Download citation
Download citation
link to html
The Pt atom in the title compound, [Pt(C13H11N2S)Cl3], is hexa­coordinated by an aromatic C, a diazene N, three Cl, and one S atoms in an approximately octa­hedral geometry. There are intra- and inter­molecular C—H...Cl hydrogen-bonding inter­actions. The crystal packing is stabilized by a weak inter­molecular π–π inter­action; the centroid–centroid distance is 3.924 (8) Å and the perpendicular distance is 3.656 Å, with a slippage of 1.424 Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680702898X/bt2390sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680702898X/bt2390Isup2.hkl
Contains datablock I

CCDC reference: 654784

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.020 Å
  • R factor = 0.061
  • wR factor = 0.116
  • Data-to-parameter ratio = 13.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.94
Alert level C REFLT03_ALERT_3_C Reflection count < 95% complete From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _diffrn_reflns_theta_full 25.00 From the CIF: _reflns_number_total 2515 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 2662 Completeness (_total/calc) 94.48% PLAT022_ALERT_3_C Ratio Unique / Expected Reflections too Low .... 0.94 PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C9 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 20
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Pt1 (2) 3.06
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The intramolecular C—H bond activation of aryl rings using platinum(II) is important in synthetic chemistry. There has been intense interest in C—H bond activation by platinum complexes (Lersch & Tilset, 2005; Rendina & Puddephatt, 1997). The oxidation of divalent cycloplatinates by halogens affords tetravalent cycloplatinates (Yahav et al., 2005) and the structures of few tetravalent platinum complexes have appeared in literature (Chattopadhyay et al., 1991; van Beek et al., 1986). Herein, we report the X-ray crystallographic study of the title compound.

The molecular structure of the title compound is shown in Fig. 1, with the atom numbering scheme. The platinum atom is hexa-coordinated with a donor set of six atoms in an approximately octahedral geometry. The packing arrangement of the title compound is shown in Fig. 2. The N=N bond length is slightly greater than the typical value (Chattopadhyay et al., 1991). The metal carbon and metal sulfur bond lengths are very close to the typical values; all the three Pt—Cl bond lengths are very close and are also close to the reported values (Chattopadhyay et al., 1991).

There are intra and intermolecular C—H···Cl hydrogen bonding interactions (Table 2, Fig. 3) in the title compound. A chain structure results by the intermolecular hydrogen-bonds where C13 atom in the molecule acts as a hydrogen-bond donor, via H13B, to the Cl1 atom of another molecule [Symmetry code: (i) -1 + x, y, z] (Table 2) (Fig. 3). A weak intermolecular ππ interaction (Bagchi et al., 2007) arranges the molecules in an anti parallel fashion (Fig. 4). The Cg3Cg3ii [Symmetry code: (ii) -x, 1 - y, 1-z. Cg3 is the centroid of C1—C6 ring.] distance is 3.924 (8) Å and the perpendicular distance is 3.656 Å with a slippage of 1.424 Å.

Related literature top

For related literature, see: Bagchi et al. (2007); van Beek et al. (1986); Chattopadhyay et al. (1991); Lersch & Tilset (2005); Rendina & Puddephatt (1997); Yahav et al. (2005).

Experimental top

The title compound was synthesized by the treatment of Chlorido{1-[2-(methylsulfanyl)phenyldiazenyl]phenyl–κ3C,N,S}platinum(II) with chlorinated acetonitrile following a reported procedure (Chattopadhyay et al., 1991) (Yield 74%).

Refinement top

H atoms were included at calculated positions as riding atoms with C–H set to 0.93 Å for (aromatic) and 0.96 Å for (CH3) H atoms, with Uiso(H) = 1.2Ueq(C) (1.5Ueq for methyl group). Some low-angle reflections were excluded from the refinement, as they were probably obscured by the beam stop.

Structure description top

The intramolecular C—H bond activation of aryl rings using platinum(II) is important in synthetic chemistry. There has been intense interest in C—H bond activation by platinum complexes (Lersch & Tilset, 2005; Rendina & Puddephatt, 1997). The oxidation of divalent cycloplatinates by halogens affords tetravalent cycloplatinates (Yahav et al., 2005) and the structures of few tetravalent platinum complexes have appeared in literature (Chattopadhyay et al., 1991; van Beek et al., 1986). Herein, we report the X-ray crystallographic study of the title compound.

The molecular structure of the title compound is shown in Fig. 1, with the atom numbering scheme. The platinum atom is hexa-coordinated with a donor set of six atoms in an approximately octahedral geometry. The packing arrangement of the title compound is shown in Fig. 2. The N=N bond length is slightly greater than the typical value (Chattopadhyay et al., 1991). The metal carbon and metal sulfur bond lengths are very close to the typical values; all the three Pt—Cl bond lengths are very close and are also close to the reported values (Chattopadhyay et al., 1991).

There are intra and intermolecular C—H···Cl hydrogen bonding interactions (Table 2, Fig. 3) in the title compound. A chain structure results by the intermolecular hydrogen-bonds where C13 atom in the molecule acts as a hydrogen-bond donor, via H13B, to the Cl1 atom of another molecule [Symmetry code: (i) -1 + x, y, z] (Table 2) (Fig. 3). A weak intermolecular ππ interaction (Bagchi et al., 2007) arranges the molecules in an anti parallel fashion (Fig. 4). The Cg3Cg3ii [Symmetry code: (ii) -x, 1 - y, 1-z. Cg3 is the centroid of C1—C6 ring.] distance is 3.924 (8) Å and the perpendicular distance is 3.656 Å with a slippage of 1.424 Å.

For related literature, see: Bagchi et al. (2007); van Beek et al. (1986); Chattopadhyay et al. (1991); Lersch & Tilset (2005); Rendina & Puddephatt (1997); Yahav et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular arrangement of (I) in the ac plane.
[Figure 3] Fig. 3. Intra and intermolecular C—H···Cl interactions for (I), indicated by the dotted lines. [Symmetry code: (i) -1 + x, y, z].
[Figure 4] Fig. 4. The intermolecular ππ interaction for (I), indicated by dotted line [Symmetry code: (i) -x, 1 - y, 1-z. Cg3 is the centroid of C1—C6 ring.].
Trichlorido{1-[2-(methylsulfanyl)phenyldiazenyl]phenyl-\k3C,N,S}platinum(IV) top
Crystal data top
[Pt(C13H11N2S)Cl3]F(000) = 992
Mr = 528.74Dx = 2.317 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2515 reflections
a = 7.765 (2) Åθ = 2.1–25.0°
b = 16.858 (5) ŵ = 9.91 mm1
c = 12.031 (3) ÅT = 295 K
β = 105.799 (5)°Block, yellow
V = 1515.4 (7) Å30.41 × 0.16 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2515 independent reflections
Radiation source: fine-focus sealed tube2339 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.163, Tmax = 0.225k = 2020
13366 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.0331P)2 + 10.465P]
where P = (Fo2 + 2Fc2)/3
2515 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 1.42 e Å3
0 restraintsΔρmin = 2.85 e Å3
Crystal data top
[Pt(C13H11N2S)Cl3]V = 1515.4 (7) Å3
Mr = 528.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.765 (2) ŵ = 9.91 mm1
b = 16.858 (5) ÅT = 295 K
c = 12.031 (3) Å0.41 × 0.16 × 0.15 mm
β = 105.799 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2515 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2339 reflections with I > 2σ(I)
Tmin = 0.163, Tmax = 0.225Rint = 0.082
13366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.0331P)2 + 10.465P]
where P = (Fo2 + 2Fc2)/3
2515 reflectionsΔρmax = 1.42 e Å3
182 parametersΔρmin = 2.85 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.3697 (12)0.3572 (6)0.4335 (9)0.038 (3)
C130.1878 (15)0.4983 (8)0.1296 (13)0.049 (4)
H13A0.22770.54450.16220.074*
H13B0.22440.45150.16240.074*
H13C0.23930.49810.04740.074*
C30.2107 (19)0.5732 (8)0.5385 (13)0.052 (4)
H30.24000.58840.61570.062*
C90.580 (2)0.1686 (10)0.4006 (17)0.073 (5)
H90.66550.13380.44390.088*
Pt10.18423 (6)0.36801 (3)0.19692 (4)0.03112 (19)
S10.0533 (4)0.49996 (18)0.1610 (3)0.0383 (7)
Cl30.0645 (4)0.31058 (19)0.2355 (3)0.0462 (8)
Cl10.4357 (4)0.4267 (2)0.1665 (3)0.0467 (8)
Cl20.0959 (5)0.3211 (2)0.0091 (3)0.0502 (9)
N10.2666 (13)0.4032 (6)0.3610 (8)0.036 (2)
C120.3348 (16)0.2734 (7)0.2651 (12)0.039 (3)
C60.1158 (16)0.5285 (7)0.3087 (11)0.038 (3)
C10.2150 (15)0.4783 (7)0.3953 (11)0.036 (3)
C70.4102 (17)0.2864 (7)0.3837 (12)0.044 (3)
C80.5301 (18)0.2333 (8)0.4501 (13)0.050 (4)
H80.57630.24200.52890.060*
C40.113 (2)0.6234 (8)0.4548 (14)0.058 (4)
H40.07570.67200.47630.070*
C100.501 (2)0.1546 (9)0.2809 (15)0.061 (4)
H100.53170.10950.24600.073*
C20.2650 (18)0.5011 (8)0.5083 (12)0.045 (3)
H20.33530.46790.56440.054*
C110.3794 (19)0.2074 (8)0.2171 (13)0.050 (4)
H110.32690.19730.13920.060*
C50.0690 (17)0.6028 (7)0.3395 (14)0.046 (3)
H50.00870.63840.28320.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.023 (5)0.041 (6)0.055 (7)0.014 (5)0.020 (5)0.006 (5)
C130.023 (6)0.044 (8)0.076 (11)0.008 (6)0.004 (6)0.001 (7)
C30.054 (9)0.041 (8)0.059 (10)0.009 (7)0.014 (7)0.017 (7)
C90.053 (10)0.050 (10)0.112 (16)0.038 (8)0.014 (10)0.020 (10)
Pt10.0311 (3)0.0261 (3)0.0346 (3)0.0006 (2)0.00616 (19)0.0012 (2)
S10.0403 (17)0.0294 (16)0.0424 (19)0.0008 (13)0.0062 (14)0.0065 (14)
Cl30.0432 (18)0.0395 (18)0.060 (2)0.0096 (14)0.0199 (16)0.0019 (16)
Cl10.0351 (17)0.049 (2)0.057 (2)0.0091 (14)0.0135 (15)0.0054 (16)
Cl20.060 (2)0.045 (2)0.0408 (19)0.0004 (16)0.0067 (16)0.0042 (15)
N10.045 (6)0.029 (5)0.030 (6)0.005 (5)0.004 (5)0.006 (5)
C120.031 (7)0.028 (7)0.054 (9)0.007 (5)0.004 (6)0.014 (6)
C60.038 (7)0.023 (6)0.050 (8)0.000 (5)0.006 (6)0.000 (6)
C10.030 (6)0.027 (6)0.053 (8)0.001 (5)0.011 (6)0.003 (6)
C70.044 (8)0.034 (7)0.053 (9)0.019 (6)0.013 (7)0.014 (6)
C80.046 (8)0.053 (9)0.048 (9)0.013 (7)0.008 (7)0.014 (7)
C40.062 (10)0.040 (8)0.068 (11)0.015 (7)0.010 (8)0.009 (8)
C100.063 (10)0.044 (9)0.077 (12)0.011 (7)0.022 (9)0.010 (8)
C20.050 (8)0.041 (8)0.041 (8)0.008 (6)0.006 (6)0.008 (6)
C110.055 (9)0.036 (8)0.060 (10)0.011 (7)0.018 (7)0.001 (7)
C50.041 (7)0.024 (6)0.072 (10)0.005 (6)0.010 (7)0.005 (7)
Geometric parameters (Å, º) top
N2—N11.274 (13)Pt1—S12.435 (3)
N2—C71.409 (16)S1—C61.776 (13)
C13—S11.807 (11)N1—C11.422 (15)
C13—H13A0.9600C12—C111.343 (18)
C13—H13B0.9600C12—C71.404 (19)
C13—H13C0.9600C6—C51.382 (17)
C3—C21.369 (19)C6—C11.400 (17)
C3—C41.37 (2)C1—C21.365 (17)
C3—H30.9300C7—C81.378 (17)
C9—C81.35 (2)C8—H80.9300
C9—C101.42 (2)C4—C51.38 (2)
C9—H90.9300C4—H40.9300
Pt1—N11.992 (10)C10—C111.37 (2)
Pt1—C122.015 (11)C10—H100.9300
Pt1—Cl12.306 (3)C2—H20.9300
Pt1—Cl22.315 (3)C11—H110.9300
Pt1—Cl32.317 (3)C5—H50.9300
N1—N2—C7113.3 (11)N2—N1—Pt1118.1 (8)
S1—C13—H13A109.5C1—N1—Pt1120.8 (8)
S1—C13—H13B109.5C11—C12—C7118.8 (12)
H13A—C13—H13B109.5C11—C12—Pt1132.1 (11)
S1—C13—H13C109.5C7—C12—Pt1109.0 (9)
H13A—C13—H13C109.5C5—C6—C1118.7 (13)
H13B—C13—H13C109.5C5—C6—S1119.6 (10)
C2—C3—C4120.1 (14)C1—C6—S1121.7 (9)
C2—C3—H3120.0C2—C1—C6121.4 (12)
C4—C3—H3120.0C2—C1—N1120.9 (11)
C8—C9—C10118.9 (13)C6—C1—N1117.6 (11)
C8—C9—H9120.6C8—C7—C12121.1 (12)
C10—C9—H9120.6C8—C7—N2119.9 (13)
N1—Pt1—C1280.7 (5)C12—C7—N2118.9 (11)
N1—Pt1—Cl188.4 (3)C9—C8—C7120.0 (15)
C12—Pt1—Cl189.0 (4)C9—C8—H8120.0
N1—Pt1—Cl2177.1 (3)C7—C8—H8120.0
C12—Pt1—Cl296.4 (4)C3—C4—C5121.2 (13)
Cl1—Pt1—Cl291.74 (13)C3—C4—H4119.4
N1—Pt1—Cl389.2 (3)C5—C4—H4119.4
C12—Pt1—Cl390.6 (4)C11—C10—C9120.1 (14)
Cl1—Pt1—Cl3177.63 (12)C11—C10—H10119.9
Cl2—Pt1—Cl390.63 (13)C9—C10—H10119.9
N1—Pt1—S184.8 (3)C1—C2—C3119.4 (13)
C12—Pt1—S1164.4 (4)C1—C2—H2120.3
Cl1—Pt1—S184.84 (12)C3—C2—H2120.3
Cl2—Pt1—S198.05 (12)C12—C11—C10121.1 (14)
Cl3—Pt1—S194.99 (11)C12—C11—H11119.5
C6—S1—C13101.5 (6)C10—C11—H11119.5
C6—S1—Pt194.7 (4)C4—C5—C6119.1 (13)
C13—S1—Pt1112.4 (5)C4—C5—H5120.5
N2—N1—C1121.1 (10)C6—C5—H5120.5
N1—Pt1—S1—C63.3 (5)C13—S1—C6—C1116.4 (11)
C12—Pt1—S1—C625.2 (15)Pt1—S1—C6—C12.3 (10)
Cl1—Pt1—S1—C692.2 (4)C5—C6—C1—C20.2 (19)
Cl2—Pt1—S1—C6176.8 (4)S1—C6—C1—C2178.9 (10)
Cl3—Pt1—S1—C685.5 (4)C5—C6—C1—N1178.0 (11)
N1—Pt1—S1—C13107.8 (6)S1—C6—C1—N10.7 (16)
C12—Pt1—S1—C13129.6 (15)N2—N1—C1—C24.3 (17)
Cl1—Pt1—S1—C13163.4 (5)Pt1—N1—C1—C2177.2 (9)
Cl2—Pt1—S1—C1372.3 (5)N2—N1—C1—C6173.9 (10)
Cl3—Pt1—S1—C1319.0 (5)Pt1—N1—C1—C64.6 (14)
C7—N2—N1—C1178.5 (10)C11—C12—C7—C81 (2)
C7—N2—N1—Pt10.1 (12)Pt1—C12—C7—C8175.2 (11)
Cl1—Pt1—N1—N288.8 (8)C11—C12—C7—N2177.3 (12)
Cl3—Pt1—N1—N291.2 (8)Pt1—C12—C7—N21.1 (14)
S1—Pt1—N1—N2173.8 (8)N1—N2—C7—C8175.5 (11)
Cl1—Pt1—N1—C189.7 (8)N1—N2—C7—C120.8 (16)
Cl3—Pt1—N1—C190.3 (8)C10—C9—C8—C73 (2)
S1—Pt1—N1—C14.8 (8)C12—C7—C8—C92 (2)
N1—Pt1—C12—C11176.3 (14)N2—C7—C8—C9174.5 (13)
Cl1—Pt1—C12—C1187.8 (13)C2—C3—C4—C51 (2)
Cl2—Pt1—C12—C113.9 (13)C8—C9—C10—C112 (2)
Cl3—Pt1—C12—C1194.6 (13)C6—C1—C2—C32.8 (19)
S1—Pt1—C12—C11154.2 (11)N1—C1—C2—C3179.0 (11)
N1—Pt1—C12—C70.8 (9)C4—C3—C2—C13 (2)
Cl1—Pt1—C12—C787.8 (9)C7—C12—C11—C102 (2)
Cl2—Pt1—C12—C7179.4 (8)Pt1—C12—C11—C10172.9 (11)
Cl3—Pt1—C12—C789.9 (9)C9—C10—C11—C121 (2)
S1—Pt1—C12—C721 (2)C3—C4—C5—C64 (2)
C13—S1—C6—C564.9 (11)C1—C6—C5—C43.4 (19)
Pt1—S1—C6—C5179.0 (10)S1—C6—C5—C4177.8 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Cl1i0.962.693.302 (13)123
C13—H13B···Cl30.962.713.448 (14)134
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Pt(C13H11N2S)Cl3]
Mr528.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.765 (2), 16.858 (5), 12.031 (3)
β (°) 105.799 (5)
V3)1515.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)9.91
Crystal size (mm)0.41 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.163, 0.225
No. of measured, independent and
observed [I > 2σ(I)] reflections
13366, 2515, 2339
Rint0.082
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.116, 1.25
No. of reflections2515
No. of parameters182
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0331P)2 + 10.465P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.42, 2.85

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
N2—N11.274 (13)Pt1—Cl22.315 (3)
Pt1—N11.992 (10)Pt1—Cl32.317 (3)
Pt1—C122.015 (11)Pt1—S12.435 (3)
Pt1—Cl12.306 (3)
N1—Pt1—C1280.7 (5)C12—Pt1—Cl390.6 (4)
N1—Pt1—Cl188.4 (3)Cl2—Pt1—Cl390.63 (13)
C12—Pt1—Cl189.0 (4)N1—Pt1—S184.8 (3)
C12—Pt1—Cl296.4 (4)Cl1—Pt1—S184.84 (12)
Cl1—Pt1—Cl291.74 (13)Cl2—Pt1—S198.05 (12)
N1—Pt1—Cl389.2 (3)Cl3—Pt1—S194.99 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Cl1i0.962.693.302 (13)123
C13—H13B···Cl30.962.713.448 (14)134
Symmetry code: (i) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds