Download citation
Download citation
link to html
In the title compound, (C11H21N2)[Er(C8H8)2], the anion displays the sandwich form with planar and parallel cyclo­octa­tetra­enyl ligands. The perpendicular distances of the Er atom from the C8 planes are 1.8809 (7) and 1.8476 (8) Å, with individual Er—C bond lengths in the range 2.596 (2)–2.651 (2) Å. The extended structure consists of chains of alternating anions and cations parallel to (101); residues are connected by C—H...π inter­actions and neighbouring formula units are related by an n glide plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030899/bt2409sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030899/bt2409Isup2.hkl
Contains datablock I

CCDC reference: 657529

Key indicators

  • Single-crystal X-ray study
  • T = 133 K
  • R factor = 0.020
  • wR factor = 0.042
  • Data-to-parameter ratio = 26.1

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

After the synthesis of uranocene [(COT)2U] (COT = cyclooctatetraenyl, (C8H8)2-) by Streitwieser & Müller-Westerhoff (1968), bis-cyclooctatetraene complexes of divalent lanthanides were reported by Hayes & Thomas (1969). Streitwieser isolated trivalent lanthanide complexes of the type [K(COT)2Ln] (Ln = Y, La, Ce, Pr, Nd, Sm, Gd, Tb) (Mares et al., 1970; Streitwieser et al., 1973; Hodgson et al., 1973) using the same methodology as for the preparation of uranocene. Later, [K(COT)2Ln] complexes of ytterbium (Boussie et al., 1991) and lutetium (Schumann et al., 1993) were reported. In 1991 Chen synthesized an erbium complex with a tetralayer sandwich structure in which the adjacent Er3+ and K+ ions are bridged by η8-cyclooctatetraenyl groups (Xia et al., 1991). Here we report the anionic mononuclear sandwich complex of bis(cyclooctatetraenyl)erbium(III) with the carbenium cation 1,3- diisopropylimidazolium (Fig. 1).

The compound crystallizes without imposed symmetry. The coordination polyhedron is formed by two planar eight-membered rings (r.m.s. deviation 0.016, 0.006 Å) in an almost parallel arrangement with an interplanar angle of 2.21 (9)°. The perpendicular distances of the Er atom from the C8 planes are 1.8809 (7) and 1.8476 (8) Å. The angle cent1—Er—cent2 (cent = centroid) is 178°. The rings are eclipsed, as shown by torsion angles, e.g. C1—Cg1—Cg2—C12 = -3°, where Cg are ring centres of gravity. The individual Er—C bond lengths range from 2.596 (2)–2.651 (2) Å, which is comparable with Er—C(η8) [2.569 (14)–2.660 (19) Å], Er—C(η5) [2.629 (15)–2.654 (13) Å] reported for (COT)Er(µ-COT)K(µ-COT)Er(µ-COT)K(THF)4 (Xia et al. 1991), and (µ5-C5H5)2Er(µ-CH3)2Li(tmeda) (tmeda = tetramethylethylenediamine) (Schumann et al. 1985) respectively. In the imidazolium ion, the N—C distances [1.330 (3) and 1.335 (2) Å] are slightly shorter than those of 1,3-di(1-adamantyl)imidazol-2-ylidene reported by Arduengo et al. (1991) [1.367 (2) and 1.373 (2) Å], indicating delocalization of the positive charge over the N1—C17—N2 unit.

The packing involves several short interionic ("charge-assisted") contacts, principally from the more acidic H atoms H17, H20 and H25 (but also from H22C). The C—H bond distances were normalized to 1.08Å to calculate the contact distances. The shortest is from H25 to the centroid of C1–8, with H···cent 2.27 Å, C—H···cent 178°. The other contacts are best described as involving individual bonds as acceptors: C17—H17···C4,C5 [H···C 2.55, 2.31 Å, angles 156, 165°]; C20—H20···C10,C11 [2.73, 2.62 Å, 143, 133°, operator 1/2 + x, 1/2 - y, 1/2 + z]; C22—H22C—C12,C13 [2.80, 2.73 Å, 138, 163°, same operator]. The net effect is to connect the residues to form a chain parallel to (101) (Fig. 2). Between chains, a short C22···C22 contact is observed [3.168 (4) Å, operator 1 - x,1 - y,1 - z].

Related literature top

For related literature, see: Arduengo et al. (1991); Boussie et al. (1991); Hayes & Thomas (1969); Hodgson et al. (1973); Schumann et al. (1985, 1993); Streitwieser & Müller-Westerhoff (1968); Xia et al. (1991).

Experimental top

The title compound was crystallized from THF/pentane by the reaction of ErCl3, 1,3 diisopropylimidazolin-2-ylidene and freshly prepared K2COT and by subsequent extraction and filtration from toluene. Elemental analysis: C27H37ErN2 (556.85 g/mol), Calculated: C 58.23, H 6.69, N 5.03; Found C 58.01, H 6.10, N 5.45%.

Refinement top

Methyl hydrogen atoms were located in a difference synthesis; the methyl groups were idealized and refined as rigid groups allowed to rotate but not tip, with C—H 0.98 Å, H—C—H 109.5°. Atom H17 was freely refined [C17—H17 refined to 0.91 (2) Å]. Other hydrogen atoms were included using a riding model with C—H 0.95 (aromatic), 1.00 (methylidyne) Å; U(H) values were fixed at 1.2U(C) of the parent C atom.

The two difference peaks larger than 1 e Å-3 are not located near the Er atom, but instead lie 1.12 Å from H1 and 1.89 Å from H27A, respectively. Since the largest peak has x and z coordinates equal to those of Er, we tentatively ascribe these peaks to the effect of a small unidentified twinning component.

In the supplementary material, the extremely long list of torsion angles involving the Er atom has been omitted.

Structure description top

After the synthesis of uranocene [(COT)2U] (COT = cyclooctatetraenyl, (C8H8)2-) by Streitwieser & Müller-Westerhoff (1968), bis-cyclooctatetraene complexes of divalent lanthanides were reported by Hayes & Thomas (1969). Streitwieser isolated trivalent lanthanide complexes of the type [K(COT)2Ln] (Ln = Y, La, Ce, Pr, Nd, Sm, Gd, Tb) (Mares et al., 1970; Streitwieser et al., 1973; Hodgson et al., 1973) using the same methodology as for the preparation of uranocene. Later, [K(COT)2Ln] complexes of ytterbium (Boussie et al., 1991) and lutetium (Schumann et al., 1993) were reported. In 1991 Chen synthesized an erbium complex with a tetralayer sandwich structure in which the adjacent Er3+ and K+ ions are bridged by η8-cyclooctatetraenyl groups (Xia et al., 1991). Here we report the anionic mononuclear sandwich complex of bis(cyclooctatetraenyl)erbium(III) with the carbenium cation 1,3- diisopropylimidazolium (Fig. 1).

The compound crystallizes without imposed symmetry. The coordination polyhedron is formed by two planar eight-membered rings (r.m.s. deviation 0.016, 0.006 Å) in an almost parallel arrangement with an interplanar angle of 2.21 (9)°. The perpendicular distances of the Er atom from the C8 planes are 1.8809 (7) and 1.8476 (8) Å. The angle cent1—Er—cent2 (cent = centroid) is 178°. The rings are eclipsed, as shown by torsion angles, e.g. C1—Cg1—Cg2—C12 = -3°, where Cg are ring centres of gravity. The individual Er—C bond lengths range from 2.596 (2)–2.651 (2) Å, which is comparable with Er—C(η8) [2.569 (14)–2.660 (19) Å], Er—C(η5) [2.629 (15)–2.654 (13) Å] reported for (COT)Er(µ-COT)K(µ-COT)Er(µ-COT)K(THF)4 (Xia et al. 1991), and (µ5-C5H5)2Er(µ-CH3)2Li(tmeda) (tmeda = tetramethylethylenediamine) (Schumann et al. 1985) respectively. In the imidazolium ion, the N—C distances [1.330 (3) and 1.335 (2) Å] are slightly shorter than those of 1,3-di(1-adamantyl)imidazol-2-ylidene reported by Arduengo et al. (1991) [1.367 (2) and 1.373 (2) Å], indicating delocalization of the positive charge over the N1—C17—N2 unit.

The packing involves several short interionic ("charge-assisted") contacts, principally from the more acidic H atoms H17, H20 and H25 (but also from H22C). The C—H bond distances were normalized to 1.08Å to calculate the contact distances. The shortest is from H25 to the centroid of C1–8, with H···cent 2.27 Å, C—H···cent 178°. The other contacts are best described as involving individual bonds as acceptors: C17—H17···C4,C5 [H···C 2.55, 2.31 Å, angles 156, 165°]; C20—H20···C10,C11 [2.73, 2.62 Å, 143, 133°, operator 1/2 + x, 1/2 - y, 1/2 + z]; C22—H22C—C12,C13 [2.80, 2.73 Å, 138, 163°, same operator]. The net effect is to connect the residues to form a chain parallel to (101) (Fig. 2). Between chains, a short C22···C22 contact is observed [3.168 (4) Å, operator 1 - x,1 - y,1 - z].

For related literature, see: Arduengo et al. (1991); Boussie et al. (1991); Hayes & Thomas (1969); Hodgson et al. (1973); Schumann et al. (1985, 1993); Streitwieser & Müller-Westerhoff (1968); Xia et al. (1991).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The formula unit of the title compound in the crystal. Ellipsoids represent 30% probability levels.
[Figure 2] Fig. 2. Chain formation via short C—H···π contacts (thin dashed bonds) - see text. H atoms not involved in short contacts are omitted for clarity.
1,3-Diisopropylimidazolium bis(cyclooctatetraenyl)erbate(III) top
Crystal data top
(C11H21N2)[Er(C8H8)2]F(000) = 1124
Mr = 556.85Dx = 1.542 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.7879 (12) ÅCell parameters from 7131 reflections
b = 8.7333 (8) Åθ = 2–30°
c = 21.531 (2) ŵ = 3.51 mm1
β = 94.100 (3)°T = 133 K
V = 2398.5 (4) Å3Tablet, yellow
Z = 40.33 × 0.25 × 0.14 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
7325 independent reflections
Radiation source: fine-focus sealed tube6213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.192 pixels mm-1θmax = 30.5°, θmin = 1.8°
ω and φ scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1212
Tmin = 0.390, Tmax = 0.639l = 3030
46432 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0093P)2 + 2.7708P]
where P = (Fo2 + 2Fc2)/3
7325 reflections(Δ/σ)max = 0.002
281 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
(C11H21N2)[Er(C8H8)2]V = 2398.5 (4) Å3
Mr = 556.85Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7879 (12) ŵ = 3.51 mm1
b = 8.7333 (8) ÅT = 133 K
c = 21.531 (2) Å0.33 × 0.25 × 0.14 mm
β = 94.100 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
7325 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
6213 reflections with I > 2σ(I)
Tmin = 0.390, Tmax = 0.639Rint = 0.031
46432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 1.24 e Å3
7325 reflectionsΔρmin = 0.88 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er0.294863 (6)0.393357 (10)0.098885 (4)0.01441 (3)
N10.59507 (12)0.71121 (19)0.27630 (7)0.0149 (3)
N20.62422 (13)0.5389 (2)0.34830 (7)0.0163 (3)
C10.36080 (18)0.6787 (3)0.09668 (10)0.0250 (4)
H10.34700.76210.06900.030*
C20.29094 (17)0.6728 (3)0.14489 (10)0.0244 (4)
H20.24090.75330.14200.029*
C30.27823 (17)0.5760 (3)0.19602 (10)0.0237 (4)
H30.22370.60940.22050.028*
C40.32684 (17)0.4418 (3)0.21950 (9)0.0228 (4)
H40.29630.40460.25550.027*
C50.41019 (17)0.3494 (3)0.20220 (9)0.0223 (4)
H50.42040.26160.22790.027*
C60.48199 (16)0.3570 (3)0.15561 (10)0.0237 (4)
H60.53180.27610.15860.028*
C70.49692 (16)0.4567 (3)0.10561 (10)0.0244 (4)
H70.55530.42840.08320.029*
C80.44589 (17)0.5887 (3)0.08083 (9)0.0249 (5)
H80.47640.62560.04480.030*
C90.30900 (18)0.1185 (3)0.05205 (12)0.0314 (5)
H90.36030.03960.05350.038*
C100.31984 (18)0.2205 (3)0.00278 (11)0.0318 (6)
H100.37800.19620.02050.038*
C110.2650 (2)0.3504 (3)0.02038 (10)0.0315 (6)
H110.29440.39310.05580.038*
C120.1758 (2)0.4324 (3)0.00302 (11)0.0329 (6)
H120.15850.51660.02970.040*
C130.10714 (18)0.4170 (3)0.04490 (12)0.0330 (6)
H130.05440.49380.04310.040*
C140.09810 (17)0.3154 (3)0.09458 (11)0.0326 (6)
H140.04050.33930.11840.039*
C150.15398 (19)0.1868 (3)0.11750 (10)0.0314 (5)
H150.12630.14570.15370.038*
C160.2406 (2)0.1052 (3)0.09965 (11)0.0321 (5)
H160.25710.02020.12610.038*
C170.56693 (15)0.5738 (2)0.29595 (9)0.0163 (4)
H170.5164 (17)0.515 (3)0.2758 (10)0.015 (6)*
C180.69194 (15)0.6603 (2)0.36310 (9)0.0184 (4)
C190.67409 (15)0.7684 (2)0.31794 (9)0.0183 (4)
C200.61502 (16)0.3970 (2)0.38588 (9)0.0193 (4)
H200.68730.36090.39940.023*
C210.5605 (2)0.2722 (3)0.34720 (11)0.0332 (6)
H21A0.56390.17590.37060.040*
H21B0.59510.25930.30840.040*
H21C0.48690.30050.33750.040*
C220.55787 (19)0.4316 (3)0.44359 (10)0.0284 (5)
H22A0.48670.46700.43120.034*
H22B0.59560.51160.46800.034*
H22C0.55440.33860.46880.034*
C230.76721 (18)0.6623 (3)0.41938 (10)0.0271 (5)
H23A0.82440.73380.41270.033*
H23B0.79590.55940.42680.033*
H23C0.73070.69520.45560.033*
C240.72744 (18)0.9190 (3)0.31202 (11)0.0277 (5)
H24A0.76910.94220.35090.033*
H24B0.67470.99920.30370.033*
H24C0.77360.91450.27760.033*
C250.54317 (15)0.7822 (2)0.21896 (8)0.0172 (4)
H250.49510.70300.19920.021*
C260.47505 (18)0.9167 (3)0.23510 (10)0.0266 (5)
H26A0.42510.88360.26490.032*
H26B0.43660.95470.19720.032*
H26C0.51940.99860.25370.032*
C270.62160 (18)0.8210 (3)0.17196 (10)0.0269 (5)
H27A0.66520.90720.18740.032*
H27B0.58420.84910.13230.032*
H27C0.66630.73190.16580.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er0.01515 (4)0.01363 (4)0.01403 (4)0.00244 (3)0.00180 (3)0.00117 (3)
N10.0138 (7)0.0175 (9)0.0131 (7)0.0002 (6)0.0003 (6)0.0001 (6)
N20.0180 (8)0.0165 (9)0.0144 (7)0.0017 (6)0.0010 (6)0.0011 (6)
C10.0349 (12)0.0153 (11)0.0233 (10)0.0087 (9)0.0080 (8)0.0038 (8)
C20.0253 (10)0.0131 (10)0.0338 (11)0.0011 (8)0.0051 (8)0.0051 (9)
C30.0225 (10)0.0231 (12)0.0261 (10)0.0023 (8)0.0050 (8)0.0114 (8)
C40.0283 (11)0.0260 (11)0.0140 (9)0.0095 (8)0.0015 (8)0.0027 (8)
C50.0267 (10)0.0204 (11)0.0185 (9)0.0046 (8)0.0074 (8)0.0030 (7)
C60.0178 (9)0.0241 (12)0.0281 (11)0.0021 (7)0.0065 (8)0.0041 (8)
C70.0169 (9)0.0325 (13)0.0241 (10)0.0056 (8)0.0029 (8)0.0085 (9)
C80.0270 (10)0.0315 (13)0.0161 (9)0.0143 (9)0.0019 (8)0.0009 (8)
C90.0290 (11)0.0196 (12)0.0436 (13)0.0023 (9)0.0105 (10)0.0143 (10)
C100.0243 (11)0.0421 (15)0.0294 (12)0.0097 (10)0.0048 (9)0.0209 (10)
C110.0416 (13)0.0385 (15)0.0141 (9)0.0209 (11)0.0003 (9)0.0033 (9)
C120.0449 (14)0.0247 (13)0.0259 (11)0.0077 (10)0.0206 (10)0.0057 (9)
C130.0233 (11)0.0341 (15)0.0390 (13)0.0075 (9)0.0171 (9)0.0121 (10)
C140.0173 (10)0.0508 (16)0.0299 (12)0.0090 (10)0.0026 (8)0.0164 (11)
C150.0319 (12)0.0390 (15)0.0230 (10)0.0221 (11)0.0002 (9)0.0021 (10)
C160.0418 (13)0.0190 (11)0.0328 (12)0.0137 (10)0.0150 (10)0.0057 (10)
C170.0163 (9)0.0172 (10)0.0153 (8)0.0006 (7)0.0011 (7)0.0003 (7)
C180.0178 (9)0.0189 (10)0.0179 (9)0.0021 (7)0.0019 (7)0.0016 (7)
C190.0161 (9)0.0192 (10)0.0192 (9)0.0006 (7)0.0024 (7)0.0025 (7)
C200.0225 (9)0.0177 (10)0.0175 (8)0.0032 (8)0.0002 (7)0.0056 (8)
C210.0511 (15)0.0224 (13)0.0252 (11)0.0061 (10)0.0046 (10)0.0058 (9)
C220.0321 (12)0.0323 (14)0.0217 (10)0.0089 (9)0.0088 (9)0.0071 (9)
C230.0295 (11)0.0265 (12)0.0234 (10)0.0016 (9)0.0114 (8)0.0001 (9)
C240.0272 (11)0.0239 (13)0.0303 (11)0.0079 (9)0.0092 (9)0.0027 (9)
C250.0189 (9)0.0192 (10)0.0129 (8)0.0014 (7)0.0029 (7)0.0010 (7)
C260.0272 (11)0.0268 (13)0.0250 (10)0.0090 (9)0.0041 (8)0.0005 (9)
C270.0308 (11)0.0316 (13)0.0186 (10)0.0040 (10)0.0043 (8)0.0035 (9)
Geometric parameters (Å, º) top
Er—C112.596 (2)C10—C111.407 (4)
Er—C132.599 (2)C10—H100.9500
Er—C102.600 (2)C11—C121.419 (4)
Er—C152.600 (2)C11—H110.9500
Er—C142.602 (2)C12—C131.408 (4)
Er—C122.602 (2)C12—H120.9500
Er—C52.6080 (19)C13—C141.401 (4)
Er—C162.611 (2)C13—H130.9500
Er—C92.615 (2)C14—C151.402 (4)
Er—C82.627 (2)C14—H140.9500
Er—C62.627 (2)C15—C161.395 (4)
Er—C12.633 (2)C15—H150.9500
Er—C42.634 (2)C16—H160.9500
Er—C22.636 (2)C17—H170.91 (2)
Er—C72.636 (2)C18—C191.363 (3)
Er—C32.651 (2)C18—C231.493 (3)
N1—C171.330 (3)C19—C241.491 (3)
N1—C191.395 (2)C20—C211.512 (3)
N1—C251.494 (2)C20—C221.516 (3)
N2—C171.335 (2)C20—H201.0000
N2—C181.391 (3)C21—H21A0.9800
N2—C201.489 (3)C21—H21B0.9800
C1—C81.404 (3)C21—H21C0.9800
C1—C21.418 (3)C22—H22A0.9800
C1—H10.9500C22—H22B0.9800
C2—C31.407 (3)C22—H22C0.9800
C2—H20.9500C23—H23A0.9800
C3—C41.404 (3)C23—H23B0.9800
C3—H30.9500C23—H23C0.9800
C4—C51.408 (3)C24—H24A0.9800
C4—H40.9500C24—H24B0.9800
C5—C61.409 (3)C24—H24C0.9800
C5—H50.9500C25—C271.513 (3)
C6—C71.409 (3)C25—C261.517 (3)
C6—H60.9500C25—H251.0000
C7—C81.411 (3)C26—H26A0.9800
C7—H70.9500C26—H26B0.9800
C8—H80.9500C26—H26C0.9800
C9—C161.399 (4)C27—H27A0.9800
C9—C101.399 (4)C27—H27B0.9800
C9—H90.9500C27—H27C0.9800
C11—Er—C1360.21 (8)C2—C3—Er73.97 (12)
C11—Er—C1031.42 (8)C4—C3—H3112.4
C13—Er—C1081.51 (8)C2—C3—H3112.4
C11—Er—C1589.87 (7)Er—C3—H3136.6
C13—Er—C1559.75 (8)C3—C4—C5135.0 (2)
C10—Er—C1581.13 (8)C3—C4—Er75.25 (12)
C11—Er—C1481.57 (7)C5—C4—Er73.40 (11)
C13—Er—C1431.25 (8)C3—C4—H4112.5
C10—Er—C1489.61 (7)C5—C4—H4112.5
C15—Er—C1431.26 (9)Er—C4—H4134.9
C11—Er—C1231.69 (9)C4—C5—C6134.9 (2)
C13—Er—C1231.40 (8)C4—C5—Er75.45 (11)
C10—Er—C1260.18 (8)C6—C5—Er75.13 (11)
C15—Er—C1281.41 (8)C4—C5—H5112.6
C14—Er—C1259.87 (8)C6—C5—H5112.6
C11—Er—C5148.95 (8)Er—C5—H5131.5
C13—Er—C5147.24 (8)C7—C6—C5134.7 (2)
C10—Er—C5119.96 (8)C7—C6—Er74.84 (12)
C15—Er—C597.02 (7)C5—C6—Er73.64 (11)
C14—Er—C5118.58 (7)C7—C6—H6112.6
C12—Er—C5178.40 (7)C5—C6—H6112.6
C11—Er—C1681.18 (8)Er—C6—H6134.9
C13—Er—C1680.92 (8)C6—C7—C8135.3 (2)
C10—Er—C1659.54 (8)C6—C7—Er74.11 (12)
C15—Er—C1631.04 (8)C8—C7—Er74.08 (12)
C14—Er—C1659.42 (9)C6—C7—H7112.4
C12—Er—C1689.53 (7)C8—C7—H7112.4
C5—Er—C1689.27 (7)Er—C7—H7136.1
C11—Er—C959.69 (8)C1—C8—C7135.3 (2)
C13—Er—C989.29 (7)C1—C8—Er74.75 (12)
C10—Er—C931.13 (8)C7—C8—Er74.83 (12)
C15—Er—C959.37 (8)C1—C8—H8112.3
C14—Er—C980.76 (8)C7—C8—H8112.3
C12—Er—C981.23 (8)Er—C8—H8133.7
C5—Er—C998.25 (7)C16—C9—C10135.2 (2)
C16—Er—C931.06 (8)C16—C9—Er74.33 (14)
C11—Er—C890.30 (7)C10—C9—Er73.84 (14)
C13—Er—C8123.19 (8)C16—C9—H9112.4
C10—Er—C897.24 (7)C10—C9—H9112.4
C15—Er—C8176.50 (8)Er—C9—H9136.0
C14—Er—C8152.13 (8)C9—C10—C11135.1 (2)
C12—Er—C8100.51 (7)C9—C10—Er75.03 (13)
C5—Er—C881.08 (7)C11—C10—Er74.16 (13)
C16—Er—C8145.65 (8)C9—C10—H10112.5
C9—Er—C8117.87 (8)C11—C10—H10112.5
C11—Er—C6120.48 (8)Er—C10—H10134.1
C13—Er—C6177.29 (8)C10—C11—C12134.7 (2)
C10—Er—C698.05 (7)C10—C11—Er74.43 (12)
C15—Er—C6117.55 (8)C12—C11—Er74.38 (12)
C14—Er—C6146.24 (8)C10—C11—H11112.6
C12—Er—C6150.07 (8)C12—C11—H11112.6
C5—Er—C631.23 (7)Er—C11—H11134.3
C16—Er—C696.55 (7)C13—C12—C11134.4 (2)
C9—Er—C688.99 (7)C13—C12—Er74.19 (12)
C8—Er—C659.50 (7)C11—C12—Er73.93 (12)
C11—Er—C198.26 (7)C13—C12—H12112.8
C13—Er—C1101.73 (8)C11—C12—H12112.8
C10—Er—C1118.54 (8)Er—C12—H12135.2
C15—Er—C1152.33 (8)C14—C13—C12135.2 (2)
C14—Er—C1123.86 (8)C14—C13—Er74.47 (12)
C12—Er—C191.70 (7)C12—C13—Er74.40 (13)
C5—Er—C189.56 (6)C14—C13—H13112.4
C16—Er—C1176.61 (8)C12—C13—H13112.4
C9—Er—C1146.21 (8)Er—C13—H13134.8
C8—Er—C130.97 (7)C13—C14—C15135.1 (2)
C6—Er—C180.83 (7)C13—C14—Er74.28 (13)
C11—Er—C4178.95 (7)C15—C14—Er74.31 (12)
C13—Er—C4120.09 (8)C13—C14—H14112.4
C10—Er—C4149.18 (8)C15—C14—H14112.4
C15—Er—C491.13 (7)Er—C14—H14135.1
C14—Er—C499.13 (7)C16—C15—C14135.1 (2)
C12—Er—C4148.26 (8)C16—C15—Er74.91 (13)
C5—Er—C431.15 (7)C14—C15—Er74.43 (13)
C16—Er—C499.85 (7)C16—C15—H15112.5
C9—Er—C4121.16 (8)C14—C15—H15112.5
C8—Er—C488.72 (6)Er—C15—H15133.8
C6—Er—C459.27 (7)C15—C16—C9135.2 (2)
C1—Er—C480.70 (7)C15—C16—Er74.05 (14)
C11—Er—C2120.00 (8)C9—C16—Er74.61 (14)
C13—Er—C293.02 (7)C15—C16—H16112.4
C10—Er—C2147.53 (8)C9—C16—H16112.4
C15—Er—C2123.52 (8)Er—C16—H16135.1
C14—Er—C2102.20 (8)N1—C17—N2109.26 (17)
C12—Er—C299.78 (7)N1—C17—H17124.0 (14)
C5—Er—C280.82 (7)N2—C17—H17126.8 (14)
C16—Er—C2151.40 (8)C19—C18—N2107.14 (16)
C9—Er—C2177.00 (7)C19—C18—C23129.5 (2)
C8—Er—C259.21 (7)N2—C18—C23123.35 (18)
C6—Er—C288.77 (7)C18—C19—N1106.68 (18)
C1—Er—C231.23 (7)C18—C19—C24128.14 (18)
C4—Er—C259.11 (7)N1—C19—C24125.18 (18)
C11—Er—C799.16 (7)N2—C20—C21110.60 (16)
C13—Er—C7151.40 (8)N2—C20—C22109.92 (17)
C10—Er—C789.42 (7)C21—C20—C22111.38 (19)
C15—Er—C7145.51 (8)N2—C20—H20108.3
C14—Er—C7176.77 (8)C21—C20—H20108.3
C12—Er—C7122.08 (8)C22—C20—H20108.3
C5—Er—C759.45 (7)C20—C21—H21A109.5
C16—Er—C7117.51 (8)C20—C21—H21B109.5
C9—Er—C796.86 (7)H21A—C21—H21B109.5
C8—Er—C731.09 (7)C20—C21—H21C109.5
C6—Er—C731.04 (7)H21A—C21—H21C109.5
C1—Er—C759.23 (7)H21B—C21—H21C109.5
C4—Er—C780.19 (7)C20—C22—H22A109.5
C2—Er—C780.20 (7)C20—C22—H22B109.5
C11—Er—C3148.53 (8)H22A—C22—H22B109.5
C13—Er—C3100.45 (7)C20—C22—H22C109.5
C10—Er—C3177.23 (7)H22A—C22—H22C109.5
C15—Er—C3101.54 (7)H22B—C22—H22C109.5
C14—Er—C393.07 (7)C18—C23—H23A109.5
C12—Er—C3120.75 (8)C18—C23—H23B109.5
C5—Er—C359.19 (7)H23A—C23—H23B109.5
C16—Er—C3122.59 (8)C18—C23—H23C109.5
C9—Er—C3150.25 (8)H23A—C23—H23C109.5
C8—Er—C380.06 (7)H23B—C23—H23C109.5
C6—Er—C380.08 (7)C19—C24—H24A109.5
C1—Er—C359.24 (7)C19—C24—H24B109.5
C4—Er—C330.80 (7)H24A—C24—H24B109.5
C2—Er—C330.87 (7)C19—C24—H24C109.5
C7—Er—C387.93 (7)H24A—C24—H24C109.5
C17—N1—C19108.58 (16)H24B—C24—H24C109.5
C17—N1—C25121.53 (16)N1—C25—C27111.65 (16)
C19—N1—C25129.87 (17)N1—C25—C26111.13 (16)
C17—N2—C18108.34 (16)C27—C25—C26113.51 (18)
C17—N2—C20126.07 (17)N1—C25—H25106.7
C18—N2—C20125.56 (16)C27—C25—H25106.7
C8—C1—C2134.2 (2)C26—C25—H25106.7
C8—C1—Er74.29 (13)C25—C26—H26A109.5
C2—C1—Er74.50 (12)C25—C26—H26B109.5
C8—C1—H1112.9H26A—C26—H26B109.5
C2—C1—H1112.9C25—C26—H26C109.5
Er—C1—H1133.7H26A—C26—H26C109.5
C3—C2—C1135.2 (2)H26B—C26—H26C109.5
C3—C2—Er75.16 (12)C25—C27—H27A109.5
C1—C2—Er74.27 (13)C25—C27—H27B109.5
C3—C2—H2112.4H27A—C27—H27B109.5
C1—C2—H2112.4C25—C27—H27C109.5
Er—C2—H2133.7H27A—C27—H27C109.5
C4—C3—C2135.3 (2)H27B—C27—H27C109.5
C4—C3—Er73.95 (12)
C8—C1—C2—C30.1 (4)C17—N2—C18—C190.4 (2)
C1—C2—C3—C42.8 (4)C20—N2—C18—C19178.42 (17)
C2—C3—C4—C51.4 (4)C17—N2—C18—C23179.20 (19)
C3—C4—C5—C63.1 (4)C20—N2—C18—C231.2 (3)
C4—C5—C6—C73.2 (4)N2—C18—C19—N10.3 (2)
C5—C6—C7—C81.1 (4)C23—C18—C19—N1179.3 (2)
C2—C1—C8—C70.1 (4)N2—C18—C19—C24179.1 (2)
C6—C7—C8—C12.4 (4)C23—C18—C19—C241.3 (4)
C16—C9—C10—C111.7 (5)C17—N1—C19—C180.0 (2)
C9—C10—C11—C120.3 (5)C25—N1—C19—C18178.69 (18)
C10—C11—C12—C130.8 (5)C17—N1—C19—C24179.4 (2)
C11—C12—C13—C140.4 (5)C25—N1—C19—C241.9 (3)
C12—C13—C14—C150.3 (5)C17—N2—C20—C2119.8 (3)
C13—C14—C15—C161.4 (5)C18—N2—C20—C21162.46 (19)
C14—C15—C16—C91.2 (5)C17—N2—C20—C22103.6 (2)
C10—C9—C16—C150.8 (5)C18—N2—C20—C2274.1 (2)
C19—N1—C17—N20.2 (2)C17—N1—C25—C27122.8 (2)
C25—N1—C17—N2179.05 (16)C19—N1—C25—C2758.6 (3)
C18—N2—C17—N10.4 (2)C17—N1—C25—C26109.4 (2)
C20—N2—C17—N1178.39 (17)C19—N1—C25—C2669.2 (3)

Experimental details

Crystal data
Chemical formula(C11H21N2)[Er(C8H8)2]
Mr556.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)133
a, b, c (Å)12.7879 (12), 8.7333 (8), 21.531 (2)
β (°) 94.100 (3)
V3)2398.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.51
Crystal size (mm)0.33 × 0.25 × 0.14
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.390, 0.639
No. of measured, independent and
observed [I > 2σ(I)] reflections
46432, 7325, 6213
Rint0.031
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.042, 1.11
No. of reflections7325
No. of parameters281
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.24, 0.88

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
Er—C112.596 (2)Er—C82.627 (2)
Er—C132.599 (2)Er—C62.627 (2)
Er—C102.600 (2)Er—C12.633 (2)
Er—C152.600 (2)Er—C42.634 (2)
Er—C142.602 (2)Er—C22.636 (2)
Er—C122.602 (2)Er—C72.636 (2)
Er—C52.6080 (19)Er—C32.651 (2)
Er—C162.611 (2)N1—C171.330 (3)
Er—C92.615 (2)N2—C171.335 (2)
N1—C17—N2109.26 (17)
C—H···π interactions top
D—H···ADistance H···A (Å)Angle D—H···A (°)Symmetry code
C25—H25···Cg(C1–C8)2.27178
C17—H17···Cent(C4—C5)2.33169
C20—H20···Cent(C10—C11)2.58140(0.5+x, 0.5-y, 0.5+z)
C22—H22C···Cent(C12—C13)2.67151(0.5+x, 0.5-y, 0.5+z)
Notes: C—H distances are normalized to 1.08Å, Cg is the centre of gravity of a ring and Cent is the mid-point of a bond.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds