Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The centrosymmetric tetra­nuclear cluster of the title compound, [Ag4(C4H8N4)6(C2H3N)2](CF3SO3)4·2C2H3N, has four 4-amino-3,5-dimethyl-1,2,4-triazole N-heterocycles, each functioning as a bridge between two Ag atoms. Two of the Ag atoms are additionally coordinated by acetonitrile mol­ecules, so that there are three-coordinate Ag atoms in a trigonal–planar geometry and four-coordinate Ag atoms in a tetra­hedral geometry. There are no short hydrogen bonds between cations and anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807026360/bt2378sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807026360/bt2378Isup2.hkl
Contains datablock I

CCDC reference: 654697

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.017 Å
  • R factor = 0.074
  • wR factor = 0.239
  • Data-to-parameter ratio = 18.2

checkCIF/PLATON results

No syntax errors found



Alert level A ABSTM02_ALERT_3_A The ratio of expected to reported Tmax/Tmin(RR') is < 0.50 Tmin and Tmax reported: 0.294 0.790 Tmin(prime) and Tmax expected: 0.602 0.790 RR(prime) = 0.488 Please check that your absorption correction is appropriate.
Author Response: The ratio is given by the ABSCOR program.
PLAT061_ALERT_3_A Tmax/Tmin Range Test RR' too Large .............       0.48
Author Response: The ratio is given by the ABSCOR program. Although the crystal has a well-defined shape, there appears to be some problem with absorption effects, so that ABSCOR is carry out its proper function of correcting for absorption effects on the full sphere of reflections.

Alert level B PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for N13 PLAT413_ALERT_2_B Short Inter XH3 .. XHn H1B .. H1B .. 1.98 Ang.
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.12 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 300 Ang. PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 2000 Deg. PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C13 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for S1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C15 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for S2 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C16 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C17 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 17 PLAT415_ALERT_2_C Short Inter D-H..H-X H1B .. H42 .. 2.12 Ang. PLAT415_ALERT_2_C Short Inter D-H..H-X H5B .. H121 .. 2.10 Ang. PLAT420_ALERT_2_C D-H Without Acceptor N4 - H41 ... ? PLAT420_ALERT_2_C D-H Without Acceptor N4 - H42 ... ? PLAT420_ALERT_2_C D-H Without Acceptor N8 - H81 ... ? PLAT420_ALERT_2_C D-H Without Acceptor N8 - H82 ... ? PLAT420_ALERT_2_C D-H Without Acceptor N12 - H121 ... ? PLAT731_ALERT_1_C Bond Calc 1.300(15), Rep 1.301(7) ...... 2.14 su-Ra F1 -C15 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 1.299(17), Rep 1.299(8) ...... 2.12 su-Ra F3 -C15 1.555 1.555 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C F3 O3 S PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 4 C2 H3 N
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 150
2 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 23 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 11 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 7 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Silver perchlorate reacts with 4-amino-3,5-dimethyl-1,2,4-triazole in acetonitrile to form [µ2-(C4H8N4)6Ag4] [µ2-(C4H8N4)6(C2H3N)2Ag4] 8[ClO4].2H2O, which features two tetranuclear cluster ions. The N-heterocycles in both each bridges two silver atoms. In acetonitrile-coordinated cluster, there are three-coordinate trigonal planar and four-coordinate tetrahedral silver atoms, with the higher coordination arising from coordination by the water molecules. The solvent-free cluster has only trigonal-planar silver atoms (Wang et al., 2006).

The synthesis when with silver trifluoromethylsulfonate in acetonitrile led to the isolation of the acetonitrile-coordinated tetranuclear cluster [µ2-(C4H8N4)6(C2H3N)2Ag4]4+, whose charge is balanced by four trifluoromethylsulfonate ions. The N-heterocycles bridge two silver atoms, and two of the silver atoms are also coordinated by acetonitrile. The salt crystallizes as an acetonitrile disolvate. The N-heterocycle each bridges to two silver atoms, and two of the silver atoms are also coordinated by acetonitrile.

Related literature top

For a study of the complex [µ2-(C4H8N4)6Ag4][µ2-(C4H8N4)6(C2H3N)2Ag4](ClO4)8.2H2O, see Wang et al. (2006).

Experimental top

Silver trifluoromethylsulfonate (0.1 mmol, 26 mg) dissolved in water (2 ml) was mixed with 4-amino-3,5-dimethyl-1,2,4-triazole (0.1 mmol, 12 mg) dissolved in ethanol (2 ml) of ethanol). Ether was then diffused into the solution to yield prisms in about 50% yield.

Refinement top

The two trifluoromethylsulfonate ions are not hydrogen bonded to the tetranuclear cluster. The six sulfur–oxygen bond distances were restrained to within 0.01 Å of each other, as were the six sulfur-oxygen and carbon-fluorine bond distances. The fluroine···fluorine distances were similarly restrained in each ion.

The anisotropic displacement parameters of the solvate acetonitrile molecule were restrained so that the atoms were nearly isotropic.

The carbon-bound H atoms were placed in calculated positions [C—H 0.93 to 0.96 Å; U(H) = 1.2 to 1.5 times Ueq(C)]. The nitrogen- and oxygen-bound H atoms were similarly treated. These were included in the refinement in the riding model approximation. The amino –NH2 groups were assumed to be planar whereas the methyl groups were rotated to fit the electron density. The amino groups are probably not planar as there are short intermolecular H···H interactions; they are probably disordered as there are no strong N···O hydrogen bonds in the crystal structure.

The final difference Fourier map had a large peak at about 1 Å from Ag1 as well as a deep hole at a similar distance from this atom, and is probably a consequence of inadequate absorption. This is supported by the large difference between the expected and calculated transmission factors.

Structure description top

Silver perchlorate reacts with 4-amino-3,5-dimethyl-1,2,4-triazole in acetonitrile to form [µ2-(C4H8N4)6Ag4] [µ2-(C4H8N4)6(C2H3N)2Ag4] 8[ClO4].2H2O, which features two tetranuclear cluster ions. The N-heterocycles in both each bridges two silver atoms. In acetonitrile-coordinated cluster, there are three-coordinate trigonal planar and four-coordinate tetrahedral silver atoms, with the higher coordination arising from coordination by the water molecules. The solvent-free cluster has only trigonal-planar silver atoms (Wang et al., 2006).

The synthesis when with silver trifluoromethylsulfonate in acetonitrile led to the isolation of the acetonitrile-coordinated tetranuclear cluster [µ2-(C4H8N4)6(C2H3N)2Ag4]4+, whose charge is balanced by four trifluoromethylsulfonate ions. The N-heterocycles bridge two silver atoms, and two of the silver atoms are also coordinated by acetonitrile. The salt crystallizes as an acetonitrile disolvate. The N-heterocycle each bridges to two silver atoms, and two of the silver atoms are also coordinated by acetonitrile.

For a study of the complex [µ2-(C4H8N4)6Ag4][µ2-(C4H8N4)6(C2H3N)2Ag4](ClO4)8.2H2O, see Wang et al. (2006).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the tetranuclear [(C7H8N4)6(C2H3N)2Ag4]4+ cation; ellipsoids are drawn at the 30% probability level. Symmetry code (i): 2 - x, 1 - y, 1 - z.
Bis(acetonitrile-κN)hexakis(µ2-4-amino-3,5-dimethyl-1,2,4-τriazole-κ2N1:N2)tetrasilver(I) tetrakis(trifluoromethanesulfonate) acetonitrile disolvate top
Crystal data top
[Ag4(C4H8N4)6(C2H3N)2](CF3O3S)4·2C2H3NZ = 1
Mr = 1864.84F(000) = 928
Triclinic, P1Dx = 1.751 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.110 (3) ÅCell parameters from 12901 reflections
b = 12.695 (3) Åθ = 3.2–27.5°
c = 13.001 (3) ŵ = 1.31 mm1
α = 108.59 (2)°T = 295 K
β = 92.84 (2)°Prism, colourless
γ = 108.68 (2)°0.38 × 0.24 × 0.18 mm
V = 1768.9 (7) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
8026 independent reflections
Radiation source: fine-focus sealed tube5532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1515
Tmin = 0.294, Tmax = 0.790k = 1616
17453 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1356P)2 + 1.8203P]
where P = (Fo2 + 2Fc2)/3
8026 reflections(Δ/σ)max = 0.001
440 parametersΔρmax = 2.27 e Å3
150 restraintsΔρmin = 1.07 e Å3
Crystal data top
[Ag4(C4H8N4)6(C2H3N)2](CF3O3S)4·2C2H3Nγ = 108.68 (2)°
Mr = 1864.84V = 1768.9 (7) Å3
Triclinic, P1Z = 1
a = 12.110 (3) ÅMo Kα radiation
b = 12.695 (3) ŵ = 1.31 mm1
c = 13.001 (3) ÅT = 295 K
α = 108.59 (2)°0.38 × 0.24 × 0.18 mm
β = 92.84 (2)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
8026 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5532 reflections with I > 2σ(I)
Tmin = 0.294, Tmax = 0.790Rint = 0.046
17453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.074150 restraints
wR(F2) = 0.239H-atom parameters constrained
S = 1.07Δρmax = 2.27 e Å3
8026 reflectionsΔρmin = 1.07 e Å3
440 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.88000 (5)0.37448 (5)0.53930 (4)0.0621 (2)
Ag20.88609 (5)0.34115 (5)0.27393 (5)0.0638 (2)
S10.7324 (2)0.2778 (2)0.18838 (19)0.0805 (6)
S20.35409 (18)0.13112 (19)0.22789 (16)0.0712 (5)
F10.9445 (7)0.1622 (9)0.2985 (8)0.170 (4)
F20.8266 (7)0.0761 (8)0.3487 (7)0.160 (3)
F30.8888 (11)0.0812 (11)0.2008 (9)0.217 (5)
F40.1809 (7)0.0452 (7)0.2334 (7)0.158 (3)
F50.1678 (7)0.0141 (7)0.0858 (6)0.160 (3)
F60.2856 (7)0.0934 (6)0.1161 (7)0.149 (3)
O10.6474 (7)0.2360 (8)0.1530 (7)0.132 (3)
O20.7789 (8)0.3403 (8)0.0991 (6)0.131 (3)
O30.7050 (9)0.3320 (9)0.2672 (7)0.159 (4)
O40.4239 (6)0.1125 (7)0.3072 (6)0.110 (2)
O50.4112 (6)0.1538 (7)0.1402 (5)0.111 (2)
O60.2899 (6)0.2062 (6)0.2726 (5)0.0957 (19)
N10.7678 (5)0.1969 (5)0.4177 (4)0.0578 (13)
N20.7624 (5)0.1844 (5)0.3087 (5)0.0579 (13)
N30.6319 (5)0.0297 (5)0.3212 (5)0.0582 (13)
N40.5376 (6)0.0794 (6)0.2984 (6)0.0746 (18)
H410.50090.12170.23030.090*
H420.51550.10490.35230.090*
N50.8361 (5)0.5079 (5)0.6744 (4)0.0562 (13)
N60.7571 (5)0.5996 (5)0.8023 (5)0.0561 (13)
N70.9223 (5)0.6100 (5)0.7420 (5)0.0561 (13)
N80.6722 (5)0.6246 (6)0.8662 (6)0.0739 (18)
H810.59840.57490.84770.089*
H820.69280.68990.92460.089*
N90.8379 (5)0.4932 (5)0.4025 (5)0.0561 (13)
N100.9244 (4)0.6030 (5)0.4585 (5)0.0541 (13)
N110.7536 (4)0.6201 (5)0.4680 (4)0.0517 (12)
N120.6623 (5)0.6652 (6)0.4855 (5)0.0665 (16)
H1210.58860.61840.45650.080*
H1120.67840.74040.52540.080*
N130.7755 (9)0.3396 (10)0.1152 (8)0.114 (3)
N140.250 (3)0.308 (3)0.189 (2)0.264 (11)
C10.6685 (9)0.0784 (10)0.5277 (8)0.097 (3)
H1A0.70290.02130.53220.145*
H1B0.58510.04740.52780.145*
H1C0.70450.15080.58970.145*
C20.6887 (6)0.1028 (7)0.4236 (6)0.0623 (17)
C30.6779 (6)0.0828 (6)0.2511 (6)0.0569 (15)
C40.6397 (8)0.0329 (8)0.1312 (6)0.075 (2)
H4A0.68720.08580.09850.113*
H4B0.55820.02330.11440.113*
H4C0.64870.04290.10220.113*
C50.6178 (7)0.4084 (9)0.6657 (9)0.084 (3)
H5A0.61700.36150.59110.126*
H5B0.55890.44440.66710.126*
H5C0.60100.35850.70920.126*
C60.7363 (6)0.5028 (7)0.7115 (6)0.0579 (16)
C70.8760 (6)0.6652 (7)0.8194 (6)0.0579 (16)
C80.9362 (8)0.7778 (9)0.9108 (8)0.091 (3)
H8A1.02010.80080.91250.136*
H8B0.91780.76800.97890.136*
H8C0.91000.83820.90080.136*
C90.9304 (7)0.8075 (7)0.5646 (8)0.077 (2)
H9A0.93330.81880.64150.116*
H9B0.88550.85060.54540.116*
H9C1.00930.83630.54990.116*
C100.8730 (5)0.6783 (6)0.4979 (5)0.0538 (15)
C110.7364 (6)0.5056 (6)0.4077 (5)0.0559 (15)
C120.6179 (6)0.4146 (7)0.3571 (7)0.069 (2)
H12C0.60380.40190.28000.104*
H12D0.55890.44130.39220.104*
H12E0.61410.34140.36620.104*
C130.6966 (9)0.3471 (10)0.0752 (8)0.089 (3)
C140.5926 (9)0.3532 (13)0.0198 (10)0.115 (4)
H14A0.55550.28140.04260.172*
H14B0.61580.41990.00450.172*
H14C0.53790.36250.06990.172*
C150.8526 (9)0.1444 (10)0.2621 (8)0.116 (4)
C160.2423 (8)0.0117 (9)0.1627 (7)0.104 (3)
C170.148 (2)0.3490 (19)0.1723 (19)0.167 (7)
C180.021 (3)0.403 (3)0.146 (3)0.265 (13)
H18A0.00370.47900.15510.398*
H18B0.00530.41330.07170.398*
H18C0.01370.35260.19520.398*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0531 (3)0.0673 (4)0.0490 (3)0.0140 (2)0.0020 (2)0.0068 (2)
Ag20.0540 (3)0.0680 (4)0.0571 (3)0.0103 (3)0.0154 (2)0.0165 (3)
S10.0831 (14)0.0877 (14)0.0694 (13)0.0274 (12)0.0081 (10)0.0298 (11)
S20.0701 (11)0.0772 (12)0.0525 (10)0.0166 (9)0.0108 (8)0.0146 (9)
F10.111 (5)0.201 (7)0.171 (7)0.060 (5)0.003 (5)0.032 (6)
F20.139 (5)0.150 (6)0.147 (6)0.057 (5)0.001 (5)0.007 (5)
F30.220 (8)0.199 (8)0.194 (8)0.006 (6)0.045 (7)0.088 (7)
F40.138 (5)0.147 (6)0.165 (7)0.002 (4)0.055 (5)0.067 (5)
F50.136 (5)0.156 (6)0.127 (6)0.009 (5)0.038 (5)0.023 (5)
F60.173 (6)0.091 (4)0.146 (6)0.029 (4)0.037 (5)0.009 (4)
O10.126 (5)0.131 (6)0.123 (6)0.054 (5)0.029 (4)0.022 (5)
O20.137 (6)0.129 (6)0.112 (6)0.050 (5)0.019 (5)0.022 (5)
O30.195 (8)0.164 (7)0.108 (6)0.024 (6)0.033 (6)0.071 (6)
O40.095 (4)0.120 (5)0.113 (5)0.039 (4)0.005 (4)0.041 (4)
O50.113 (5)0.122 (5)0.089 (5)0.023 (4)0.036 (4)0.039 (4)
O60.107 (4)0.099 (4)0.075 (4)0.046 (4)0.015 (3)0.013 (3)
N10.052 (3)0.064 (3)0.042 (3)0.007 (3)0.010 (2)0.012 (2)
N20.060 (3)0.060 (3)0.042 (3)0.011 (3)0.015 (2)0.012 (2)
N30.049 (3)0.062 (3)0.050 (3)0.008 (2)0.011 (2)0.012 (3)
N40.071 (4)0.066 (4)0.057 (4)0.010 (3)0.007 (3)0.018 (3)
N50.050 (3)0.067 (3)0.041 (3)0.016 (3)0.009 (2)0.010 (2)
N60.051 (3)0.070 (3)0.054 (3)0.026 (3)0.017 (2)0.025 (3)
N70.050 (3)0.063 (3)0.044 (3)0.013 (2)0.010 (2)0.012 (2)
N80.058 (3)0.086 (4)0.073 (4)0.023 (3)0.028 (3)0.023 (4)
N90.046 (3)0.060 (3)0.048 (3)0.012 (2)0.003 (2)0.006 (2)
N100.044 (3)0.060 (3)0.049 (3)0.014 (2)0.004 (2)0.014 (2)
N110.049 (3)0.061 (3)0.042 (3)0.020 (2)0.008 (2)0.013 (2)
N120.046 (3)0.073 (4)0.065 (4)0.023 (3)0.008 (3)0.003 (3)
N130.110 (7)0.126 (8)0.094 (6)0.028 (6)0.019 (5)0.043 (6)
N140.259 (14)0.272 (14)0.261 (15)0.092 (10)0.042 (10)0.099 (10)
C10.088 (6)0.121 (8)0.057 (5)0.001 (5)0.013 (4)0.036 (5)
C20.056 (4)0.072 (4)0.051 (4)0.015 (3)0.015 (3)0.018 (3)
C30.056 (4)0.050 (3)0.048 (3)0.008 (3)0.004 (3)0.006 (3)
C40.090 (6)0.079 (5)0.035 (3)0.013 (4)0.005 (3)0.009 (3)
C50.045 (4)0.091 (6)0.092 (6)0.007 (4)0.005 (4)0.021 (5)
C60.050 (3)0.069 (4)0.051 (4)0.017 (3)0.005 (3)0.021 (3)
C70.054 (4)0.068 (4)0.048 (3)0.019 (3)0.013 (3)0.018 (3)
C80.081 (6)0.089 (6)0.071 (5)0.023 (5)0.019 (4)0.006 (5)
C90.055 (4)0.066 (4)0.083 (6)0.012 (3)0.003 (4)0.002 (4)
C100.048 (3)0.065 (4)0.042 (3)0.017 (3)0.006 (2)0.013 (3)
C110.053 (4)0.065 (4)0.041 (3)0.013 (3)0.005 (3)0.017 (3)
C120.051 (4)0.064 (4)0.069 (5)0.010 (3)0.000 (3)0.004 (4)
C130.088 (6)0.103 (7)0.060 (5)0.019 (5)0.003 (4)0.025 (5)
C140.081 (6)0.158 (11)0.099 (8)0.037 (7)0.001 (6)0.044 (8)
C150.095 (8)0.135 (10)0.098 (9)0.035 (7)0.001 (6)0.025 (8)
C160.110 (8)0.090 (7)0.095 (8)0.017 (6)0.024 (7)0.030 (6)
C170.171 (10)0.171 (10)0.182 (11)0.066 (8)0.025 (8)0.088 (8)
C180.256 (16)0.269 (16)0.278 (16)0.092 (10)0.023 (10)0.109 (10)
Geometric parameters (Å, º) top
Ag1—N12.232 (5)N10—C101.291 (9)
Ag1—N52.238 (5)N10—Ag1i2.290 (5)
Ag1—N10i2.290 (5)N11—C111.354 (9)
Ag1—Ag23.3469 (11)N11—C101.366 (8)
Ag2—N22.267 (6)N11—N121.396 (7)
Ag2—N7i2.241 (5)N12—H1210.8800
Ag2—N92.371 (6)N12—H1120.8800
Ag2—N132.395 (9)N13—C131.110 (13)
S1—O31.404 (6)N14—C171.15 (3)
S1—O11.419 (6)C1—C21.496 (11)
S1—O21.434 (6)C1—H1A0.9600
S1—C151.776 (12)C1—H1B0.9600
S2—O61.420 (5)C1—H1C0.9600
S2—O41.425 (5)C3—C41.469 (9)
S2—O51.422 (5)C4—H4A0.9600
S2—C161.781 (11)C4—H4B0.9600
F1—C151.301 (7)C4—H4C0.9600
F2—C151.306 (8)C5—C61.486 (10)
F3—C151.299 (8)C5—H5A0.9600
F4—C161.301 (7)C5—H5B0.9600
F5—C161.298 (7)C5—H5C0.9600
F6—C161.302 (7)C7—C81.466 (11)
N1—C21.298 (9)C8—H8A0.9600
N1—N21.370 (8)C8—H8B0.9600
N2—C31.318 (8)C8—H8C0.9600
N3—C31.341 (9)C9—C101.493 (10)
N3—C21.349 (9)C9—H9A0.9600
N3—N41.415 (8)C9—H9B0.9600
N4—H410.8800C9—H9C0.9600
N4—H420.8800C11—C121.479 (9)
N5—C61.313 (9)C12—H12C0.9600
N5—N71.363 (8)C12—H12D0.9600
N6—C61.347 (9)C12—H12E0.9600
N6—C71.379 (9)C13—C141.456 (14)
N6—N81.404 (8)C14—H14A0.9600
N7—C71.294 (9)C14—H14B0.9600
N7—Ag2i2.241 (5)C14—H14C0.9600
N8—H810.8800C17—C181.44 (3)
N8—H820.8800C18—H18A0.9600
N9—C111.291 (9)C18—H18B0.9600
N9—N101.383 (7)C18—H18C0.9600
N1—Ag1—N5131.8 (2)N3—C2—C1126.1 (7)
N1—Ag1—N10i109.7 (2)N2—C3—N3108.0 (6)
N5—Ag1—N10i117.2 (2)N2—C3—C4127.2 (7)
N1—Ag1—Ag264.14 (15)N3—C3—C4124.8 (6)
N5—Ag1—Ag2131.10 (16)C3—C4—H4A109.5
N10i—Ag1—Ag282.56 (14)C3—C4—H4B109.5
N2—Ag2—N997.9 (2)H4A—C4—H4B109.5
N2—Ag2—N7i130.8 (2)C3—C4—H4C109.5
N2—Ag2—N13102.6 (3)H4A—C4—H4C109.5
N7i—Ag2—N9114.7 (2)H4B—C4—H4C109.5
N7i—Ag2—N13109.4 (3)C6—C5—H5A109.5
N9—Ag2—N1395.6 (3)C6—C5—H5B109.5
N7i—Ag2—Ag1105.28 (15)H5A—C5—H5B109.5
N2—Ag2—Ag163.63 (14)C6—C5—H5C109.5
N9—Ag2—Ag155.38 (15)H5A—C5—H5C109.5
N13—Ag2—Ag1142.1 (3)H5B—C5—H5C109.5
O3—S1—O1116.7 (5)N5—C6—N6108.7 (6)
O3—S1—O2114.5 (5)N5—C6—C5128.0 (7)
O1—S1—O2112.9 (4)N6—C6—C5123.3 (7)
O3—S1—C15103.2 (6)N7—C7—N6108.2 (6)
O1—S1—C15102.8 (5)N7—C7—C8127.5 (7)
O2—S1—C15104.7 (5)N6—C7—C8124.3 (6)
O6—S2—O4115.0 (4)C7—C8—H8A109.5
O6—S2—O5114.5 (4)C7—C8—H8B109.5
O4—S2—O5114.9 (4)H8A—C8—H8B109.5
O6—S2—C16103.9 (4)C7—C8—H8C109.5
O4—S2—C16102.9 (4)H8A—C8—H8C109.5
O5—S2—C16103.6 (4)H8B—C8—H8C109.5
C2—N1—N2107.5 (5)C10—C9—H9A109.5
C2—N1—Ag1134.9 (5)C10—C9—H9B109.5
N2—N1—Ag1116.6 (4)H9A—C9—H9B109.5
C3—N2—N1108.0 (6)C10—C9—H9C109.5
C3—N2—Ag2136.6 (5)H9A—C9—H9C109.5
N1—N2—Ag2115.2 (4)H9B—C9—H9C109.5
C3—N3—C2107.4 (6)N10—C10—N11108.3 (6)
C3—N3—N4128.8 (6)N10—C10—C9127.4 (6)
C2—N3—N4123.8 (6)N11—C10—C9124.2 (6)
N3—N4—H41120.0N9—C11—N11108.8 (6)
N3—N4—H42120.0N9—C11—C12128.1 (7)
H41—N4—H42120.0N11—C11—C12123.0 (6)
C6—N5—N7107.9 (5)C11—C12—H12C109.5
C6—N5—Ag1130.7 (5)C11—C12—H12D109.5
N7—N5—Ag1121.0 (4)H12C—C12—H12D109.5
C6—N6—C7106.5 (5)C11—C12—H12E109.5
C6—N6—N8125.4 (6)H12C—C12—H12E109.5
C7—N6—N8128.1 (6)H12D—C12—H12E109.5
C7—N7—N5108.8 (5)N13—C13—C14178.1 (13)
C7—N7—Ag2i127.3 (5)C13—C14—H14A109.5
N5—N7—Ag2i123.7 (4)C13—C14—H14B109.5
N6—N8—H81120.0H14A—C14—H14B109.5
N6—N8—H82120.0C13—C14—H14C109.5
H81—N8—H82120.0H14A—C14—H14C109.5
C11—N9—N10107.9 (6)H14B—C14—H14C109.5
C11—N9—Ag2128.4 (4)F3—C15—F1106.1 (8)
N10—N9—Ag2120.3 (4)F3—C15—F2106.6 (8)
C10—N10—N9108.2 (5)F1—C15—F2105.3 (7)
C10—N10—Ag1i131.8 (4)F3—C15—S1111.5 (8)
N9—N10—Ag1i119.9 (4)F1—C15—S1113.4 (8)
C11—N11—C10106.7 (5)F2—C15—S1113.3 (8)
C11—N11—N12123.7 (5)F5—C16—F4106.8 (7)
C10—N11—N12129.4 (6)F5—C16—F6106.1 (7)
N11—N12—H121120.0F4—C16—F6107.4 (7)
N11—N12—H112120.0F5—C16—S2112.8 (7)
H121—N12—H112120.0F4—C16—S2111.0 (7)
C13—N13—Ag2150.4 (10)F6—C16—S2112.5 (7)
C2—C1—H1A109.5N14—C17—C18178 (3)
C2—C1—H1B109.5C17—C18—H18A109.5
H1A—C1—H1B109.5C17—C18—H18B109.5
C2—C1—H1C109.5H18A—C18—H18B109.5
H1A—C1—H1C109.5C17—C18—H18C109.5
H1B—C1—H1C109.5H18A—C18—H18C109.5
N1—C2—N3109.1 (6)H18B—C18—H18C109.5
N1—C2—C1124.8 (7)
N1—Ag1—Ag2—N7i125.5 (2)N4—N3—C2—N1177.8 (7)
N5—Ag1—Ag2—N7i110.5 (2)C3—N3—C2—C1178.3 (9)
N10i—Ag1—Ag2—N7i9.4 (2)N4—N3—C2—C14.5 (13)
N1—Ag1—Ag2—N22.8 (2)N1—N2—C3—N31.5 (8)
N5—Ag1—Ag2—N2121.2 (3)Ag2—N2—C3—N3176.5 (5)
N10i—Ag1—Ag2—N2119.0 (2)N1—N2—C3—C4179.3 (8)
N1—Ag1—Ag2—N9124.7 (2)Ag2—N2—C3—C44.3 (13)
N5—Ag1—Ag2—N90.7 (2)C2—N3—C3—N21.4 (8)
N10i—Ag1—Ag2—N9119.1 (2)N4—N3—C3—N2178.3 (7)
N1—Ag1—Ag2—N1378.8 (5)C2—N3—C3—C4179.4 (8)
N5—Ag1—Ag2—N1345.2 (5)N4—N3—C3—C42.5 (13)
N10i—Ag1—Ag2—N13165.0 (4)N7—N5—C6—N60.4 (8)
N5—Ag1—N1—C248.6 (8)Ag1—N5—C6—N6172.8 (5)
N10i—Ag1—N1—C2117.3 (7)N7—N5—C6—C5179.8 (8)
Ag2—Ag1—N1—C2171.7 (8)Ag1—N5—C6—C56.6 (12)
N5—Ag1—N1—N2118.5 (5)C7—N6—C6—N50.1 (8)
N10i—Ag1—N1—N275.6 (5)N8—N6—C6—N5179.0 (6)
Ag2—Ag1—N1—N24.6 (4)C7—N6—C6—C5179.5 (8)
C2—N1—N2—C31.0 (8)N8—N6—C6—C50.5 (12)
Ag1—N1—N2—C3169.4 (5)N5—N7—C7—N60.6 (8)
C2—N1—N2—Ag2177.3 (5)Ag2i—N7—C7—N6174.9 (4)
Ag1—N1—N2—Ag26.8 (6)N5—N7—C7—C8179.2 (9)
N7i—Ag2—N2—C3101.9 (7)Ag2i—N7—C7—C84.9 (12)
N9—Ag2—N2—C3125.4 (7)C6—N6—C7—N70.3 (8)
N13—Ag2—N2—C327.9 (8)N8—N6—C7—N7179.3 (7)
Ag1—Ag2—N2—C3170.3 (8)C6—N6—C7—C8179.5 (9)
N7i—Ag2—N2—N183.2 (5)N8—N6—C7—C80.5 (12)
N9—Ag2—N2—N149.4 (5)N9—N10—C10—N110.5 (7)
N13—Ag2—N2—N1146.9 (5)Ag1i—N10—C10—N11176.2 (4)
Ag1—Ag2—N2—N14.5 (4)N9—N10—C10—C9179.7 (8)
N1—Ag1—N5—C64.8 (8)Ag1i—N10—C10—C93.5 (12)
N10i—Ag1—N5—C6160.3 (6)C11—N11—C10—N100.4 (7)
Ag2—Ag1—N5—C694.9 (6)N12—N11—C10—N10175.7 (6)
N1—Ag1—N5—N7177.3 (4)C11—N11—C10—C9179.4 (8)
N10i—Ag1—N5—N712.2 (6)N12—N11—C10—C94.1 (11)
Ag2—Ag1—N5—N792.6 (5)N10—N9—C11—N111.5 (8)
C6—N5—N7—C70.6 (8)Ag2—N9—C11—N11160.3 (5)
Ag1—N5—N7—C7173.4 (5)N10—N9—C11—C12177.7 (7)
C6—N5—N7—Ag2i175.2 (5)Ag2—N9—C11—C1218.8 (11)
Ag1—N5—N7—Ag2i1.2 (7)C10—N11—C11—N91.2 (7)
N7i—Ag2—N9—C11158.4 (6)N12—N11—C11—N9176.9 (6)
N2—Ag2—N9—C1159.5 (6)C10—N11—C11—C12178.0 (7)
N13—Ag2—N9—C1144.1 (7)N12—N11—C11—C122.4 (11)
Ag1—Ag2—N9—C11109.6 (6)O3—S1—C15—F3179.1 (8)
N7i—Ag2—N9—N101.8 (6)O1—S1—C15—F357.3 (8)
N2—Ag2—N9—N10144.0 (5)O2—S1—C15—F360.8 (8)
N13—Ag2—N9—N10112.5 (5)O3—S1—C15—F161.2 (8)
Ag1—Ag2—N9—N1093.8 (5)O1—S1—C15—F1177.0 (7)
C11—N9—N10—C101.2 (8)O2—S1—C15—F158.9 (8)
Ag2—N9—N10—C10162.1 (5)O3—S1—C15—F258.8 (8)
C11—N9—N10—Ag1i175.9 (4)O1—S1—C15—F263.0 (8)
Ag2—N9—N10—Ag1i15.0 (6)O2—S1—C15—F2178.9 (7)
N7i—Ag2—N13—C13156 (2)O6—S2—C16—F560.0 (7)
N2—Ag2—N13—C1362 (2)O4—S2—C16—F5179.9 (6)
N9—Ag2—N13—C1337 (2)O5—S2—C16—F559.9 (7)
Ag1—Ag2—N13—C130 (2)O6—S2—C16—F459.8 (7)
N2—N1—C2—N30.2 (8)O4—S2—C16—F460.4 (7)
Ag1—N1—C2—N3167.7 (5)O5—S2—C16—F4179.7 (6)
N2—N1—C2—C1177.5 (8)O6—S2—C16—F6179.9 (6)
Ag1—N1—C2—C114.6 (13)O4—S2—C16—F660.0 (7)
C3—N3—C2—N10.7 (8)O5—S2—C16—F660.0 (7)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag4(C4H8N4)6(C2H3N)2](CF3O3S)4·2C2H3N
Mr1864.84
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)12.110 (3), 12.695 (3), 13.001 (3)
α, β, γ (°)108.59 (2), 92.84 (2), 108.68 (2)
V3)1768.9 (7)
Z1
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.38 × 0.24 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.294, 0.790
No. of measured, independent and
observed [I > 2σ(I)] reflections
17453, 8026, 5532
Rint0.046
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.239, 1.07
No. of reflections8026
No. of parameters440
No. of restraints150
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.27, 1.07

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), publCIF (Westrip, 2007).

Selected geometric parameters (Å, º) top
Ag1—N12.232 (5)Ag2—N7i2.241 (5)
Ag1—N52.238 (5)Ag2—N92.371 (6)
Ag1—N10i2.290 (5)Ag2—N132.395 (9)
Ag2—N22.267 (6)
N1—Ag1—N5131.8 (2)N2—Ag2—N13102.6 (3)
N1—Ag1—N10i109.7 (2)N7i—Ag2—N9114.7 (2)
N5—Ag1—N10i117.2 (2)N7i—Ag2—N13109.4 (3)
N2—Ag2—N997.9 (2)N9—Ag2—N1395.6 (3)
N2—Ag2—N7i130.8 (2)
Symmetry code: (i) x+2, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds