Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Co3(C25H20N2O2)2(C2H3O2)2], is an acetate- and phenolate-bridged trinuclear cobalt(II) complex. The central Co atom, lying on an inversion centre, is in an octa­hedral geometry. Each terminal Co atom is in a square-pyramidal geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680702497X/bt2376sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680702497X/bt2376Isup2.hkl
Contains datablock I

CCDC reference: 650690

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.041
  • wR factor = 0.083
  • Data-to-parameter ratio = 12.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.94
Alert level C REFLT03_ALERT_3_C Reflection count < 95% complete From the CIF: _diffrn_reflns_theta_max 25.50 From the CIF: _diffrn_reflns_theta_full 25.50 From the CIF: _reflns_number_total 3927 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 4162 Completeness (_total/calc) 94.35% PLAT022_ALERT_3_C Ratio Unique / Expected Reflections too Low .... 0.94 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT410_ALERT_2_C Short Intra H...H Contact H8A .. H11 .. 1.96 Ang. PLAT410_ALERT_2_C Short Intra H...H Contact H15 .. H23A .. 1.95 Ang.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Co1 (2) 1.95 PLAT794_ALERT_5_G Check Predicted Bond Valency for Co2 (2) 2.00
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Polynuclear complexes play an important role in the development of coordination chemistry related to magnetism and molecular architectures (Eshel et al., 2000; Jiang et al., 2005; Escuer et al., 2000; El-Behairy et al., 1997; Manhas et al., 2005). The prime strategy for designing these molecular materials is to use suitable bridging ligands that determine the nature of the magnetic interactions (Salem, 2005; Dohlakiya & Patel, 2005). We have recently reported a few polynuclear transition metal complexes (Diao, 2007a,b). As an extension of the work on the polynuclear complexes, we report herein the crystal structure of the title complex, (I).

Compound (I) is an acetate and phenolate bridged trinuclear cobalt(II) complex. The central Co atom, lying on the inversion centre, is coordinated by four O atoms from two Schiff base ligands and two O atoms from two acetate groups, forming an octahedral geometry. Each terminal Co atom is coordinated by two O and two N atoms from one Schiff base ligand and one O atom of an acetate group, forming a square pyramidal geometry.

Related literature top

For related literature, see: Diao (2007a, 2007b); Dohlakiya & Patel (2005); El-Behairy, Khalil, Ishak & Abd El-Halim (1997); Escuer et al. (2000); Eshel et al. (2000); Jiang et al. (2005); Manhas et al. (2005); Salem (2005).

Experimental top

N,N'-1,3-Propanediamine (0.1 mmol, 7.5 mg), 2-hydroxy-1-naphthaldehyde (0.2 mmol, 34.3 mg), and cobalt acetate (0.2 mmol, 50.0 mg) were dissolved in a methanol solution (20 ml). The mixture was stirred for half an hour at room temperature, giving a red solution. After allowing the solution to stand in dark for a week, brown block-like crystals were formed.

Refinement top

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.96 Å, and with Uiso(H) values were fixed at 0.08 Å2.

Structure description top

Polynuclear complexes play an important role in the development of coordination chemistry related to magnetism and molecular architectures (Eshel et al., 2000; Jiang et al., 2005; Escuer et al., 2000; El-Behairy et al., 1997; Manhas et al., 2005). The prime strategy for designing these molecular materials is to use suitable bridging ligands that determine the nature of the magnetic interactions (Salem, 2005; Dohlakiya & Patel, 2005). We have recently reported a few polynuclear transition metal complexes (Diao, 2007a,b). As an extension of the work on the polynuclear complexes, we report herein the crystal structure of the title complex, (I).

Compound (I) is an acetate and phenolate bridged trinuclear cobalt(II) complex. The central Co atom, lying on the inversion centre, is coordinated by four O atoms from two Schiff base ligands and two O atoms from two acetate groups, forming an octahedral geometry. Each terminal Co atom is coordinated by two O and two N atoms from one Schiff base ligand and one O atom of an acetate group, forming a square pyramidal geometry.

For related literature, see: Diao (2007a, 2007b); Dohlakiya & Patel (2005); El-Behairy, Khalil, Ishak & Abd El-Halim (1997); Escuer et al. (2000); Eshel et al. (2000); Jiang et al. (2005); Manhas et al. (2005); Salem (2005).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Symmetry operator (A): 2 - x,-y,-z.
Di-µ2-acetato-bis{µ2-1,1'-[propane-1,3-diylbis(nitrilomethylidyne)]di- 2-naphtholato}tricobalt(II) top
Crystal data top
[Co3(C25H20N2O2)2(C2H3O2)2]F(000) = 1086
Mr = 1055.74Dx = 1.569 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.770 (3) ÅCell parameters from 2321 reflections
b = 11.765 (4) Åθ = 2.2–25.0°
c = 16.137 (3) ŵ = 1.17 mm1
β = 90.61 (2)°T = 293 K
V = 2234.4 (10) Å3Block, brown
Z = 20.37 × 0.33 × 0.32 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3927 independent reflections
Radiation source: fine-focus sealed tube2604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1411
Tmin = 0.672, Tmax = 0.707k = 1412
7988 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0348P)2]
where P = (Fo2 + 2Fc2)/3
3927 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Co3(C25H20N2O2)2(C2H3O2)2]V = 2234.4 (10) Å3
Mr = 1055.74Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.770 (3) ŵ = 1.17 mm1
b = 11.765 (4) ÅT = 293 K
c = 16.137 (3) Å0.37 × 0.33 × 0.32 mm
β = 90.61 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3927 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2604 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 0.707Rint = 0.032
7988 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 0.86Δρmax = 0.45 e Å3
3927 reflectionsΔρmin = 0.24 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.98733 (4)0.16208 (3)0.14688 (3)0.04044 (15)
Co21.00000.00000.00000.03656 (18)
O10.94380 (18)0.00047 (16)0.12547 (12)0.0409 (6)
O20.96231 (18)0.17133 (16)0.02205 (12)0.0397 (6)
O31.16502 (19)0.03277 (18)0.03765 (13)0.0451 (6)
O41.15744 (19)0.14127 (18)0.15148 (13)0.0455 (6)
N10.9624 (2)0.1354 (2)0.27103 (16)0.0404 (7)
N20.9711 (2)0.3328 (2)0.15027 (16)0.0388 (7)
C10.9099 (3)0.0671 (3)0.2633 (2)0.0367 (8)
C20.9091 (3)0.0797 (3)0.1763 (2)0.0354 (8)
C30.8677 (3)0.1826 (3)0.1412 (2)0.0418 (9)
H3A0.86240.18890.08190.080*
C40.8370 (3)0.2703 (3)0.1894 (2)0.0459 (9)
H4A0.80770.33790.16370.080*
C50.8134 (3)0.3600 (3)0.3257 (2)0.0491 (10)
H5A0.78680.42760.29850.080*
C60.8199 (3)0.3570 (3)0.4096 (2)0.0544 (10)
H6A0.79600.42110.44190.080*
C70.8608 (3)0.2584 (3)0.4477 (2)0.0568 (11)
H7A0.86800.25650.50700.080*
C80.8907 (3)0.1649 (3)0.4025 (2)0.0488 (9)
H8A0.91950.09880.43050.080*
C90.8441 (3)0.2658 (3)0.2771 (2)0.0391 (8)
C100.8816 (3)0.1639 (3)0.3151 (2)0.0388 (8)
C110.9360 (3)0.0383 (3)0.3032 (2)0.0419 (9)
H110.93360.03690.36080.050*
C120.9865 (3)0.2281 (3)0.3306 (2)0.0497 (10)
H12A1.06750.23220.33740.080*
H12B0.95460.20950.38350.080*
C130.9476 (3)0.3436 (3)0.3019 (2)0.0488 (9)
H13A0.95460.39650.34690.080*
H13B0.86850.33710.28760.080*
C141.0077 (3)0.3899 (3)0.2268 (2)0.0473 (9)
H14A0.99520.47020.22170.080*
H14B1.08760.37730.23470.080*
C150.9328 (3)0.3953 (3)0.0914 (2)0.0410 (9)
H150.93180.47300.10190.049*
C160.8909 (3)0.3609 (2)0.0109 (2)0.0366 (8)
C170.9088 (3)0.2510 (3)0.0204 (2)0.0368 (8)
C180.8683 (3)0.2252 (3)0.10198 (19)0.0415 (9)
H18A0.88320.15120.12440.080*
C190.8109 (3)0.3032 (3)0.1478 (2)0.0445 (9)
H19A0.78520.28330.20260.080*
C200.7206 (3)0.4910 (3)0.1634 (2)0.0497 (9)
H20A0.69390.46880.21740.080*
C210.6942 (3)0.5958 (3)0.1325 (2)0.0557 (10)
H21A0.64910.64810.16450.080*
C220.7337 (3)0.6249 (3)0.0535 (2)0.0604 (11)
H22A0.71500.69820.03120.080*
C230.7984 (3)0.5520 (3)0.0082 (2)0.0554 (11)
H23A0.82600.57570.04530.080*
C240.8269 (3)0.4429 (3)0.0374 (2)0.0398 (8)
C250.7865 (3)0.4134 (3)0.1165 (2)0.0390 (8)
C261.3363 (3)0.0714 (3)0.1094 (2)0.0684 (12)
H26A1.37010.05660.05660.080*
H26B1.35290.00970.14650.080*
H26C1.36660.14070.13180.080*
C271.2099 (3)0.0826 (3)0.0986 (2)0.0417 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0557 (3)0.0357 (3)0.0299 (3)0.0030 (2)0.0046 (2)0.0040 (2)
Co20.0490 (4)0.0338 (3)0.0270 (4)0.0048 (3)0.0043 (3)0.0027 (3)
O10.0589 (16)0.0341 (12)0.0299 (14)0.0000 (11)0.0084 (11)0.0010 (11)
O20.0565 (16)0.0313 (11)0.0313 (14)0.0058 (11)0.0013 (11)0.0032 (10)
O30.0463 (16)0.0503 (14)0.0387 (15)0.0043 (11)0.0018 (12)0.0072 (12)
O40.0517 (16)0.0486 (14)0.0362 (15)0.0058 (11)0.0015 (12)0.0063 (11)
N10.0506 (19)0.0381 (16)0.0324 (18)0.0000 (13)0.0027 (14)0.0056 (13)
N20.0478 (19)0.0343 (14)0.0343 (17)0.0022 (13)0.0016 (14)0.0033 (14)
C10.042 (2)0.0394 (19)0.029 (2)0.0004 (15)0.0037 (16)0.0009 (16)
C20.039 (2)0.0370 (19)0.030 (2)0.0047 (15)0.0035 (16)0.0010 (16)
C30.052 (2)0.0390 (19)0.034 (2)0.0020 (16)0.0086 (17)0.0056 (16)
C40.053 (3)0.041 (2)0.043 (3)0.0027 (17)0.0077 (18)0.0085 (18)
C50.054 (3)0.044 (2)0.049 (3)0.0059 (17)0.0082 (19)0.0035 (18)
C60.057 (3)0.057 (2)0.049 (3)0.0078 (19)0.012 (2)0.014 (2)
C70.065 (3)0.070 (3)0.036 (2)0.004 (2)0.005 (2)0.008 (2)
C80.057 (3)0.055 (2)0.035 (2)0.0049 (19)0.0078 (18)0.0027 (19)
C90.041 (2)0.0382 (19)0.038 (2)0.0007 (15)0.0070 (17)0.0005 (17)
C100.039 (2)0.045 (2)0.033 (2)0.0039 (16)0.0063 (16)0.0028 (17)
C110.051 (2)0.050 (2)0.025 (2)0.0043 (17)0.0029 (16)0.0012 (17)
C120.071 (3)0.046 (2)0.032 (2)0.0096 (18)0.0030 (19)0.0083 (17)
C130.062 (3)0.043 (2)0.042 (2)0.0078 (18)0.0055 (19)0.0175 (18)
C140.059 (3)0.044 (2)0.038 (2)0.0038 (17)0.0046 (19)0.0080 (17)
C150.052 (2)0.0312 (18)0.040 (2)0.0012 (16)0.0055 (18)0.0044 (17)
C160.046 (2)0.0338 (18)0.030 (2)0.0008 (15)0.0029 (16)0.0014 (15)
C170.041 (2)0.0379 (18)0.031 (2)0.0001 (16)0.0045 (16)0.0031 (16)
C180.055 (2)0.0402 (19)0.029 (2)0.0029 (16)0.0049 (18)0.0025 (16)
C190.052 (2)0.046 (2)0.036 (2)0.0022 (17)0.0017 (18)0.0021 (17)
C200.053 (2)0.049 (2)0.047 (2)0.0042 (18)0.0040 (18)0.0018 (19)
C210.060 (3)0.048 (2)0.059 (3)0.0060 (19)0.003 (2)0.012 (2)
C220.084 (3)0.042 (2)0.056 (3)0.015 (2)0.000 (2)0.001 (2)
C230.081 (3)0.040 (2)0.044 (2)0.013 (2)0.006 (2)0.0053 (18)
C240.048 (2)0.0349 (18)0.036 (2)0.0028 (16)0.0049 (17)0.0029 (16)
C250.047 (2)0.0387 (19)0.032 (2)0.0002 (16)0.0004 (17)0.0019 (16)
C260.057 (3)0.079 (3)0.069 (3)0.016 (2)0.011 (2)0.012 (2)
C270.048 (3)0.0341 (19)0.043 (3)0.0043 (17)0.0031 (19)0.0078 (18)
Geometric parameters (Å, º) top
Co1—O11.998 (2)C8—H8A0.9597
Co1—O42.018 (2)C9—C101.415 (4)
Co1—N22.019 (3)C11—H110.9300
Co1—O22.036 (2)C12—C131.506 (4)
Co1—N12.052 (3)C12—H12A0.9597
Co2—O32.065 (2)C12—H12B0.9603
Co2—O3i2.065 (2)C13—C141.510 (4)
Co2—O2i2.095 (2)C13—H13A0.9599
Co2—O22.095 (2)C13—H13B0.9597
Co2—O1i2.137 (2)C14—H14A0.9598
Co2—O12.137 (2)C14—H14B0.9597
O1—C21.318 (3)C15—C161.442 (4)
O2—C171.317 (3)C15—H150.9300
O3—C271.257 (4)C16—C171.406 (4)
O4—C271.263 (4)C16—C241.446 (4)
N1—C111.294 (4)C17—C181.428 (4)
N1—C121.479 (4)C18—C191.356 (4)
N2—C151.279 (3)C18—H18A0.9599
N2—C141.467 (4)C19—C251.421 (4)
C1—C21.412 (4)C19—H19A0.9600
C1—C111.429 (4)C20—C211.366 (4)
C1—C101.453 (4)C20—C251.413 (4)
C2—C31.421 (4)C20—H20A0.9600
C3—C41.344 (4)C21—C221.396 (5)
C3—H3A0.9602C21—H21A0.9599
C4—C91.418 (4)C22—C231.355 (4)
C4—H4A0.9599C22—H22A0.9599
C5—C61.356 (4)C23—C241.409 (4)
C5—C91.408 (4)C23—H23A0.9600
C5—H5A0.9598C24—C251.402 (4)
C6—C71.396 (5)C26—C271.502 (5)
C6—H6A0.9600C26—H26A0.9600
C7—C81.367 (4)C26—H26B0.9600
C7—H7A0.9602C26—H26C0.9600
C8—C101.413 (4)
O1—Co1—O498.24 (9)C8—C10—C9116.5 (3)
O1—Co1—N2158.02 (10)C8—C10—C1124.4 (3)
O4—Co1—N2102.36 (10)C9—C10—C1119.1 (3)
O1—Co1—O281.12 (8)N1—C11—C1129.6 (3)
O4—Co1—O2100.13 (9)N1—C11—H11115.2
N2—Co1—O287.76 (9)C1—C11—H11115.2
O1—Co1—N189.09 (9)N1—C12—C13114.2 (3)
O4—Co1—N195.61 (10)N1—C12—H12A107.2
N2—Co1—N196.38 (10)C13—C12—H12A106.7
O2—Co1—N1162.48 (10)N1—C12—H12B109.6
O3—Co2—O3i180.00 (17)C13—C12—H12B111.0
O3—Co2—O2i91.69 (8)H12A—C12—H12B107.9
O3i—Co2—O2i88.31 (8)C12—C13—C14115.4 (3)
O3—Co2—O288.31 (8)C12—C13—H13A109.2
O3i—Co2—O291.69 (8)C14—C13—H13A109.7
O2i—Co2—O2180.00 (15)C12—C13—H13B107.0
O3—Co2—O1i88.83 (9)C14—C13—H13B107.4
O3i—Co2—O1i91.17 (9)H13A—C13—H13B107.9
O2i—Co2—O1i76.60 (7)N2—C14—C13112.0 (3)
O2—Co2—O1i103.40 (7)N2—C14—H14A109.6
O3—Co2—O191.17 (9)C13—C14—H14A110.6
O3i—Co2—O188.83 (9)N2—C14—H14B108.7
O2i—Co2—O1103.40 (7)C13—C14—H14B107.7
O2—Co2—O176.60 (7)H14A—C14—H14B108.2
O1i—Co2—O1180.00 (15)N2—C15—C16128.5 (3)
C2—O1—Co1130.82 (19)N2—C15—H15115.8
C2—O1—Co2133.59 (18)C16—C15—H15115.8
Co1—O1—Co294.87 (8)C17—C16—C15122.1 (3)
C17—O2—Co1128.05 (19)C17—C16—C24119.9 (3)
C17—O2—Co2134.18 (19)C15—C16—C24118.0 (3)
Co1—O2—Co295.05 (8)O2—C17—C16122.7 (3)
C27—O3—Co2134.7 (2)O2—C17—C18118.8 (3)
C27—O4—Co1122.2 (2)C16—C17—C18118.5 (3)
C11—N1—C12115.8 (3)C19—C18—C17121.3 (3)
C11—N1—Co1124.3 (2)C19—C18—H18A120.0
C12—N1—Co1119.57 (19)C17—C18—H18A118.7
C15—N2—C14117.4 (3)C18—C19—C25121.7 (3)
C15—N2—Co1125.8 (2)C18—C19—H19A119.2
C14—N2—Co1116.8 (2)C25—C19—H19A119.2
C2—C1—C11122.5 (3)C21—C20—C25120.9 (3)
C2—C1—C10119.4 (3)C21—C20—H20A120.3
C11—C1—C10118.1 (3)C25—C20—H20A118.8
O1—C2—C1123.1 (3)C20—C21—C22118.7 (3)
O1—C2—C3117.9 (3)C20—C21—H21A120.6
C1—C2—C3119.0 (3)C22—C21—H21A120.7
C4—C3—C2121.1 (3)C23—C22—C21121.1 (3)
C4—C3—H3A120.1C23—C22—H22A119.8
C2—C3—H3A118.8C21—C22—H22A119.1
C3—C4—C9122.4 (3)C22—C23—C24122.1 (3)
C3—C4—H4A118.9C22—C23—H23A118.9
C9—C4—H4A118.6C24—C23—H23A119.0
C6—C5—C9121.6 (3)C25—C24—C23116.7 (3)
C6—C5—H5A119.6C25—C24—C16119.7 (3)
C9—C5—H5A118.8C23—C24—C16123.5 (3)
C5—C6—C7118.4 (3)C24—C25—C20120.4 (3)
C5—C6—H6A120.4C24—C25—C19118.8 (3)
C7—C6—H6A121.1C20—C25—C19120.7 (3)
C8—C7—C6121.6 (3)C27—C26—H26A109.5
C8—C7—H7A119.5C27—C26—H26B109.5
C6—C7—H7A118.9H26A—C26—H26B109.5
C7—C8—C10121.4 (3)C27—C26—H26C109.5
C7—C8—H8A119.5H26A—C26—H26C109.5
C10—C8—H8A119.1H26B—C26—H26C109.5
C5—C9—C10120.4 (3)O3—C27—O4125.4 (3)
C5—C9—C4121.0 (3)O3—C27—C26117.2 (3)
C10—C9—C4118.6 (3)O4—C27—C26117.4 (3)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Co3(C25H20N2O2)2(C2H3O2)2]
Mr1055.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.770 (3), 11.765 (4), 16.137 (3)
β (°) 90.61 (2)
V3)2234.4 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.37 × 0.33 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.672, 0.707
No. of measured, independent and
observed [I > 2σ(I)] reflections
7988, 3927, 2604
Rint0.032
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.083, 0.86
No. of reflections3927
No. of parameters313
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.24

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Bruker, 2000), SHELXTL.

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds