Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C24H20S2, adopts an anti conformation with approximately parallel ring systems; the inter­planar angle is 5.57 (8)°. Apart from the outer ring of the meta naphthalene, the mol­ecule displays approximate mirror symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041761/bt2489sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041761/bt2489Isup2.hkl
Contains datablock I

CCDC reference: 660375

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.048
  • wR factor = 0.120
  • Data-to-parameter ratio = 20.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT410_ALERT_2_B Short Intra H...H Contact H3B .. H12A .. 1.86 Ang.
Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT480_ALERT_4_C Long H...A H-Bond Reported H8 .. S2 .. 2.93 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H9 .. S13 .. 3.00 Ang.
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

We have reported the structures of 2,13-dithia[3]metacyclo[3](2,3)-naphthalenophane [(IIa); Jones & Kus, 1997], and 17-methyl-2,13-dithia[3]metacyclo[3](2,3)naphthalenophane [(IIb); Jones et al., 1996] as part of a series of ortho-meta dithiaphanes. Surprisingly, in the solid state both compounds exist in an anti conformation, in contrast to the simpler analogue 2,11-dithia[3.3]orthometacyclophane, which adopts a syn conformation (Bodwell et al., 1990). Here we report the next compound in the ortho-meta series, the title compound (I).

Compound (I) (Fig. 1) displays approximate mirror symmetry except, necessarily, for the second ring of the meta-substituted naphthalene system. Torsion angles of the central 11-membered ring are given in Table 1. These torsion angles, and thus the overall molecular conformations, are closely similar in all three compounds (I), (IIa) and (IIb) (Fig. 3). The ring systems of I are approximately parallel [interplanar angle 5.57 (8)°] and adopt anti conformation. The perpendicular distance between the ring planes (as given by the distance of atoms of the meta-substituted ring from the best plane of the ortho-substituted naphthalene) is 2.8–3.1 Å.

The crystal packing of the three compounds is different; they crystallize in different space groups. In (I), two weak C—H···S interactions (Table 2) combine with a short C—H···π contact from H12B to the centroid of the ring C16A–C20A [2.55 Å, angle 160°, operator 1 - x, 1 - y, -z)] to form columns of molecules parallel to the y axis (Fig. 2).

Related literature top

For related literature, see: Bodwell et al. (1990); Jones & Kus (1997); Jones et al. (1996); Kuś (1991).

Experimental top

The title compound was prepared by cyclization of 1,3-di(bromomethyl)naphthalene and 2,3-di(mercaptomethyl)naphthalene as described by Kuś (1991). Single crystals were obtained from DMF solution by very slow evaporation (5 years).

Refinement top

Hydrogen atoms were included using a riding model with C—H 0.95 (aromatic), 0.99 (methyene) Å; U(H) values were fixed at 1.2U(C) of the parent C atom.

Structure description top

We have reported the structures of 2,13-dithia[3]metacyclo[3](2,3)-naphthalenophane [(IIa); Jones & Kus, 1997], and 17-methyl-2,13-dithia[3]metacyclo[3](2,3)naphthalenophane [(IIb); Jones et al., 1996] as part of a series of ortho-meta dithiaphanes. Surprisingly, in the solid state both compounds exist in an anti conformation, in contrast to the simpler analogue 2,11-dithia[3.3]orthometacyclophane, which adopts a syn conformation (Bodwell et al., 1990). Here we report the next compound in the ortho-meta series, the title compound (I).

Compound (I) (Fig. 1) displays approximate mirror symmetry except, necessarily, for the second ring of the meta-substituted naphthalene system. Torsion angles of the central 11-membered ring are given in Table 1. These torsion angles, and thus the overall molecular conformations, are closely similar in all three compounds (I), (IIa) and (IIb) (Fig. 3). The ring systems of I are approximately parallel [interplanar angle 5.57 (8)°] and adopt anti conformation. The perpendicular distance between the ring planes (as given by the distance of atoms of the meta-substituted ring from the best plane of the ortho-substituted naphthalene) is 2.8–3.1 Å.

The crystal packing of the three compounds is different; they crystallize in different space groups. In (I), two weak C—H···S interactions (Table 2) combine with a short C—H···π contact from H12B to the centroid of the ring C16A–C20A [2.55 Å, angle 160°, operator 1 - x, 1 - y, -z)] to form columns of molecules parallel to the y axis (Fig. 2).

For related literature, see: Bodwell et al. (1990); Jones & Kus (1997); Jones et al. (1996); Kuś (1991).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS86 ??? (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecule of the title compound in the crystal. Ellipsoids represent 50% probability levels.
[Figure 2] Fig. 2. Packing diagram of I in the region z 1/2. View direction: perpendicular to the xy plane. Thin dashed bonds indicate C—H···S and thick dashed bonds C—H···π interactions. H atoms not involved in short contacts are omitted for clarity.
[Figure 3] Fig. 3. Schematic representations of (I), (IIa) and (IIb).
2,13-Dithia[3.3](1,3)(2,3)naphthalenophane top
Crystal data top
C24H20S2F(000) = 784
Mr = 372.52Dx = 1.372 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.6839 (11) ÅCell parameters from 9929 reflections
b = 8.4014 (8) Åθ = 2.4–29.1°
c = 20.285 (2) ŵ = 0.30 mm1
β = 98.000 (5)°T = 100 K
V = 1803.0 (3) Å3Tablet, colourless
Z = 40.26 × 0.18 × 0.12 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4078 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 29.1°, θmin = 2.0°
φ and ω scansh = 1414
34380 measured reflectionsk = 1111
4845 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0421P)2 + 1.9877P]
where P = (Fo2 + 2Fc2)/3
4845 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C24H20S2V = 1803.0 (3) Å3
Mr = 372.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6839 (11) ŵ = 0.30 mm1
b = 8.4014 (8) ÅT = 100 K
c = 20.285 (2) Å0.26 × 0.18 × 0.12 mm
β = 98.000 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4078 reflections with I > 2σ(I)
34380 measured reflectionsRint = 0.042
4845 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.13Δρmax = 0.54 e Å3
4845 reflectionsΔρmin = 0.34 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 0.6768 (0.0048) x + 5.7973 (0.0030) y + 14.6617 (0.0072) z = 2.8381 (0.0041)

* -0.0179 (0.0014) C4 * 0.0111 (0.0015) C5 * 0.0155 (0.0016) C5A * 0.0040 (0.0015) C6 * -0.0144 (0.0016) C7 * -0.0102 (0.0016) C8 * 0.0037 (0.0015) C9 * 0.0127 (0.0016) C9A * 0.0079 (0.0015) C10 * -0.0123 (0.0014) C11

Rms deviation of fitted atoms = 0.0118

- 0.2034 (0.0040) x + 5.2610 (0.0039) y + 15.7106 (0.0078) z = 5.7669 (0.0029)

Angle to previous plane (with approximate e.s.d.) = 5.57 (0.08)

* -0.0328 (0.0015) C15 * -0.0107 (0.0016) C16 * 0.0253 (0.0017) C16A * 0.0224 (0.0017) C17 * -0.0097 (0.0017) C18 * -0.0196 (0.0017) C19 * -0.0062 (0.0016) C20 * 0.0115 (0.0017) C20A * 0.0052 (0.0015) C21 * 0.0146 (0.0015) C22

Rms deviation of fitted atoms = 0.0180

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.51333 (19)0.4411 (2)0.21556 (9)0.0215 (4)
H1A0.45390.45640.24830.026*
H1B0.59780.41820.24040.026*
S20.46141 (4)0.27093 (6)0.16196 (3)0.02078 (12)
C30.54841 (17)0.3050 (2)0.09254 (9)0.0191 (4)
H3A0.51970.22600.05750.023*
H3B0.52530.41170.07400.023*
C40.69170 (17)0.2959 (2)0.10727 (9)0.0161 (3)
C50.74674 (17)0.1893 (2)0.15396 (9)0.0165 (3)
H50.69390.12640.17760.020*
C5A0.87958 (17)0.1700 (2)0.16802 (9)0.0159 (3)
C60.93695 (18)0.0566 (2)0.21471 (9)0.0190 (4)
H60.88560.00830.23840.023*
C71.06536 (19)0.0402 (2)0.22588 (10)0.0210 (4)
H71.10260.03670.25690.025*
C81.14336 (18)0.1369 (2)0.19153 (10)0.0211 (4)
H81.23260.12500.19990.025*
C91.09126 (18)0.2473 (2)0.14642 (9)0.0187 (4)
H91.14460.31160.12370.022*
C9A0.95820 (17)0.2666 (2)0.13324 (9)0.0156 (3)
C100.89987 (17)0.3780 (2)0.08618 (9)0.0169 (3)
H100.95190.44390.06330.020*
C110.77070 (17)0.3943 (2)0.07241 (9)0.0161 (3)
C120.71529 (18)0.5127 (2)0.01978 (9)0.0187 (4)
H12A0.62710.53510.02680.022*
H12B0.71190.46100.02430.022*
S130.79701 (5)0.70201 (6)0.01669 (2)0.02253 (12)
C140.78066 (19)0.7904 (2)0.09742 (10)0.0227 (4)
H14A0.84500.74360.13180.027*
H14B0.79720.90610.09560.027*
C150.65157 (19)0.7646 (2)0.11739 (9)0.0198 (4)
C160.54634 (19)0.8478 (2)0.08957 (10)0.0211 (4)
H160.55570.93390.06030.025*
C16A0.42454 (19)0.8071 (2)0.10390 (9)0.0201 (4)
C170.3147 (2)0.8902 (3)0.07447 (10)0.0258 (4)
H170.32360.97860.04630.031*
C180.1969 (2)0.8455 (3)0.08588 (11)0.0299 (5)
H180.12480.90160.06510.036*
C190.1817 (2)0.7158 (3)0.12849 (11)0.0290 (5)
H190.09950.68560.13650.035*
C200.28544 (19)0.6332 (3)0.15835 (10)0.0237 (4)
H200.27410.54650.18700.028*
C20A0.40914 (18)0.6755 (2)0.14689 (9)0.0192 (4)
C210.51962 (18)0.5912 (2)0.17616 (9)0.0184 (4)
C220.63570 (18)0.6398 (2)0.16198 (9)0.0186 (4)
H220.70890.58680.18330.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0248 (10)0.0215 (9)0.0179 (9)0.0011 (7)0.0020 (7)0.0004 (7)
S20.0159 (2)0.0197 (2)0.0270 (3)0.00133 (17)0.00408 (18)0.00062 (18)
C30.0161 (8)0.0214 (9)0.0189 (9)0.0019 (7)0.0005 (7)0.0016 (7)
C40.0156 (8)0.0160 (8)0.0162 (8)0.0015 (7)0.0002 (6)0.0034 (6)
C50.0143 (8)0.0162 (8)0.0191 (9)0.0001 (6)0.0024 (7)0.0007 (7)
C5A0.0153 (8)0.0167 (8)0.0154 (8)0.0011 (6)0.0011 (6)0.0014 (6)
C60.0199 (9)0.0185 (8)0.0187 (9)0.0001 (7)0.0028 (7)0.0039 (7)
C70.0212 (9)0.0220 (9)0.0187 (9)0.0044 (7)0.0011 (7)0.0036 (7)
C80.0147 (8)0.0278 (10)0.0200 (9)0.0024 (7)0.0004 (7)0.0008 (8)
C90.0178 (9)0.0226 (9)0.0159 (8)0.0006 (7)0.0035 (7)0.0004 (7)
C9A0.0159 (8)0.0157 (8)0.0153 (8)0.0006 (6)0.0024 (6)0.0019 (6)
C100.0199 (9)0.0166 (8)0.0143 (8)0.0001 (7)0.0030 (7)0.0004 (6)
C110.0197 (9)0.0156 (8)0.0125 (8)0.0023 (7)0.0008 (6)0.0015 (6)
C120.0215 (9)0.0195 (9)0.0146 (8)0.0031 (7)0.0007 (7)0.0009 (7)
S130.0267 (3)0.0208 (2)0.0209 (2)0.00169 (19)0.00617 (19)0.00531 (18)
C140.0226 (9)0.0207 (9)0.0247 (10)0.0032 (7)0.0027 (8)0.0016 (8)
C150.0227 (9)0.0181 (9)0.0181 (9)0.0011 (7)0.0012 (7)0.0051 (7)
C160.0275 (10)0.0168 (8)0.0192 (9)0.0009 (7)0.0034 (7)0.0006 (7)
C16A0.0250 (10)0.0178 (8)0.0169 (9)0.0032 (7)0.0014 (7)0.0029 (7)
C170.0292 (11)0.0218 (9)0.0255 (10)0.0082 (8)0.0013 (8)0.0000 (8)
C180.0253 (11)0.0301 (11)0.0330 (12)0.0097 (9)0.0002 (9)0.0047 (9)
C190.0209 (10)0.0326 (11)0.0343 (12)0.0026 (8)0.0067 (8)0.0058 (9)
C200.0240 (10)0.0243 (10)0.0236 (10)0.0012 (8)0.0067 (8)0.0024 (8)
C20A0.0217 (9)0.0194 (9)0.0167 (9)0.0016 (7)0.0031 (7)0.0041 (7)
C210.0244 (9)0.0169 (8)0.0137 (8)0.0014 (7)0.0018 (7)0.0023 (6)
C220.0209 (9)0.0176 (8)0.0158 (8)0.0022 (7)0.0020 (7)0.0040 (7)
Geometric parameters (Å, º) top
C1—C211.499 (3)C18—C191.414 (3)
C1—S21.835 (2)C19—C201.375 (3)
S2—C31.815 (2)C20—C20A1.419 (3)
C3—C41.520 (2)C20A—C211.433 (3)
C4—C51.375 (3)C21—C221.374 (3)
C4—C111.436 (3)C1—H1A0.9900
C5—C5A1.418 (2)C1—H1B0.9900
C5A—C61.421 (2)C3—H3A0.9900
C5A—C9A1.424 (3)C3—H3B0.9900
C6—C71.366 (3)C5—H50.9500
C7—C81.415 (3)C6—H60.9500
C8—C91.366 (3)C7—H70.9500
C9—C9A1.419 (3)C8—H80.9500
C9A—C101.418 (2)C9—H90.9500
C10—C111.376 (3)C10—H100.9500
C11—C121.518 (2)C12—H12A0.9900
C12—S131.820 (2)C12—H12B0.9900
S13—C141.828 (2)C14—H14A0.9900
C14—C151.506 (3)C14—H14B0.9900
C15—C161.376 (3)C16—H160.9500
C15—C221.410 (3)C17—H170.9500
C16—C16A1.414 (3)C18—H180.9500
C16A—C171.423 (3)C19—H190.9500
C16A—C20A1.432 (3)C20—H200.9500
C17—C181.364 (3)C22—H220.9500
C21—C1—S2111.82 (13)S2—C1—H1A109.3
C3—S2—C1101.06 (9)C21—C1—H1B109.3
C4—C3—S2116.75 (13)S2—C1—H1B109.3
C5—C4—C11119.33 (16)H1A—C1—H1B107.9
C5—C4—C3119.37 (17)C4—C3—H3A108.1
C11—C4—C3121.28 (16)S2—C3—H3A108.1
C4—C5—C5A122.23 (17)C4—C3—H3B108.1
C5—C5A—C6122.54 (17)S2—C3—H3B108.1
C5—C5A—C9A118.57 (16)H3A—C3—H3B107.3
C6—C5A—C9A118.89 (16)C4—C5—H5118.9
C7—C6—C5A120.56 (17)C5A—C5—H5118.9
C6—C7—C8120.47 (18)C7—C6—H6119.7
C9—C8—C7120.45 (17)C5A—C6—H6119.7
C8—C9—C9A120.55 (17)C6—C7—H7119.8
C10—C9A—C9122.52 (17)C8—C7—H7119.8
C10—C9A—C5A118.41 (16)C9—C8—H8119.8
C9—C9A—C5A119.07 (16)C7—C8—H8119.8
C11—C10—C9A122.47 (17)C8—C9—H9119.7
C10—C11—C4118.97 (16)C9A—C9—H9119.7
C10—C11—C12119.34 (17)C11—C10—H10118.8
C4—C11—C12121.68 (16)C9A—C10—H10118.8
C11—C12—S13117.07 (13)C11—C12—H12A108.0
C12—S13—C14102.58 (9)S13—C12—H12A108.0
C15—C14—S13112.81 (14)C11—C12—H12B108.0
C16—C15—C22118.44 (18)S13—C12—H12B108.0
C16—C15—C14122.88 (18)H12A—C12—H12B107.3
C22—C15—C14118.41 (17)C15—C14—H14A109.0
C15—C16—C16A121.04 (18)S13—C14—H14A109.0
C16—C16A—C17121.61 (18)C15—C14—H14B109.0
C16—C16A—C20A119.91 (18)S13—C14—H14B109.0
C17—C16A—C20A118.44 (19)H14A—C14—H14B107.8
C18—C17—C16A121.3 (2)C15—C16—H16119.5
C17—C18—C19120.2 (2)C16A—C16—H16119.5
C20—C19—C18120.3 (2)C18—C17—H17119.3
C19—C20—C20A120.9 (2)C16A—C17—H17119.3
C20—C20A—C16A118.82 (18)C17—C18—H18119.9
C20—C20A—C21122.72 (18)C19—C18—H18119.9
C16A—C20A—C21118.45 (18)C20—C19—H19119.9
C22—C21—C20A118.81 (17)C18—C19—H19119.9
C22—C21—C1118.07 (17)C19—C20—H20119.6
C20A—C21—C1122.77 (18)C20A—C20—H20119.6
C21—C22—C15123.24 (18)C21—C22—H22118.4
C21—C1—H1A109.3C15—C22—H22118.4
C21—C1—S2—C341.41 (16)C11—C12—S13—C1463.60 (16)
C1—S2—C3—C464.53 (16)C12—S13—C14—C1540.79 (16)
S2—C3—C4—C534.4 (2)S13—C14—C15—C1675.2 (2)
S2—C3—C4—C11146.85 (15)S13—C14—C15—C2298.75 (18)
C11—C4—C5—C5A1.5 (3)C22—C15—C16—C16A1.5 (3)
C3—C4—C5—C5A177.25 (17)C14—C15—C16—C16A172.45 (17)
C4—C5—C5A—C6178.02 (17)C15—C16—C16A—C17178.77 (18)
C4—C5—C5A—C9A1.1 (3)C15—C16—C16A—C20A1.3 (3)
C5—C5A—C6—C7178.87 (18)C16—C16A—C17—C18176.7 (2)
C9A—C5A—C6—C70.2 (3)C20A—C16A—C17—C180.8 (3)
C5A—C6—C7—C80.6 (3)C16A—C17—C18—C191.0 (3)
C6—C7—C8—C90.4 (3)C17—C18—C19—C200.4 (3)
C7—C8—C9—C9A0.1 (3)C18—C19—C20—C20A0.3 (3)
C8—C9—C9A—C10179.07 (18)C19—C20—C20A—C16A0.5 (3)
C8—C9—C9A—C5A0.4 (3)C19—C20—C20A—C21179.02 (19)
C5—C5A—C9A—C100.1 (3)C16—C16A—C20A—C20177.49 (18)
C6—C5A—C9A—C10179.25 (16)C17—C16A—C20A—C200.1 (3)
C5—C5A—C9A—C9179.38 (17)C16—C16A—C20A—C212.0 (3)
C6—C5A—C9A—C90.2 (3)C17—C16A—C20A—C21179.59 (17)
C9—C9A—C10—C11178.57 (17)C20—C20A—C21—C22179.58 (18)
C5A—C9A—C10—C110.9 (3)C16A—C20A—C21—C220.1 (3)
C9A—C10—C11—C40.5 (3)C20—C20A—C21—C16.5 (3)
C9A—C10—C11—C12178.11 (16)C16A—C20A—C21—C1172.94 (17)
C5—C4—C11—C100.7 (3)S2—C1—C21—C2299.84 (18)
C3—C4—C11—C10178.04 (16)S2—C1—C21—C20A73.2 (2)
C5—C4—C11—C12179.27 (16)C20A—C21—C22—C153.1 (3)
C3—C4—C11—C120.6 (3)C1—C21—C22—C15170.29 (17)
C10—C11—C12—S1339.2 (2)C16—C15—C22—C213.8 (3)
C4—C11—C12—S13142.21 (15)C14—C15—C22—C21170.44 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···S2i0.952.933.707 (2)140
C9—H9···S13ii0.953.003.6951 (19)131
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H20S2
Mr372.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.6839 (11), 8.4014 (8), 20.285 (2)
β (°) 98.000 (5)
V3)1803.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.26 × 0.18 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
34380, 4845, 4078
Rint0.042
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.120, 1.13
No. of reflections4845
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.34

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT, SHELXS86 ??? (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
C1—S21.835 (2)C12—S131.820 (2)
S2—C31.815 (2)S13—C141.828 (2)
C3—S2—C1101.06 (9)C12—S13—C14102.58 (9)
C21—C1—S2—C341.41 (16)C12—S13—C14—C1540.79 (16)
C1—S2—C3—C464.53 (16)S13—C14—C15—C2298.75 (18)
S2—C3—C4—C11146.85 (15)S2—C1—C21—C2299.84 (18)
C3—C4—C11—C120.6 (3)C1—C21—C22—C15170.29 (17)
C4—C11—C12—S13142.21 (15)C14—C15—C22—C21170.44 (17)
C11—C12—S13—C1463.60 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···S2i0.952.933.707 (2)139.6
C9—H9···S13ii0.953.003.6951 (19)131.1
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds