Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C17H19BrO5, bears an exo-orientated or R-configured 4-methoxy­phenyl group and incorporates a C-O bond that is distinctly shorter than the three remaining acetal C-O bonds [1.415 (4) versus 1.431 (4)-1.448 (4) Å and 1.421 (4) versus 1.436 (4)-1.448 (4) Å for the two mol­ecules in the asymmetric unit].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807039232/bt2471sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807039232/bt2471Isup2.hkl
Contains datablock I

CCDC reference: 660293

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.034
  • wR factor = 0.078
  • Data-to-parameter ratio = 13.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 20
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 5807 Count of symmetry unique reflns 2976 Completeness (_total/calc) 195.13% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2831 Fraction of Friedel pairs measured 0.951 Are heavy atom types Z>Si present yes PLAT791_ALERT_1_G Confirm the Absolute Configuration of C2 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C4 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C7 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C11 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C12 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C102 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C104 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C107 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C111 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C112 = . R PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 12 ALERT level G = General alerts; check 11 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

As part of a program directed towards exploiting microbially derived and enantiomerically pure cis-1,2-dihydrocatechols in the synthesis of certain biologically active natural products (Banwell et al., 2003), we generated an epimeric mixture of compounds (I) and (II) then subjected this to reaction with DIBAL-H. At 195–233 K one of these two benzylidene acetals participated more readily in the anticipated reductive cleavage reaction leading to the desired p-methoxybenzyl ether (III). The unreacted epimer was recovered and subjected to single-crystal X-ray analysis and thus establishing that it was compound (II) incorporating an exo-orientated or R-configured 4-methoxyphenyl group at C2. This outcome is consistent with the notion that the reactive epimer (I) can, by virtue of reduced steric effects, complex DIBAL-H at the O1-acetal oxygen more readily than (II) and thus engage, selectively, in the ring-cleavage process leading to target (III). The present structure represents only the second reported for a 4-methoxyphenylacetal derivative of a cis-cyclohexane-1,2-diol (Hulme et al., 2005).

The crystallographic asymmetric unit within the solid-state structure of compound (II) consists of two independent molecules. The compound is enantiomerically pure and its absolute configuration has been determined by refinement of the Flack parameter. The outcome of this determination is in agreement with that predicted on the basis of the absolute configuration of the precursor, viz. (1S,2S)-3-bromo-3,5-cyclohexadiene-1,2-diol (Boyd et al., 1991). The three non-aromatic rings within the title compound are each close to planar and with the two 1,3-dioxolane rings clearly attached to the opposite faces of the central cyclohexene residue. The allylic and homo-allylic C–O bonds associated with the two heterocyclic rings are all of similar length (1.430–1.438 Å) but the C2–O3 bond is notably shorter than the three remaining acetal carbon to oxygen bonds (1.418 vs 1.438–1.444 Å) within the molecule. The origins of this variation are unclear at the present time.

Related literature top

For related literature, see: Banwell et al. (2003); Boyd et al. (1991); Hulme et al. (2005).

Experimental top

A magnetically stirred solution of a 5:3 mixture of the benzylidene acetals (I) and (II) (88 mg, 0.23 mmol) in anhydrous dichloromethane/pentane (1.4 ml of a 1:1 v/v mixture) was cooled to 195 K then treated, dropwise, with DIBAL-H (1.15 ml of a 1.0 M solution in dichloromethane). The resulting mixture was warmed to 233 K and after 6 h at this temperature was treated with sodium potassium tartrate (5 ml of a 1 M aqueous solution). The ensuing mixture was allowed to stir at 291 K for 2 h then the separated aqueous fraction was extracted with dichloromethane (3 × 40 ml). The combined organic phases were washed with brine (1 × 50 ml) then dried (MgSO4), filtered and concentrated under reduced pressure to give a clear, colourless oil. Subjection of this material to flash chromatography (silica, 1:4 v/v ethyl acetate/hexane elution) afforded two fractions, A and B.

Concentration of fraction A (Rf = 1/5) under reduced pressure afforded the benzyl ether (III) [41 mg, 74% based on available (I)] as a clear, colourless oil, [α]D -59.9 (c 0.05, CHCl3) (Found: M+., 384.0570. C17H2179BrO5 requires M+., 384.0572). 1H NMR (300 MHz, CDCl3) δ 7.33 (2H, d, J = 8.7 Hz), 6.90 (2H, d, J = 8.7 Hz), 6.24 (1H, d, J = 3.6 Hz), 4.84 (1H, d, J = 10.8 Hz), 4.68–4.61 (2H, complex m), 4.36 (2H, m), 4.15–4.10 (2H, complex m), 3.81 (3H, s), 1.43 (3H, s), 1.36 (3H, s); 13C NMR (75 MHz, CDCl3) δ 159.8, 130.1, 129.9, 128.6, 124.2, 114.1, 110.1, 77.9, 75.4, 74.0, 73.4, 70.5, 55.5, 28.1, 26.2 (one signal obscured or overlapping); νmax (NaCl)/cm-1 3460, 2924, 1612, 1516, 1464, 1254, 1089, 1046; MS (EI, 70 eV) 386 and 384 (M+., both 3%), 256 (7), 137 (20), 121 (100), 101 (20), 81 (37), 69 (81), 55 (42), 43 (53).

Concentration of fraction B (Rf = 0.30) under reduced pressure afforded a solid that upon recrystallization (diethyl ether) gave the acetal (II) (30 mg, 90% recovery) as white plates, m.p. = 649–651 K, [α]D = +49.4 (c 0.21, CHCl3) [Found: (M – H.)+, 381.0334. C17H1979BrO5 requires (M – H.)+, 381.0338]. 1H NMR (300 MHz, CDCl3) δ 7.40 (2H, d, J = 8.4 Hz), 6.79 (2H, d, J = 8.4 Hz), 6.25 (1H, d, J = 3.6 Hz), 5.86 (1H, s), 4.91 (1H, d, J = 6.0 Hz), 4.64–4.60 (3H, complex m), 3.73 (3H, s), 1.40 (3H, s), 1.38 (3H, s); νmax (NaCl)/cm-1 2979, 2896, 1647, 1615, 1589, 1517, 1382, 1337, 1249, 1220, 1175, 1090, 1060, 1025, 948, 832; MS (EI, 70 eV) 384 and 382 (M+., both 15%), 383 and 381 [(M – H.)+, both 29], 336 and 334 (both 2), 200 (16), 161 (31), 137 (38), 136 (60), 135 (100), 108 (53), 77 (29), 43 (52).

Refinement top

Hydrogen atoms were included at calculated positions and ride on the atoms to which they are bonded. The biggest features in a final difference electron density map are close to the Br atoms.

Structure description top

As part of a program directed towards exploiting microbially derived and enantiomerically pure cis-1,2-dihydrocatechols in the synthesis of certain biologically active natural products (Banwell et al., 2003), we generated an epimeric mixture of compounds (I) and (II) then subjected this to reaction with DIBAL-H. At 195–233 K one of these two benzylidene acetals participated more readily in the anticipated reductive cleavage reaction leading to the desired p-methoxybenzyl ether (III). The unreacted epimer was recovered and subjected to single-crystal X-ray analysis and thus establishing that it was compound (II) incorporating an exo-orientated or R-configured 4-methoxyphenyl group at C2. This outcome is consistent with the notion that the reactive epimer (I) can, by virtue of reduced steric effects, complex DIBAL-H at the O1-acetal oxygen more readily than (II) and thus engage, selectively, in the ring-cleavage process leading to target (III). The present structure represents only the second reported for a 4-methoxyphenylacetal derivative of a cis-cyclohexane-1,2-diol (Hulme et al., 2005).

The crystallographic asymmetric unit within the solid-state structure of compound (II) consists of two independent molecules. The compound is enantiomerically pure and its absolute configuration has been determined by refinement of the Flack parameter. The outcome of this determination is in agreement with that predicted on the basis of the absolute configuration of the precursor, viz. (1S,2S)-3-bromo-3,5-cyclohexadiene-1,2-diol (Boyd et al., 1991). The three non-aromatic rings within the title compound are each close to planar and with the two 1,3-dioxolane rings clearly attached to the opposite faces of the central cyclohexene residue. The allylic and homo-allylic C–O bonds associated with the two heterocyclic rings are all of similar length (1.430–1.438 Å) but the C2–O3 bond is notably shorter than the three remaining acetal carbon to oxygen bonds (1.418 vs 1.438–1.444 Å) within the molecule. The origins of this variation are unclear at the present time.

For related literature, see: Banwell et al. (2003); Boyd et al. (1991); Hulme et al. (2005).

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEPII (Johnson, 1976) in TEXSAN (Molecular Structure Corporation, 1997); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot of C17H19BrO5 (molecule one) with labelling of selected atoms. Ellipsoids show 50% probability levels. Hydrogen atoms are drawn as circles with small radii.
[Figure 2] Fig. 2. Anisotropic displacement ellipsoid plot of C17H19BrO5 (molecule two) with labelling of selected atoms. Ellipsoids show 50% probability levels. Hydrogen atoms are drawn as circles with small radii.
[Figure 3] Fig. 3. Unit cell packing diagram of C17H19BrO5 projected down the a axis. Hydrogen atoms are drawn as circles with small radii.
[Figure 4] Fig. 4. Compounds (I), (II) and (III).
(2R,3aS,5aR,8aR,8 bS)- 4-Bromo-2-(4-methoxyphenyl)-7,7-dimethyl-3a,5a,8a,8 b-tetrahydrobenzo[1,2 - d:3,4 - d']bis[1,3]dioxole top
Crystal data top
C17H19BrO5F(000) = 784
Mr = 383.24Dx = 1.537 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.2285 (1) ÅCell parameters from 55931 reflections
b = 33.4467 (9) Åθ = 2.6–25°
c = 9.4726 (3) ŵ = 2.51 mm1
β = 91.7226 (12)°T = 200 K
V = 1655.78 (7) Å3Plate, colourless
Z = 40.45 × 0.14 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
4970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scans with CCDθmax = 25.0°, θmin = 2.8°
Absorption correction: integration
via Gaussian method (Coppens, 1970) implemented in maXus (Mackay et al., 1999)
h = 66
Tmin = 0.546, Tmax = 0.892k = 3939
20604 measured reflectionsl = 1111
5796 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters not refined
R[F2 > 2σ(F2)] = 0.034 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.03P)2 + 0.44P],
where P = [max(Fo2,0) + 2Fc2]/3
wR(F2) = 0.078(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.58 e Å3
5796 reflectionsΔρmin = 0.82 e Å3
416 parametersAbsolute structure: Flack (1983), 2828 Friedel pairs
1 restraintAbsolute structure parameter: 0.012 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
C17H19BrO5V = 1655.78 (7) Å3
Mr = 383.24Z = 4
Monoclinic, P21Mo Kα radiation
a = 5.2285 (1) ŵ = 2.51 mm1
b = 33.4467 (9) ÅT = 200 K
c = 9.4726 (3) Å0.45 × 0.14 × 0.05 mm
β = 91.7226 (12)°
Data collection top
Nonius KappaCCD
diffractometer
5796 independent reflections
Absorption correction: integration
via Gaussian method (Coppens, 1970) implemented in maXus (Mackay et al., 1999)
4970 reflections with I > 2σ(I)
Tmin = 0.546, Tmax = 0.892Rint = 0.038
20604 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters not refined
wR(F2) = 0.078Δρmax = 0.58 e Å3
S = 0.97Δρmin = 0.82 e Å3
5796 reflectionsAbsolute structure: Flack (1983), 2828 Friedel pairs
416 parametersAbsolute structure parameter: 0.012 (6)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3464 (5)0.40867 (9)0.5958 (3)0.0442
C20.2738 (7)0.40850 (12)0.7402 (4)0.0359
O30.0221 (5)0.39302 (8)0.7424 (3)0.0393
C40.0224 (7)0.37075 (11)0.6148 (4)0.0358
C50.0579 (8)0.32792 (11)0.6278 (4)0.0382
C60.2260 (8)0.30950 (12)0.5503 (4)0.0384
C70.3623 (7)0.32944 (11)0.4320 (4)0.0345
O80.3249 (5)0.30663 (8)0.3051 (2)0.0349
C90.1349 (7)0.32616 (11)0.2148 (4)0.0348
O100.0409 (5)0.35852 (8)0.2978 (2)0.0374
C110.2475 (7)0.37002 (11)0.3917 (4)0.0364
C120.1353 (7)0.39397 (12)0.5098 (4)0.0360
C130.2790 (7)0.44947 (11)0.8044 (4)0.0333
C140.1061 (8)0.47884 (12)0.7616 (4)0.0402
C150.1102 (8)0.51620 (12)0.8225 (4)0.0408
C160.2883 (7)0.52469 (11)0.9305 (4)0.0347
C170.4642 (8)0.49634 (12)0.9723 (4)0.0422
C180.4595 (8)0.45874 (12)0.9093 (4)0.0408
Br190.11756 (10)0.29887 (3)0.76809 (4)0.0609
C200.0808 (7)0.29762 (13)0.1827 (4)0.0448
C210.2636 (8)0.34112 (13)0.0852 (4)0.0465
O220.2709 (5)0.56229 (8)0.9893 (3)0.0439
C230.4571 (9)0.57223 (12)1.0977 (4)0.0480
O1010.8242 (5)0.60404 (8)0.6747 (3)0.0444
C1020.7448 (7)0.60523 (11)0.5282 (4)0.0356
O1030.4861 (5)0.61825 (8)0.5250 (3)0.0392
C1040.4501 (7)0.64154 (11)0.6503 (4)0.0353
C1050.5211 (7)0.68426 (11)0.6330 (4)0.0337
C1060.6957 (7)0.70409 (11)0.7083 (4)0.0352
C1070.8556 (7)0.68488 (11)0.8242 (4)0.0325
O1080.8519 (4)0.70848 (9)0.9508 (2)0.0342
C1090.6632 (7)0.69170 (12)1.0426 (4)0.0358
O1100.5563 (5)0.65805 (8)0.9668 (2)0.0378
C1110.7488 (8)0.64532 (11)0.8725 (4)0.0363
C1120.6229 (8)0.61987 (12)0.7581 (4)0.0362
C1130.7651 (7)0.56493 (11)0.4605 (4)0.0323
C1140.6019 (8)0.53372 (12)0.4985 (4)0.0399
C1150.6187 (8)0.49680 (11)0.4347 (4)0.0388
C1160.7973 (7)0.49055 (11)0.3318 (4)0.0355
C1170.9609 (8)0.52082 (12)0.2951 (4)0.0414
C1180.9423 (7)0.55802 (12)0.3611 (4)0.0392
Br1190.32031 (9)0.71174 (3)0.49172 (4)0.0513
C1200.4578 (8)0.72146 (13)1.0659 (5)0.0527
C1210.7960 (9)0.67800 (14)1.1778 (4)0.0505
O1220.7948 (6)0.45324 (8)0.2698 (3)0.0429
C1230.9839 (9)0.44560 (13)0.1674 (4)0.0483
H210.39170.390550.79600.0430*
H410.20780.372200.58610.0429*
H610.26510.280800.57110.0459*
H710.54890.332170.45630.0414*
H1110.37480.386450.34050.0436*
H1210.03320.416860.47010.0432*
H1410.02400.472750.68510.0480*
H1510.01410.537150.78930.0487*
H1710.59570.502681.04780.0504*
H1810.58800.438150.94030.0487*
H2010.01970.275810.11980.0536*
H2020.22510.312270.13410.0536*
H2030.14120.285770.27270.0536*
H2110.13460.354710.02160.0560*
H2120.40120.360530.11350.0560*
H2130.34050.318070.03430.0560*
H2310.42560.600021.13200.0576*
H2320.63240.570571.05870.0576*
H2330.44340.553021.17800.0576*
H10210.85220.624900.47700.0427*
H10410.26790.639560.67880.0424*
H10610.72260.733070.68750.0424*
H10711.03540.681370.79340.0391*
H11110.88410.629660.92490.0436*
H11210.52660.597450.80190.0436*
H11410.47230.538270.57230.0480*
H11510.50240.474600.46250.0465*
H11711.09160.516230.22190.0499*
H11811.06160.579990.33480.0472*
H12010.53050.744801.11960.0633*
H12020.38540.730780.97270.0633*
H12030.31940.708841.12130.0633*
H12110.66720.666361.24200.0606*
H12120.88210.701321.22520.0606*
H12130.92670.657261.15580.0606*
H12310.96270.417760.13030.0580*
H12320.96300.465070.08780.0580*
H12331.15840.448610.21230.0580*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0511 (17)0.0465 (17)0.0355 (14)0.0169 (13)0.0087 (13)0.0127 (13)
C20.035 (2)0.039 (2)0.034 (2)0.0014 (17)0.0008 (16)0.0041 (17)
O30.0432 (16)0.0415 (15)0.0333 (14)0.0120 (13)0.0064 (11)0.0104 (12)
C40.037 (2)0.039 (2)0.0318 (19)0.0038 (17)0.0044 (16)0.0093 (16)
C50.050 (3)0.032 (2)0.031 (2)0.0090 (18)0.0070 (18)0.0013 (17)
C60.051 (2)0.032 (2)0.032 (2)0.0052 (17)0.0079 (17)0.0006 (16)
C70.037 (2)0.033 (2)0.033 (2)0.0052 (17)0.0006 (17)0.0070 (17)
O80.0360 (14)0.0368 (16)0.0312 (13)0.0076 (11)0.0078 (11)0.0084 (11)
C90.037 (2)0.036 (2)0.032 (2)0.0106 (16)0.0030 (16)0.0073 (16)
O100.0478 (15)0.0364 (14)0.0277 (13)0.0114 (12)0.0035 (11)0.0080 (11)
C110.045 (2)0.034 (2)0.0309 (19)0.0037 (17)0.0001 (16)0.0034 (16)
C120.050 (2)0.030 (2)0.0274 (19)0.0009 (17)0.0008 (17)0.0041 (15)
C130.039 (2)0.034 (2)0.0274 (19)0.0039 (17)0.0035 (16)0.0057 (16)
C140.044 (2)0.042 (2)0.034 (2)0.0015 (19)0.0099 (18)0.0020 (18)
C150.050 (2)0.034 (2)0.038 (2)0.0044 (18)0.0057 (18)0.0018 (17)
C160.045 (2)0.028 (2)0.0310 (19)0.0050 (17)0.0054 (16)0.0016 (15)
C170.044 (2)0.040 (2)0.042 (2)0.0012 (19)0.0105 (18)0.0111 (18)
C180.044 (2)0.037 (2)0.041 (2)0.0050 (18)0.0100 (18)0.0079 (17)
Br190.0886 (4)0.0553 (3)0.0393 (2)0.0281 (3)0.0087 (2)0.0010 (2)
C200.034 (2)0.045 (2)0.055 (2)0.003 (2)0.0052 (17)0.015 (2)
C210.053 (3)0.052 (3)0.035 (2)0.006 (2)0.0036 (19)0.0011 (19)
O220.0618 (18)0.0291 (15)0.0407 (16)0.0040 (14)0.0010 (13)0.0046 (12)
C230.070 (3)0.035 (2)0.039 (2)0.018 (2)0.001 (2)0.0034 (18)
O1010.0498 (17)0.0489 (18)0.0337 (14)0.0165 (14)0.0081 (12)0.0132 (12)
C1020.034 (2)0.038 (2)0.034 (2)0.0044 (17)0.0005 (16)0.0067 (17)
O1030.0385 (15)0.0420 (15)0.0367 (14)0.0062 (12)0.0059 (11)0.0133 (12)
C1040.038 (2)0.035 (2)0.033 (2)0.0003 (17)0.0032 (16)0.0087 (16)
C1050.039 (2)0.034 (2)0.0290 (19)0.0018 (17)0.0033 (16)0.0022 (16)
C1060.043 (2)0.031 (2)0.0314 (18)0.0011 (17)0.0072 (16)0.0014 (15)
C1070.033 (2)0.034 (2)0.0303 (19)0.0008 (16)0.0020 (15)0.0057 (16)
O1080.0395 (13)0.0340 (14)0.0293 (13)0.0040 (12)0.0048 (10)0.0065 (13)
C1090.037 (2)0.039 (2)0.0310 (19)0.0071 (17)0.0038 (16)0.0057 (16)
O1100.0482 (16)0.0351 (15)0.0305 (13)0.0101 (12)0.0081 (12)0.0061 (11)
C1110.047 (2)0.031 (2)0.031 (2)0.0025 (17)0.0043 (17)0.0026 (16)
C1120.051 (2)0.031 (2)0.0268 (19)0.0019 (18)0.0058 (17)0.0039 (15)
C1130.036 (2)0.032 (2)0.0291 (18)0.0013 (17)0.0023 (16)0.0030 (16)
C1140.047 (2)0.040 (2)0.033 (2)0.0009 (19)0.0068 (18)0.0068 (17)
C1150.046 (2)0.036 (2)0.035 (2)0.0040 (18)0.0020 (18)0.0010 (17)
C1160.044 (2)0.029 (2)0.033 (2)0.0036 (17)0.0062 (17)0.0038 (16)
C1170.044 (2)0.043 (2)0.038 (2)0.0008 (19)0.0136 (18)0.0103 (18)
C1180.040 (2)0.035 (2)0.043 (2)0.0019 (18)0.0066 (18)0.0076 (18)
Br1190.0586 (3)0.0541 (3)0.0406 (2)0.0124 (2)0.00977 (18)0.0001 (2)
C1200.038 (2)0.052 (3)0.068 (3)0.001 (2)0.006 (2)0.016 (2)
C1210.061 (3)0.060 (3)0.031 (2)0.009 (2)0.003 (2)0.002 (2)
O1220.0602 (19)0.0300 (15)0.0386 (16)0.0026 (13)0.0018 (13)0.0065 (12)
C1230.067 (3)0.041 (2)0.037 (2)0.018 (2)0.001 (2)0.0042 (19)
Geometric parameters (Å, º) top
O1—C21.431 (4)O101—C1021.436 (4)
O1—C121.439 (4)O101—C1121.436 (4)
C2—O31.415 (4)C102—O1031.421 (4)
C2—C131.499 (5)C102—C1131.498 (5)
C2—H211.000C102—H10211.000
O3—C41.433 (4)O103—C1041.437 (4)
C4—C51.497 (5)C104—C1051.486 (5)
C4—C121.524 (5)C104—C1121.527 (5)
C4—H411.000C104—H10411.000
C5—C61.315 (5)C105—C1061.320 (5)
C5—Br191.904 (4)C105—Br1191.911 (4)
C6—C71.502 (6)C106—C1071.503 (5)
C6—H611.000C106—H10611.000
C7—O81.432 (4)C107—O1081.436 (4)
C7—C111.528 (5)C107—C1111.513 (5)
C7—H711.000C107—H10711.000
O8—C91.448 (4)O108—C1091.448 (4)
C9—O101.433 (4)C109—O1101.439 (4)
C9—C201.502 (5)C109—C1201.486 (6)
C9—C211.503 (5)C109—C1211.510 (5)
O10—C111.431 (4)O110—C1111.430 (4)
C11—C121.509 (5)C111—C1121.513 (5)
C11—H1111.000C111—H11111.000
C12—H1211.000C112—H11211.000
C13—C141.387 (5)C113—C1141.402 (5)
C13—C181.385 (5)C113—C1181.360 (5)
C14—C151.376 (6)C114—C1151.379 (5)
C14—H1411.000C114—H11411.000
C15—C161.391 (5)C115—C1161.386 (5)
C15—H1511.000C115—H11511.000
C16—C171.371 (5)C116—C1171.377 (5)
C16—O221.379 (4)C116—O1221.379 (4)
C17—C181.392 (5)C117—C1181.397 (5)
C17—H1711.000C117—H11711.000
C18—H1811.000C118—H11811.000
C20—H2011.000C120—H12011.000
C20—H2021.000C120—H12021.000
C20—H2031.000C120—H12031.000
C21—H2111.000C121—H12111.000
C21—H2121.000C121—H12121.000
C21—H2131.000C121—H12131.000
O22—C231.433 (4)O122—C1231.429 (5)
C23—H2311.000C123—H12311.000
C23—H2321.000C123—H12321.000
C23—H2331.000C123—H12331.000
C2—O1—C12108.6 (3)C102—O101—C112109.0 (3)
O1—C2—O3106.8 (3)O101—C102—O103106.1 (3)
O1—C2—C13112.5 (3)O101—C102—C113111.5 (3)
O3—C2—C13109.5 (3)O103—C102—C113110.3 (3)
O1—C2—H21109.3O101—C102—H1021109.6
O3—C2—H21109.3O103—C102—H1021109.6
C13—C2—H21109.3C113—C102—H1021109.6
C2—O3—C4107.8 (3)C102—O103—C104107.3 (3)
O3—C4—C5113.0 (3)O103—C104—C105113.0 (3)
O3—C4—C12102.1 (3)O103—C104—C112101.9 (3)
C5—C4—C12112.7 (3)C105—C104—C112112.7 (3)
O3—C4—H41109.6O103—C104—H1041109.7
C5—C4—H41109.6C105—C104—H1041109.7
C12—C4—H41109.6C112—C104—H1041109.7
C4—C5—C6126.4 (4)C104—C105—C106126.5 (3)
C4—C5—Br19113.9 (3)C104—C105—Br119113.9 (3)
C6—C5—Br19119.7 (3)C106—C105—Br119119.5 (3)
C5—C6—C7123.3 (3)C105—C106—C107122.7 (3)
C5—C6—H61118.4C105—C106—H1061118.7
C7—C6—H61118.4C107—C106—H1061118.7
C6—C7—O8109.5 (3)C106—C107—O108110.7 (3)
C6—C7—C11112.9 (3)C106—C107—C111113.1 (3)
O8—C7—C11102.8 (3)O108—C107—C111102.3 (3)
C6—C7—H71110.5C106—C107—H1071110.1
O8—C7—H71110.5O108—C107—H1071110.1
C11—C7—H71110.5C111—C107—H1071110.2
C7—O8—C9109.2 (3)C107—O108—C109108.4 (3)
O8—C9—O10104.9 (2)O108—C109—O110105.4 (3)
O8—C9—C20109.3 (3)O108—C109—C120109.8 (3)
O10—C9—C20108.9 (3)O110—C109—C120109.1 (3)
O8—C9—C21108.5 (3)O108—C109—C121108.8 (3)
O10—C9—C21111.4 (3)O110—C109—C121110.4 (3)
C20—C9—C21113.4 (3)C120—C109—C121113.1 (4)
C9—O10—C11106.2 (3)C109—O110—C111105.9 (3)
C7—C11—O10101.5 (3)C107—C111—O110101.6 (3)
C7—C11—C12116.5 (3)C107—C111—C112115.6 (3)
O10—C11—C12107.5 (3)O110—C111—C112108.4 (3)
C7—C11—H111110.3C107—C111—H1111110.3
O10—C11—H111110.3O110—C111—H1111110.3
C12—C11—H111110.3C112—C111—H1111110.3
C4—C12—C11116.3 (3)C104—C112—C111116.6 (3)
C4—C12—O1103.0 (3)C104—C112—O101103.6 (3)
C11—C12—O1107.0 (3)C111—C112—O101106.9 (3)
C4—C12—H121110.1C104—C112—H1121109.8
C11—C12—H121110.1C111—C112—H1121109.8
O1—C12—H121110.1O101—C112—H1121109.8
C2—C13—C14121.7 (3)C102—C113—C114120.6 (3)
C2—C13—C18119.9 (3)C102—C113—C118120.5 (3)
C14—C13—C18118.4 (4)C114—C113—C118118.9 (3)
C13—C14—C15121.3 (4)C113—C114—C115120.5 (4)
C13—C14—H141119.4C113—C114—H1141119.8
C15—C14—H141119.4C115—C114—H1141119.8
C14—C15—C16119.7 (4)C114—C115—C116119.8 (4)
C14—C15—H151120.2C114—C115—H1151120.1
C16—C15—H151120.2C116—C115—H1151120.1
C15—C16—C17119.9 (4)C115—C116—C117120.2 (4)
C15—C16—O22115.6 (3)C115—C116—O122116.0 (3)
C17—C16—O22124.5 (3)C117—C116—O122123.8 (3)
C16—C17—C18119.9 (4)C116—C117—C118119.3 (4)
C16—C17—H171120.1C116—C117—H1171120.3
C18—C17—H171120.0C118—C117—H1171120.3
C17—C18—C13120.8 (4)C117—C118—C113121.3 (4)
C17—C18—H181119.6C117—C118—H1181119.4
C13—C18—H181119.6C113—C118—H1181119.4
C9—C20—H201109.5C109—C120—H1201109.5
C9—C20—H202109.5C109—C120—H1202109.5
H201—C20—H202109.5H1201—C120—H1202109.5
C9—C20—H203109.5C109—C120—H1203109.5
H201—C20—H203109.5H1201—C120—H1203109.5
H202—C20—H203109.5H1202—C120—H1203109.5
C9—C21—H211109.5C109—C121—H1211109.5
C9—C21—H212109.5C109—C121—H1212109.5
H211—C21—H212109.5H1211—C121—H1212109.5
C9—C21—H213109.5C109—C121—H1213109.5
H211—C21—H213109.5H1211—C121—H1213109.5
H212—C21—H213109.5H1212—C121—H1213109.5
C16—O22—C23116.7 (3)C116—O122—C123116.9 (3)
O22—C23—H231109.5O122—C123—H1231109.5
O22—C23—H232109.5O122—C123—H1232109.5
H231—C23—H232109.5H1231—C123—H1232109.5
O22—C23—H233109.5O122—C123—H1233109.5
H231—C23—H233109.5H1231—C123—H1233109.5
H232—C23—H233109.5H1232—C123—H1233109.5

Experimental details

Crystal data
Chemical formulaC17H19BrO5
Mr383.24
Crystal system, space groupMonoclinic, P21
Temperature (K)200
a, b, c (Å)5.2285 (1), 33.4467 (9), 9.4726 (3)
β (°) 91.7226 (12)
V3)1655.78 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.51
Crystal size (mm)0.45 × 0.14 × 0.05
Data collection
DiffractometerNonius KappaCCD
Absorption correctionIntegration
via Gaussian method (Coppens, 1970) implemented in maXus (Mackay et al., 1999)
Tmin, Tmax0.546, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
20604, 5796, 4970
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.078, 0.97
No. of reflections5796
No. of parameters416
No. of restraints1
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.58, 0.82
Absolute structureFlack (1983), 2828 Friedel pairs
Absolute structure parameter0.012 (6)

Computer programs: COLLECT (Nonius, 1997), DENZO/SCALEPACK (Otwinowski & Minor, 1997), DENZO/SCALEPACK, SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ORTEPII (Johnson, 1976) in TEXSAN (Molecular Structure Corporation, 1997), CRYSTALS.

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds