Download citation
Download citation
link to html
In the structure of the title compound, C13H9Cl2NO, the conformation of the N—H bond is syn to the chloro substituents on the aniline benzene ring, similar to that observed in N-(2,3-dichloro­phen­yl)acetamide, but in contrast to the anti conformation observed with respect to the ortho-Cl substituent in N-(2-chloro­phen­yl)benzamide. The structure closely resembles the structures of 2-chloro-N-phenyl­benzamide, N-(2-chloro­phen­yl)benzamide and N-(2,3-dichloro­phen­yl)acetamide. The mol­ecules are linked into a chain through an N—H...O hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030243/bt2404sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030243/bt2404Isup2.hkl
Contains datablock I

CCDC reference: 655047

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.036
  • wR factor = 0.093
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 42 Perc. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the present work, the structure of N-(2,3-dichlorophenyl)-benzamide has been determined to explore the substituent effects on the structures of N-aromatic amides (Gowda et al., 2003; Gowda, Foro, & Fuess, 2007; Gowda, Kozisek, et al., 2007; Gowda, Sowmya, et al., 2007). The conformation of the N—H bond (Fig. 1) is syn to the chloro substituents in the aniline phenyl ring, similar to that observed in N-(2,3-dichlorophenyl)-acetamide (Gowda, Foro, & Fuess, 2007), but in contrast to the anti conformation observed with respect to the ortho-Cl substituent in N-(2-chlorophenyl)-benzamide (Gowda, Sowmya, et al., 2007). The structure resembles the structure of N-(phenyl)-2-chlorobenzamide (Gowda et al., 2003), N-(2-chlorophenyl)-benzamide (Gowda, Sowmya, et al., 2007) and N-(2,3-dichlorophenyl)-acetamide (Gowda, Foro, & Fuess, 2007). The packing diagram showis the infinite chain of molecules along [0 0 1] linked by N—H···O hydrogen bonds (Fig. 2 and Table 2).

Related literature top

For related literature, see: Gowda et al. (2003); Gowda, Foro & Fuess (2007); Gowda, Kozisek et al. (2007); Gowda, Sowmya et al. (2007).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution.

Refinement top

H atoms were found in a difference map and refined using a riding model with C—H distances of 0.93 Å and 0.86 Å for the H—N distance and with Uiso(H) = 1.2 Ueq(C,N).

Structure description top

In the present work, the structure of N-(2,3-dichlorophenyl)-benzamide has been determined to explore the substituent effects on the structures of N-aromatic amides (Gowda et al., 2003; Gowda, Foro, & Fuess, 2007; Gowda, Kozisek, et al., 2007; Gowda, Sowmya, et al., 2007). The conformation of the N—H bond (Fig. 1) is syn to the chloro substituents in the aniline phenyl ring, similar to that observed in N-(2,3-dichlorophenyl)-acetamide (Gowda, Foro, & Fuess, 2007), but in contrast to the anti conformation observed with respect to the ortho-Cl substituent in N-(2-chlorophenyl)-benzamide (Gowda, Sowmya, et al., 2007). The structure resembles the structure of N-(phenyl)-2-chlorobenzamide (Gowda et al., 2003), N-(2-chlorophenyl)-benzamide (Gowda, Sowmya, et al., 2007) and N-(2,3-dichlorophenyl)-acetamide (Gowda, Foro, & Fuess, 2007). The packing diagram showis the infinite chain of molecules along [0 0 1] linked by N—H···O hydrogen bonds (Fig. 2 and Table 2).

For related literature, see: Gowda et al. (2003); Gowda, Foro & Fuess (2007); Gowda, Kozisek et al. (2007); Gowda, Sowmya et al. (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of crystal structure of the title compound showing the infinite chain of molecules along [0 0 1] linked by hydrogen bonds N1—H1N···O1(i). Symmetry operation (i): x, -y + 1, z + 1/2.
N-(2,3-Dichlorophenyl)benzamide top
Crystal data top
C13H9Cl2NOF(000) = 1088
Mr = 266.11Dx = 1.47 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2616 reflections
a = 24.2968 (12) Åθ = 3.1–29.4°
b = 11.3273 (5) ŵ = 0.52 mm1
c = 8.7396 (3) ÅT = 295 K
V = 2405.29 (18) Å3Needle, colorless
Z = 80.45 × 0.09 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2319 independent reflections
Radiation source: Enhance (Mo) X-ray Source981 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
Detector resolution: 10.4340 pixels mm-1θmax = 25.9°, θmin = 4.3°
φ scans, and ω scans with κ offsetsh = 2929
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1313
Tmin = 0.894, Tmax = 0.961l = 1010
21027 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0374P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max = 0.002
S = 0.91Δρmax = 0.17 e Å3
2319 reflectionsΔρmin = 0.19 e Å3
154 parameters
Crystal data top
C13H9Cl2NOV = 2405.29 (18) Å3
Mr = 266.11Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 24.2968 (12) ŵ = 0.52 mm1
b = 11.3273 (5) ÅT = 295 K
c = 8.7396 (3) Å0.45 × 0.09 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2319 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
981 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.961Rint = 0.097
21027 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 0.91Δρmax = 0.17 e Å3
2319 reflectionsΔρmin = 0.19 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37448 (11)0.4513 (3)0.2398 (3)0.0476 (7)
C20.33837 (11)0.3829 (3)0.3452 (3)0.0444 (7)
C30.34131 (12)0.2616 (3)0.3412 (3)0.0555 (8)
H30.36520.22490.27300.067*
C40.30922 (14)0.1938 (3)0.4369 (4)0.0676 (9)
H40.31220.11200.43580.081*
C50.27301 (13)0.2478 (4)0.5336 (4)0.0709 (10)
H50.25130.20230.59860.085*
C60.26823 (13)0.3682 (4)0.5359 (4)0.0712 (10)
H60.24290.40400.60090.085*
C70.30086 (12)0.4365 (3)0.4420 (3)0.0562 (8)
H70.29770.51830.44370.067*
C80.41571 (11)0.6480 (3)0.1992 (3)0.0422 (7)
C90.45461 (12)0.6195 (3)0.0898 (3)0.0559 (8)
H90.46290.54080.07000.067*
C100.48119 (12)0.7080 (3)0.0099 (3)0.0632 (9)
H100.50710.68810.06410.076*
C110.47010 (12)0.8235 (3)0.0375 (4)0.0646 (9)
H110.48830.88200.01740.078*
C120.43170 (13)0.8539 (3)0.1474 (3)0.0560 (8)
C130.40443 (11)0.7666 (3)0.2283 (3)0.0477 (8)
N10.38766 (9)0.5620 (2)0.2842 (2)0.0491 (6)
H1N0.37770.58210.37500.059*
O10.39099 (8)0.40812 (18)0.1197 (2)0.0641 (6)
Cl10.35585 (4)0.80396 (7)0.36269 (8)0.0689 (3)
Cl20.41772 (4)1.00012 (8)0.18131 (11)0.0968 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0566 (19)0.043 (2)0.0428 (17)0.0072 (16)0.0068 (15)0.0002 (16)
C20.0485 (19)0.045 (2)0.0400 (15)0.0013 (15)0.0039 (14)0.0011 (16)
C30.060 (2)0.055 (2)0.0521 (17)0.0006 (16)0.0035 (17)0.0026 (17)
C40.071 (2)0.054 (2)0.077 (2)0.014 (2)0.012 (2)0.012 (2)
C50.056 (2)0.090 (3)0.066 (2)0.022 (2)0.0032 (19)0.018 (2)
C60.058 (2)0.083 (3)0.072 (2)0.011 (2)0.0035 (18)0.004 (2)
C70.057 (2)0.054 (2)0.0570 (18)0.0028 (18)0.0022 (17)0.0011 (18)
C80.0471 (18)0.044 (2)0.0357 (15)0.0009 (15)0.0022 (13)0.0061 (14)
C90.0564 (19)0.059 (2)0.0526 (17)0.0070 (17)0.0064 (16)0.0028 (17)
C100.050 (2)0.077 (3)0.0624 (19)0.0063 (19)0.0122 (16)0.003 (2)
C110.055 (2)0.063 (3)0.075 (2)0.0085 (19)0.0081 (18)0.0079 (19)
C120.060 (2)0.051 (2)0.0569 (18)0.0016 (16)0.0002 (17)0.0035 (17)
C130.0522 (19)0.051 (2)0.0402 (15)0.0011 (16)0.0025 (14)0.0012 (15)
N10.0679 (16)0.0411 (16)0.0383 (12)0.0027 (14)0.0059 (11)0.0020 (13)
O10.0942 (16)0.0539 (14)0.0442 (11)0.0014 (12)0.0097 (11)0.0086 (10)
Cl10.0925 (6)0.0530 (5)0.0613 (5)0.0056 (5)0.0242 (4)0.0040 (4)
Cl20.1238 (8)0.0477 (6)0.1188 (8)0.0073 (5)0.0328 (6)0.0059 (5)
Geometric parameters (Å, º) top
C1—O11.226 (3)C8—C91.383 (4)
C1—N11.351 (3)C8—C131.395 (4)
C1—C21.490 (4)C8—N11.401 (3)
C2—C31.377 (4)C9—C101.382 (4)
C2—C71.384 (4)C9—H90.9300
C3—C41.377 (4)C10—C111.357 (4)
C3—H30.9300C10—H100.9300
C4—C51.364 (4)C11—C121.383 (4)
C4—H40.9300C11—H110.9300
C5—C61.369 (5)C12—C131.384 (4)
C5—H50.9300C12—Cl21.716 (3)
C6—C71.378 (4)C13—Cl11.718 (3)
C6—H60.9300N1—H1N0.8600
C7—H70.9300
O1—C1—N1122.6 (3)C9—C8—C13119.0 (3)
O1—C1—C2120.9 (3)C9—C8—N1122.5 (3)
N1—C1—C2116.4 (2)C13—C8—N1118.5 (2)
C3—C2—C7119.2 (3)C10—C9—C8120.0 (3)
C3—C2—C1118.3 (3)C10—C9—H9120.0
C7—C2—C1122.5 (3)C8—C9—H9120.0
C2—C3—C4120.7 (3)C11—C10—C9121.1 (3)
C2—C3—H3119.6C11—C10—H10119.4
C4—C3—H3119.6C9—C10—H10119.4
C5—C4—C3119.4 (3)C10—C11—C12119.9 (3)
C5—C4—H4120.3C10—C11—H11120.1
C3—C4—H4120.3C12—C11—H11120.1
C4—C5—C6120.7 (3)C11—C12—C13119.9 (3)
C4—C5—H5119.7C11—C12—Cl2119.6 (3)
C6—C5—H5119.7C13—C12—Cl2120.4 (2)
C5—C6—C7120.1 (3)C12—C13—C8120.1 (2)
C5—C6—H6120.0C12—C13—Cl1120.1 (2)
C7—C6—H6120.0C8—C13—Cl1119.8 (2)
C6—C7—C2119.8 (3)C1—N1—C8127.4 (2)
C6—C7—H7120.1C1—N1—H1N116.3
C2—C7—H7120.1C8—N1—H1N116.3
O1—C1—C2—C325.7 (4)C9—C10—C11—C120.1 (5)
N1—C1—C2—C3154.3 (2)C10—C11—C12—C130.4 (4)
O1—C1—C2—C7151.9 (3)C10—C11—C12—Cl2179.8 (2)
N1—C1—C2—C728.1 (4)C11—C12—C13—C80.1 (4)
C7—C2—C3—C42.9 (4)Cl2—C12—C13—C8179.5 (2)
C1—C2—C3—C4179.4 (2)C11—C12—C13—Cl1178.9 (2)
C2—C3—C4—C51.9 (4)Cl2—C12—C13—Cl10.5 (3)
C3—C4—C5—C60.2 (5)C9—C8—C13—C120.4 (4)
C4—C5—C6—C71.2 (5)N1—C8—C13—C12179.5 (2)
C5—C6—C7—C20.1 (4)C9—C8—C13—Cl1179.48 (19)
C3—C2—C7—C61.9 (4)N1—C8—C13—Cl11.5 (3)
C1—C2—C7—C6179.4 (3)O1—C1—N1—C87.4 (4)
C13—C8—C9—C100.7 (4)C2—C1—N1—C8172.6 (2)
N1—C8—C9—C10179.7 (3)C9—C8—N1—C130.1 (4)
C8—C9—C10—C110.5 (4)C13—C8—N1—C1150.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.172.952 (3)152
N1—H1N···Cl10.862.572.929 (3)106
C9—H9···O10.932.342.861 (4)115
Symmetry code: (i) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO
Mr266.11
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)295
a, b, c (Å)24.2968 (12), 11.3273 (5), 8.7396 (3)
V3)2405.29 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.45 × 0.09 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.894, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
21027, 2319, 981
Rint0.097
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 0.91
No. of reflections2319
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.172.952 (3)151.9
N1—H1N···Cl10.862.572.929 (3)106.1
C9—H9···O10.932.342.861 (4)114.8
Symmetry code: (i) x, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds