Download citation
Download citation
link to html
In the title compound, K+·C6H5ClNO2S·H2O, the S—N distance of 1.581 (4) Å is consistent with an S=N double bond. The ions and mol­ecules in the crystal structure are held together by O—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807024178/bt2364sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807024178/bt2364Isup2.hkl
Contains datablock I

CCDC reference: 614963

Key indicators

  • Single-crystal X-ray study
  • T = 303 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.046
  • wR factor = 0.123
  • Data-to-parameter ratio = 14.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.96 PLAT331_ALERT_2_C Small Average Phenyl C-C Dist. C1 -C6 1.37 Ang. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9 PLAT731_ALERT_1_C Bond Calc 0.85(4), Rep 0.849(10) ...... 4.00 su-Ra O3 -H31O 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.85(4), Rep 0.846(10) ...... 4.00 su-Ra O3 -H32O 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(4), Rep 0.849(10) ...... 4.00 su-Ra O3 -H31O 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(4), Rep 0.846(10) ...... 4.00 su-Ra O3 -H32O 1.555 1.555 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.71 Ratio PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 33.70 Deg. O2 -S1 -K1 1.555 1.555 7.765
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The chemistry of arylsulfonamides and their N-halo compounds is of interest as they show distinct physical, chemical and biological properties. Many of these compounds exhibit pharmacological, fungicidal and herbicidal activities due to their oxidizing action in aqueous, partial aqueous and non-aqueous media. Thus, N-halo arylsulfonamides are of interest in synthetic, mechanistic, analytical and biological chemistry (Gowda et al., 2005; Gowda & Shetty, 2004). In the present work, the structure of potassium N- chlorobenzenesulfonamde has been determined to explore the effect of substitution and replacing a sodium ion by a potassium ion on the solid state structures of N-chloroarylsulfonamides (Gowda, Jyothi et al., 2007; Gowda, Kozisek et al., 2007; Gowda, Savitha et al., 2007; Gowda, Srilatha et al., 2007). The structure of the title compound (Fig. 1) resembles those of sodium N-chloro- benzenesulfonamde (George et al., 2000) and other sodium N-chloro-arylsulfonamdes (Olmstead & Power, 1986; Gowda, Jyothi et al., 2007; Gowda, Kozisek et al., 2007; Gowda, Savitha et al., 2007; Gowda, Srilatha et al., 2007). The S—N distance of 1.581 (4)Å is consistent with a S—N double bond. The molecules in the structure are held together by O—H···N hydrogen bonds.

Related literature top

For related literature, see: George et al. (2000); Gowda & Shetty (2004); Gowda et al. (2003, 2005); Gowda, Jyothi et al. (2007); Gowda, Kozisek et al. (2007); Gowda, Savitha et al. (2007); Gowda, Srilatha et al. (2007); Jyothi & Gowda (2004); Olmstead & Power (1986).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003; Jyothi & Gowda, 2004). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared, NMR (Jyothi & Gowda, 2004) and NQR spectra (Gowda et al., 2003). Single crystals of the title compound were obtained from a slow evaporation of its chloroform solution and used for X-ray diffraction studies at room temperature.

Refinement top

H atoms bonded to C were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2 Ueq(C,O). The coordinates of the H atoms bonded to O were refined with a distance restraint of 0.84 (1) Å.

Structure description top

The chemistry of arylsulfonamides and their N-halo compounds is of interest as they show distinct physical, chemical and biological properties. Many of these compounds exhibit pharmacological, fungicidal and herbicidal activities due to their oxidizing action in aqueous, partial aqueous and non-aqueous media. Thus, N-halo arylsulfonamides are of interest in synthetic, mechanistic, analytical and biological chemistry (Gowda et al., 2005; Gowda & Shetty, 2004). In the present work, the structure of potassium N- chlorobenzenesulfonamde has been determined to explore the effect of substitution and replacing a sodium ion by a potassium ion on the solid state structures of N-chloroarylsulfonamides (Gowda, Jyothi et al., 2007; Gowda, Kozisek et al., 2007; Gowda, Savitha et al., 2007; Gowda, Srilatha et al., 2007). The structure of the title compound (Fig. 1) resembles those of sodium N-chloro- benzenesulfonamde (George et al., 2000) and other sodium N-chloro-arylsulfonamdes (Olmstead & Power, 1986; Gowda, Jyothi et al., 2007; Gowda, Kozisek et al., 2007; Gowda, Savitha et al., 2007; Gowda, Srilatha et al., 2007). The S—N distance of 1.581 (4)Å is consistent with a S—N double bond. The molecules in the structure are held together by O—H···N hydrogen bonds.

For related literature, see: George et al. (2000); Gowda & Shetty (2004); Gowda et al. (2003, 2005); Gowda, Jyothi et al. (2007); Gowda, Kozisek et al. (2007); Gowda, Savitha et al. (2007); Gowda, Srilatha et al. (2007); Jyothi & Gowda (2004); Olmstead & Power (1986).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram viewed down the axis b
Potassium N-chlorobenzenesulfonamidate monohydrate top
Crystal data top
K+.C6H5ClNO2S.H2OF(000) = 1008
Mr = 247.74Dx = 1.669 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 10.214 (1) Åθ = 8.7–25.0°
b = 6.8111 (4) ŵ = 9.03 mm1
c = 28.336 (1) ÅT = 303 K
V = 1971.3 (2) Å3Laminar, colourless
Z = 80.22 × 0.13 × 0.03 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1102 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 66.9°, θmin = 3.1°
ω/2θ scansh = 012
Absorption correction: psi-scan
(North et al., 1968)
k = 08
Tmin = 0.305, Tmax = 0.798l = 333
1953 measured reflections3 standard reflections every 120 min
1756 independent reflections intensity decay: 4.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0611P)2]
where P = (Fo2 + 2Fc2)/3
1756 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.27 e Å3
2 restraintsΔρmin = 0.38 e Å3
Crystal data top
K+.C6H5ClNO2S.H2OV = 1971.3 (2) Å3
Mr = 247.74Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 10.214 (1) ŵ = 9.03 mm1
b = 6.8111 (4) ÅT = 303 K
c = 28.336 (1) Å0.22 × 0.13 × 0.03 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1102 reflections with I > 2σ(I)
Absorption correction: psi-scan
(North et al., 1968)
Rint = 0.035
Tmin = 0.305, Tmax = 0.7983 standard reflections every 120 min
1953 measured reflections intensity decay: 4.8%
1756 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.27 e Å3
1756 reflectionsΔρmin = 0.38 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9541 (5)0.7329 (6)0.35902 (15)0.0416 (10)
C20.8421 (5)0.7230 (8)0.33231 (18)0.0579 (14)
H20.76870.65660.34340.070*
C30.8404 (8)0.8127 (10)0.2891 (2)0.083 (2)
H30.76510.80570.27070.100*
C40.9464 (10)0.9120 (9)0.2723 (2)0.090 (2)
H40.94350.97360.24300.108*
C51.0569 (8)0.9193 (9)0.2992 (2)0.081 (2)
H51.13010.98550.28790.097*
C61.0622 (5)0.8313 (8)0.34244 (19)0.0566 (13)
H61.13810.83780.36050.068*
N11.0836 (4)0.4749 (6)0.41555 (14)0.0477 (10)
O10.9920 (3)0.7666 (5)0.44928 (11)0.0544 (9)
O20.8372 (3)0.5189 (5)0.42122 (12)0.0524 (9)
O30.7965 (4)0.1477 (6)0.52779 (12)0.0558 (9)
H31O0.744 (4)0.130 (8)0.5507 (12)0.067*
H32O0.823 (5)0.260 (4)0.5366 (19)0.067*
S10.96138 (11)0.61724 (16)0.41499 (4)0.0386 (3)
Cl11.06255 (14)0.2980 (2)0.37111 (5)0.0634 (4)
K10.88083 (10)0.14650 (14)0.46609 (4)0.0455 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (2)0.036 (2)0.039 (2)0.004 (2)0.003 (2)0.001 (2)
C20.068 (3)0.050 (3)0.056 (3)0.004 (3)0.009 (3)0.001 (3)
C30.115 (6)0.072 (4)0.062 (4)0.026 (4)0.034 (4)0.001 (4)
C40.170 (8)0.054 (4)0.046 (3)0.026 (5)0.008 (5)0.005 (3)
C50.128 (6)0.050 (3)0.064 (4)0.001 (4)0.046 (4)0.011 (3)
C60.063 (3)0.049 (3)0.058 (3)0.007 (3)0.006 (3)0.003 (3)
N10.049 (2)0.039 (2)0.055 (2)0.0110 (18)0.011 (2)0.013 (2)
O10.071 (2)0.0441 (18)0.0480 (19)0.0053 (18)0.0023 (17)0.0096 (16)
O20.0446 (17)0.0498 (19)0.063 (2)0.0084 (16)0.0104 (16)0.0080 (18)
O30.060 (2)0.049 (2)0.058 (2)0.003 (2)0.0111 (17)0.007 (2)
S10.0419 (6)0.0346 (5)0.0392 (5)0.0010 (5)0.0016 (5)0.0005 (5)
Cl10.0751 (9)0.0501 (7)0.0651 (8)0.0151 (7)0.0009 (7)0.0155 (7)
K10.0518 (6)0.0368 (5)0.0480 (5)0.0006 (5)0.0067 (5)0.0033 (5)
Geometric parameters (Å, º) top
C1—C21.373 (7)O2—S11.445 (3)
C1—C61.375 (7)O2—K1iii2.708 (3)
C1—S11.772 (4)O2—K12.872 (4)
C2—C31.370 (8)O3—K12.795 (4)
C2—H20.9300O3—K1iv2.881 (4)
C3—C41.362 (10)O3—K1v3.301 (4)
C3—H30.9300O3—H31O0.849 (10)
C4—C51.362 (9)O3—H32O0.846 (10)
C4—H40.9300S1—K13.6130 (15)
C5—C61.366 (8)S1—K1iii3.7886 (15)
C5—H50.9300Cl1—K13.4285 (18)
C6—H60.9300K1—O2iv2.708 (3)
N1—S11.581 (4)K1—O1i2.791 (3)
N1—Cl11.756 (4)K1—O1vi2.865 (3)
N1—K13.368 (4)K1—O3iii2.881 (4)
O1—S11.441 (3)K1—O3v3.301 (4)
O1—K1i2.791 (3)K1—K1v3.688 (2)
O1—K1ii2.865 (3)K1—S1iv3.7886 (15)
C2—C1—C6120.3 (5)O1i—K1—O2105.39 (11)
C2—C1—S1120.4 (4)O3—K1—O2149.56 (10)
C6—C1—S1119.2 (4)O1vi—K1—O2141.75 (10)
C3—C2—C1118.8 (6)O2iv—K1—O3iii85.65 (11)
C3—C2—H2120.6O1i—K1—O3iii70.61 (10)
C1—C2—H2120.6O3—K1—O3iii77.03 (8)
C4—C3—C2121.6 (6)O1vi—K1—O3iii142.11 (10)
C4—C3—H3119.2O2—K1—O3iii75.02 (10)
C2—C3—H3119.2O2iv—K1—O3v147.86 (11)
C5—C4—C3118.7 (6)O1i—K1—O3v59.30 (10)
C5—C4—H4120.6O3—K1—O3v106.07 (9)
C3—C4—H4120.6O1vi—K1—O3v67.38 (10)
C4—C5—C6121.3 (6)O2—K1—O3v100.14 (10)
C4—C5—H5119.4O3iii—K1—O3v126.49 (7)
C6—C5—H5119.4O2iv—K1—N1121.29 (10)
C5—C6—C1119.3 (6)O1i—K1—N186.46 (10)
C5—C6—H6120.4O3—K1—N1158.67 (10)
C1—C6—H6120.4O1vi—K1—N1106.57 (10)
S1—N1—Cl1108.5 (2)O2—K1—N147.22 (9)
S1—N1—K185.74 (16)O3iii—K1—N1108.76 (10)
Cl1—N1—K176.94 (14)O3v—K1—N153.59 (9)
S1—O1—K1i146.1 (2)O2iv—K1—Cl199.98 (8)
S1—O1—K1ii131.57 (19)O1i—K1—Cl1111.02 (8)
K1i—O1—K1ii81.38 (9)O3—K1—Cl1150.88 (8)
S1—O2—K1iii129.1 (2)O1vi—K1—Cl185.80 (8)
S1—O2—K1109.11 (17)O2—K1—Cl158.04 (7)
K1iii—O2—K1101.73 (10)O3iii—K1—Cl1132.09 (8)
K1—O3—K1iv99.38 (11)O3v—K1—Cl159.99 (7)
K1—O3—K1v73.93 (9)N1—K1—Cl129.93 (7)
K1iv—O3—K1v131.37 (13)O2iv—K1—S1106.50 (8)
K1—O3—H31O125 (4)O1i—K1—S192.88 (8)
K1iv—O3—H31O98 (4)O3—K1—S1163.14 (9)
K1v—O3—H31O126 (4)O1vi—K1—S1130.12 (8)
K1—O3—H32O137 (4)O2—K1—S122.21 (6)
K1iv—O3—H32O87 (4)O3iii—K1—S187.40 (8)
K1v—O3—H32O71 (4)O3v—K1—S177.96 (7)
H31O—O3—H32O96 (5)N1—K1—S125.88 (6)
O1—S1—O2115.8 (2)Cl1—K1—S145.17 (3)
O1—S1—N1104.8 (2)O2iv—K1—K1v127.87 (8)
O2—S1—N1114.1 (2)O1i—K1—K1v50.19 (7)
O1—S1—C1107.4 (2)O3—K1—K1v59.32 (8)
O2—S1—C1106.2 (2)O1vi—K1—K1v48.43 (7)
N1—S1—C1108.4 (2)O2—K1—K1v144.19 (8)
O1—S1—K1113.93 (14)O3iii—K1—K1v111.22 (8)
O2—S1—K148.69 (14)O3v—K1—K1v46.75 (7)
N1—S1—K168.38 (16)N1—K1—K1v100.07 (7)
C1—S1—K1138.02 (15)Cl1—K1—K1v102.39 (5)
O1—S1—K1iii84.57 (15)S1—K1—K1v122.60 (5)
O2—S1—K1iii33.70 (14)O2iv—K1—S1iv17.23 (7)
N1—S1—K1iii139.20 (16)O1i—K1—S1iv140.27 (8)
C1—S1—K1iii106.24 (16)O3—K1—S1iv85.24 (8)
K1—S1—K1iii71.54 (3)O1vi—K1—S1iv104.75 (8)
N1—Cl1—K173.13 (14)O2—K1—S1iv74.58 (7)
O2iv—K1—O1i148.70 (11)O3iii—K1—S1iv71.19 (8)
O2iv—K1—O379.05 (11)O3v—K1—S1iv160.31 (7)
O1i—K1—O376.00 (11)N1—K1—S1iv116.09 (7)
O2iv—K1—O1vi87.59 (10)Cl1—K1—S1iv102.43 (4)
O1i—K1—O1vi98.62 (9)S1—K1—S1iv95.94 (4)
O3—K1—O1vi65.09 (10)K1v—K1—S1iv141.23 (5)
O2iv—K1—O287.02 (9)
C6—C1—C2—C30.0 (8)S1—O2—K1—S1iv163.7 (2)
S1—C1—C2—C3179.4 (4)K1iii—O2—K1—S1iv57.42 (9)
C1—C2—C3—C40.5 (9)S1—N1—K1—O2iv60.56 (19)
C2—C3—C4—C50.8 (10)Cl1—N1—K1—O2iv49.51 (17)
C3—C4—C5—C60.7 (10)S1—N1—K1—O1i104.06 (16)
C4—C5—C6—C10.2 (9)Cl1—N1—K1—O1i145.87 (14)
C2—C1—C6—C50.1 (7)S1—N1—K1—O3138.5 (3)
S1—C1—C6—C5179.6 (4)Cl1—N1—K1—O3111.4 (3)
K1i—O1—S1—O294.6 (4)S1—N1—K1—O1vi158.00 (14)
K1ii—O1—S1—O269.3 (3)Cl1—N1—K1—O1vi47.93 (15)
K1i—O1—S1—N131.9 (4)S1—N1—K1—O210.75 (13)
K1ii—O1—S1—N1164.2 (2)Cl1—N1—K1—O299.32 (17)
K1i—O1—S1—C1147.0 (4)S1—N1—K1—O3iii35.91 (17)
K1ii—O1—S1—C149.1 (3)Cl1—N1—K1—O3iii145.98 (13)
K1i—O1—S1—K140.6 (4)S1—N1—K1—O3v157.9 (2)
K1ii—O1—S1—K1123.28 (19)Cl1—N1—K1—O3v92.03 (15)
K1i—O1—S1—K1iii107.7 (3)S1—N1—K1—Cl1110.1 (2)
K1ii—O1—S1—K1iii56.2 (2)Cl1—N1—K1—S1110.1 (2)
K1iii—O2—S1—O123.9 (3)S1—N1—K1—K1v152.57 (13)
K1—O2—S1—O1100.1 (2)Cl1—N1—K1—K1v97.36 (12)
K1iii—O2—S1—N1145.6 (2)S1—N1—K1—S1iv41.80 (16)
K1—O2—S1—N121.6 (3)Cl1—N1—K1—S1iv68.27 (13)
K1iii—O2—S1—C195.2 (3)N1—Cl1—K1—O2iv138.71 (15)
K1—O2—S1—C1140.88 (18)N1—Cl1—K1—O1i36.86 (15)
K1iii—O2—S1—K1123.9 (3)N1—Cl1—K1—O3135.9 (2)
K1—O2—S1—K1iii123.9 (3)N1—Cl1—K1—O1vi134.49 (15)
Cl1—N1—S1—O1175.0 (2)N1—Cl1—K1—O258.61 (15)
K1—N1—S1—O1110.29 (16)N1—Cl1—K1—O3iii45.55 (17)
Cl1—N1—S1—O257.4 (3)N1—Cl1—K1—O3v68.25 (15)
K1—N1—S1—O217.3 (2)N1—Cl1—K1—S135.31 (13)
Cl1—N1—S1—C160.6 (3)N1—Cl1—K1—K1v88.70 (13)
K1—N1—S1—C1135.32 (17)N1—Cl1—K1—S1iv121.32 (13)
Cl1—N1—S1—K174.7 (2)O1—S1—K1—O2iv133.79 (18)
Cl1—N1—S1—K1iii86.1 (3)O2—S1—K1—O2iv29.67 (14)
K1—N1—S1—K1iii11.4 (2)N1—S1—K1—O2iv129.09 (17)
C2—C1—S1—O1122.0 (4)C1—S1—K1—O2iv35.3 (3)
C6—C1—S1—O158.6 (4)K1iii—S1—K1—O2iv58.70 (9)
C2—C1—S1—O22.5 (4)O1—S1—K1—O1i21.3 (2)
C6—C1—S1—O2177.0 (4)O2—S1—K1—O1i125.4 (2)
C2—C1—S1—N1125.4 (4)N1—S1—K1—O1i75.80 (17)
C6—C1—S1—N154.1 (4)C1—S1—K1—O1i169.6 (2)
C2—C1—S1—K147.6 (5)K1iii—S1—K1—O1i96.41 (7)
C6—C1—S1—K1131.9 (3)O1—S1—K1—O326.7 (3)
C2—C1—S1—K1iii32.7 (4)O2—S1—K1—O377.4 (4)
C6—C1—S1—K1iii147.9 (4)N1—S1—K1—O3123.8 (3)
S1—N1—Cl1—K180.9 (2)C1—S1—K1—O3142.4 (4)
K1iv—O3—K1—O2iv16.83 (11)K1iii—S1—K1—O348.4 (3)
K1v—O3—K1—O2iv147.33 (11)O1—S1—K1—O1vi125.1 (2)
K1iv—O3—K1—O1i177.77 (13)O2—S1—K1—O1vi130.8 (2)
K1v—O3—K1—O1i51.73 (8)N1—S1—K1—O1vi28.01 (18)
K1iv—O3—K1—O1vi75.61 (12)C1—S1—K1—O1vi65.8 (3)
K1v—O3—K1—O1vi54.89 (9)K1iii—S1—K1—O1vi159.78 (10)
K1iv—O3—K1—O281.1 (2)O1—S1—K1—O2104.1 (3)
K1v—O3—K1—O2148.38 (19)N1—S1—K1—O2158.8 (2)
K1iv—O3—K1—O3iii104.84 (16)C1—S1—K1—O265.0 (3)
K1v—O3—K1—O3iii124.66 (8)K1iii—S1—K1—O229.03 (19)
K1iv—O3—K1—O3v130.50 (13)O1—S1—K1—O3iii49.11 (18)
K1v—O3—K1—O3v0.0O2—S1—K1—O3iii55.0 (2)
K1iv—O3—K1—N1146.7 (2)N1—S1—K1—O3iii146.23 (17)
K1v—O3—K1—N116.2 (3)C1—S1—K1—O3iii120.0 (2)
K1iv—O3—K1—Cl174.04 (19)K1iii—S1—K1—O3iii25.98 (7)
K1v—O3—K1—Cl156.46 (18)O1—S1—K1—O3v79.09 (17)
K1iv—O3—K1—S1127.9 (3)O2—S1—K1—O3v176.8 (2)
K1v—O3—K1—S1101.6 (3)N1—S1—K1—O3v18.03 (16)
K1iv—O3—K1—K1v130.50 (13)C1—S1—K1—O3v111.8 (2)
K1iv—O3—K1—S1iv33.07 (9)K1iii—S1—K1—O3v154.17 (7)
K1v—O3—K1—S1iv163.57 (7)O1—S1—K1—N197.1 (2)
S1—O2—K1—O2iv151.62 (13)O2—S1—K1—N1158.8 (2)
K1iii—O2—K1—O2iv69.51 (17)C1—S1—K1—N193.8 (3)
S1—O2—K1—O1i57.6 (2)K1iii—S1—K1—N1172.21 (16)
K1iii—O2—K1—O1i81.31 (12)O1—S1—K1—Cl1138.48 (17)
S1—O2—K1—O3146.03 (19)O2—S1—K1—Cl1117.4 (2)
K1iii—O2—K1—O37.2 (3)N1—S1—K1—Cl141.36 (15)
S1—O2—K1—O1vi69.3 (3)C1—S1—K1—Cl152.4 (2)
K1iii—O2—K1—O1vi151.81 (13)K1iii—S1—K1—Cl1146.43 (5)
S1—O2—K1—O3iii122.1 (2)O1—S1—K1—K1v64.54 (17)
K1iii—O2—K1—O3iii16.78 (11)O2—S1—K1—K1v168.7 (2)
S1—O2—K1—O3v3.2 (2)N1—S1—K1—K1v32.58 (16)
K1iii—O2—K1—O3v142.05 (10)C1—S1—K1—K1v126.4 (2)
S1—O2—K1—N112.44 (15)K1iii—S1—K1—K1v139.63 (4)
K1iii—O2—K1—N1151.31 (18)O1—S1—K1—S1iv119.89 (16)
S1—O2—K1—Cl147.91 (15)O2—S1—K1—S1iv15.8 (2)
K1iii—O2—K1—Cl1173.22 (14)N1—S1—K1—S1iv142.99 (15)
K1iii—O2—K1—S1138.9 (3)C1—S1—K1—S1iv49.2 (2)
S1—O2—K1—K1v16.4 (3)K1iii—S1—K1—S1iv44.80 (4)
K1iii—O2—K1—K1v122.42 (10)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z; (iii) x+3/2, y+1/2, z; (iv) x+3/2, y1/2, z; (v) x+2, y, z+1; (vi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31O···N1vii0.85 (1)2.17 (3)2.948 (5)152 (5)
O3—H32O···N1v0.85 (1)2.21 (3)3.007 (5)156 (5)
Symmetry codes: (v) x+2, y, z+1; (vii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaK+.C6H5ClNO2S.H2O
Mr247.74
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)303
a, b, c (Å)10.214 (1), 6.8111 (4), 28.336 (1)
V3)1971.3 (2)
Z8
Radiation typeCu Kα
µ (mm1)9.03
Crystal size (mm)0.22 × 0.13 × 0.03
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionPsi-scan
(North et al., 1968)
Tmin, Tmax0.305, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
1953, 1756, 1102
Rint0.035
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 0.99
No. of reflections1756
No. of parameters124
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.38

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), CAD-4-PC, REDU4 (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31O···N1i0.849 (10)2.17 (3)2.948 (5)152 (5)
O3—H32O···N1ii0.846 (10)2.21 (3)3.007 (5)156 (5)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+2, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds