol, Ülkü, 2002); (IX) [ZnI2Zn(salpd2-)(DMF)] (Arıcı & Aksu, 2002); (X) [HgCl2Cu(salpd2-)] (Atakol, Arıcı et al., 1999); (XI) [HgCl2Ni(salpd2-)] Arıcı et al., 2006). salpd2- = N,N'-bis(salicylidene)-1,3-propanediamine (C17H16N2O2), LDMH2 = N,N'-bis(salicylidene)-2,2'-dimethyl-1, 3-propanediamine (C19H22N2O2), DMF = dimethylformamide (C3H7NO), piperidine (C5H11N), methylpyridine (C6H7N).
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds