Download citation
Download citation
link to html
The title compound, C8H10N2O2·2H2O, exists as a zwitterion with a deprotonated carboxyl group and a protonated amino group. The crystal packing is stabilized by N—H...O, O—H...O and O—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031583/bt2415sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031583/bt2415Isup2.hkl
Contains datablock I

CCDC reference: 657684

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.045
  • wR factor = 0.099
  • Data-to-parameter ratio = 13.1

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C6 = ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

β-Amino acids are important molecules due to their pharmacological properties. Recently, there has been an increased interest in the enantiomeric preparation of β-amino acids as precursors for the synthesis of novel biologically active compounds (Arki et al., 2004; Cohen et al., 2002; Zeller et al., 1965).

The title compound exists as a zwitter ion with a deprotonated carboxyl group and a protonated amino group (Fig. 1). It crystallizes with two water molecules in the asymmetric unit. The crystal packing is stabilized by N—H···O O—H···O O—H···N hydrogen bonds (Figs. 2,3).

Related literature top

For details of the enantiomeric preparation of β-amino acids as precursors for the synthesis of novel biologically active compounds, see: Arki et al. (2004); Cohen et al. (2002); Zeller, et al. (1965).

Experimental top

Under nitrogen protection, isonicotinaldehyde (3.21 g, 30 mmol), malonic acid (5.0 g, 48 mmol) and ammonium acetate (6.0 g, 78 mmol) were added in a flask and refluxed for 10 minutes yielding a white precipitate. After being cooled to room temperature, the solution was filtered and the title compound was obtained as colorless block shaped crystals.

Refinement top

All H atoms were located in a difference map. The coordinates of those bonded to N and O were and refined with Uiso(H) = 1.2Ueq(N, O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

β-Amino acids are important molecules due to their pharmacological properties. Recently, there has been an increased interest in the enantiomeric preparation of β-amino acids as precursors for the synthesis of novel biologically active compounds (Arki et al., 2004; Cohen et al., 2002; Zeller et al., 1965).

The title compound exists as a zwitter ion with a deprotonated carboxyl group and a protonated amino group (Fig. 1). It crystallizes with two water molecules in the asymmetric unit. The crystal packing is stabilized by N—H···O O—H···O O—H···N hydrogen bonds (Figs. 2,3).

For details of the enantiomeric preparation of β-amino acids as precursors for the synthesis of novel biologically active compounds, see: Arki et al. (2004); Cohen et al. (2002); Zeller, et al. (1965).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Dimer formation by hydrogen bonds. Displacement ellipsoids are drawn at the 30% probability level.(i: -x, -y + 1, -z + 1),
[Figure 3] Fig. 3. View of the packing along the b axis; hydrogen bonds are shown as dashed lines.
3-Ammonio-3-(4-pyridyl)propanoate dihydrate top
Crystal data top
C8H10N2O2·2H2OF(000) = 432
Mr = 202.21Dx = 1.355 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3174 reflections
a = 12.6440 (12) Åθ = 2.6–28.0°
b = 5.7698 (5) ŵ = 0.11 mm1
c = 13.9238 (13) ÅT = 291 K
β = 102.601 (2)°Block, colorless
V = 991.32 (16) Å30.32 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1943 independent reflections
Radiation source: sealed tube1587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1515
Tmin = 0.97, Tmax = 0.97k = 76
5638 measured reflectionsl = 1712
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.1335P]
where P = (Fo2 + 2Fc2)/3
1943 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C8H10N2O2·2H2OV = 991.32 (16) Å3
Mr = 202.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.6440 (12) ŵ = 0.11 mm1
b = 5.7698 (5) ÅT = 291 K
c = 13.9238 (13) Å0.32 × 0.26 × 0.24 mm
β = 102.601 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1943 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1587 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.97Rint = 0.031
5638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.15 e Å3
1943 reflectionsΔρmin = 0.16 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.88367 (14)0.7166 (4)0.93120 (15)0.0435 (5)
H10.90700.85530.96290.052*
C20.79614 (14)0.6065 (3)0.95572 (14)0.0382 (4)
H20.76240.66981.00270.046*
C30.75982 (11)0.4019 (3)0.90947 (11)0.0273 (3)
C40.81478 (13)0.3175 (3)0.84032 (13)0.0368 (4)
H40.79310.17980.80720.044*
C50.90135 (15)0.4394 (4)0.82150 (15)0.0454 (5)
H50.93740.38020.77540.055*
C60.66485 (11)0.2688 (3)0.93146 (11)0.0264 (3)
H60.66920.10910.90870.032*
C70.55681 (11)0.3694 (3)0.87822 (12)0.0263 (3)
H7A0.55800.39240.80950.032*
H7B0.54670.51950.90630.032*
C80.46128 (11)0.2123 (3)0.88535 (11)0.0265 (3)
N10.93620 (11)0.6381 (3)0.86598 (12)0.0430 (4)
N20.67000 (11)0.2622 (3)1.03866 (10)0.0286 (3)
H2A0.7367 (16)0.213 (3)1.0692 (14)0.034*
H2B0.6601 (15)0.403 (4)1.0621 (14)0.034*
H2C0.6293 (15)0.152 (4)1.0534 (14)0.034*
O10.37631 (9)0.3022 (2)0.89856 (10)0.0425 (3)
O20.47508 (9)0.0015 (2)0.87733 (9)0.0362 (3)
O30.37183 (11)0.3952 (3)0.61713 (10)0.0411 (3)
H3B0.3594 (17)0.511 (4)0.6537 (16)0.049*
H3A0.435 (2)0.341 (4)0.6431 (17)0.049*
O40.32889 (12)0.7481 (3)0.73083 (11)0.0456 (3)
H4A0.3076 (19)0.856 (4)0.6942 (18)0.055*
H4B0.3876 (19)0.788 (4)0.7747 (18)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0413 (9)0.0422 (11)0.0490 (11)0.0178 (8)0.0143 (8)0.0002 (8)
C20.0387 (9)0.0349 (9)0.0444 (10)0.0132 (7)0.0164 (7)0.0035 (8)
C30.0209 (7)0.0302 (8)0.0310 (8)0.0028 (6)0.0059 (6)0.0077 (6)
C40.0331 (8)0.0384 (10)0.0423 (10)0.0026 (7)0.0153 (7)0.0007 (7)
C50.0390 (9)0.0551 (13)0.0504 (11)0.0005 (8)0.0276 (8)0.0047 (9)
C60.0232 (7)0.0225 (8)0.0340 (8)0.0049 (6)0.0077 (6)0.0007 (6)
C70.0212 (7)0.0273 (8)0.0306 (8)0.0052 (6)0.0057 (5)0.0003 (6)
C80.0243 (7)0.0334 (9)0.0217 (7)0.0079 (6)0.0046 (5)0.0018 (6)
N10.0287 (7)0.0517 (10)0.0517 (9)0.0107 (6)0.0158 (6)0.0120 (8)
N20.0220 (6)0.0300 (7)0.0344 (7)0.0070 (6)0.0076 (5)0.0060 (6)
O10.0235 (5)0.0423 (8)0.0638 (9)0.0030 (5)0.0145 (5)0.0052 (6)
O20.0302 (6)0.0303 (7)0.0502 (7)0.0102 (5)0.0135 (5)0.0032 (5)
O30.0367 (6)0.0511 (8)0.0425 (7)0.0025 (6)0.0237 (5)0.0089 (6)
O40.0482 (8)0.0426 (8)0.0459 (8)0.0093 (6)0.0102 (6)0.0128 (6)
Geometric parameters (Å, º) top
C1—N11.317 (3)C6—H60.9800
C1—C21.382 (2)C7—C81.5304 (19)
C1—H10.9300C7—H7A0.9700
C2—C31.375 (2)C7—H7B0.9700
C2—H20.9300C8—O11.2424 (19)
C3—C41.392 (2)C8—O21.254 (2)
C3—C61.5117 (19)N2—H2A0.90 (2)
C4—C51.374 (2)N2—H2B0.90 (2)
C4—H40.9300N2—H2C0.87 (2)
C5—N11.332 (3)O3—H3B0.87 (2)
C5—H50.9300O3—H3A0.86 (2)
C6—N21.480 (2)O4—H4A0.81 (3)
C6—C71.520 (2)O4—H4B0.88 (2)
N1—C1—C2124.33 (19)C7—C6—H6108.0
N1—C1—H1117.8C6—C7—C8112.36 (12)
C2—C1—H1117.8C6—C7—H7A109.1
C3—C2—C1118.86 (17)C8—C7—H7A109.1
C3—C2—H2120.6C6—C7—H7B109.1
C1—C2—H2120.6C8—C7—H7B109.1
C2—C3—C4117.25 (14)H7A—C7—H7B107.9
C2—C3—C6122.69 (14)O1—C8—O2124.43 (14)
C4—C3—C6120.06 (15)O1—C8—C7118.86 (15)
C5—C4—C3119.45 (18)O2—C8—C7116.71 (13)
C5—C4—H4120.3C1—N1—C5116.83 (15)
C3—C4—H4120.3C6—N2—H2A108.3 (12)
N1—C5—C4123.28 (17)C6—N2—H2B111.4 (12)
N1—C5—H5118.4H2A—N2—H2B107.6 (17)
C4—C5—H5118.4C6—N2—H2C111.0 (12)
N2—C6—C3110.80 (12)H2A—N2—H2C101.5 (17)
N2—C6—C7109.79 (12)H2B—N2—H2C116.3 (17)
C3—C6—C7112.11 (12)H3B—O3—H3A108 (2)
N2—C6—H6108.0H4A—O4—H4B110 (2)
C3—C6—H6108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.90 (2)1.81 (2)2.705 (2)173.7 (18)
N2—H2B···O1ii0.90 (2)1.87 (2)2.765 (2)173.5 (18)
N2—H2C···O2iii0.87 (2)1.99 (2)2.8165 (18)156.7 (18)
O3—H3B···O40.87 (2)1.83 (2)2.706 (2)178 (2)
O3—H3A···N1iv0.86 (2)2.03 (2)2.810 (2)150 (2)
O4—H4A···O1v0.81 (3)2.42 (2)2.8346 (19)113 (2)
O4—H4B···O2vi0.88 (2)2.01 (3)2.8321 (19)154 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+2; (iii) x+1, y, z+2; (iv) x+3/2, y1/2, z+3/2; (v) x+1/2, y+1/2, z+3/2; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H10N2O2·2H2O
Mr202.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)12.6440 (12), 5.7698 (5), 13.9238 (13)
β (°) 102.601 (2)
V3)991.32 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.97, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
5638, 1943, 1587
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.099, 1.09
No. of reflections1943
No. of parameters148
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.90 (2)1.81 (2)2.705 (2)173.7 (18)
N2—H2B···O1ii0.90 (2)1.87 (2)2.765 (2)173.5 (18)
N2—H2C···O2iii0.87 (2)1.99 (2)2.8165 (18)156.7 (18)
O3—H3B···O40.87 (2)1.83 (2)2.706 (2)178 (2)
O3—H3A···N1iv0.86 (2)2.03 (2)2.810 (2)150 (2)
O4—H4A···O1v0.81 (3)2.42 (2)2.8346 (19)113 (2)
O4—H4B···O2vi0.88 (2)2.01 (3)2.8321 (19)154 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+2; (iii) x+1, y, z+2; (iv) x+3/2, y1/2, z+3/2; (v) x+1/2, y+1/2, z+3/2; (vi) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds