Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, Na+·C6H3Cl3NO2S-·1.5H2O, is similar to those of sodium N-chloro­benzene­sulfonamidate, sodium N-chloro-4-methyl­benzene­sulfonamidate, sodium 4,N-dichloro­benzene­sulfonamidate and sodium 4,N-dichloro-2-methyl­benzene­sulfonamidate. There is no inter­action between the N and Na atoms. The S-N distance of 1.583 (2) Å is consistent with an S=N double bond. One water mol­ecule is located on a twofold rotation axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807023045/bt2359sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807023045/bt2359Isup2.hkl
Contains datablock I

CCDC reference: 614957

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.038
  • wR factor = 0.081
  • Data-to-parameter ratio = 14.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.47 Ratio PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 40.69 Deg. O1 -S1 -NA1 1.555 1.555 4.556
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 7
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The chemistry of arylsulfonamides and their N-halo compounds is of interest as they show distinct physical, chemical and biological properties. Many of these compounds exhibit pharmacological, fungicidal and herbicidal activities due to their oxidizing action in aqueous, partial aqueous and non-aqueous media. Thus N-halo arylsulfonamides are of interest in synthetic, mechanistic, analytical and biological chemistry (Gowda & Kumar, 2003; Gowda & Shetty, 2004; Gowda et al., 2002; Gowda et al.,2005; Gowda, Srilatha et al., 2007). In the present work, the structure of sodium N-chloro-2,4-dichlorobenzenesulfonamide has been determined to explore the substituent effects on the solid state structures of sulfonamides and N-halo arylsulfonamides (Gowda, Jyothi et al., 2003; Gowda, Srilatha et al., 2007).

The crystal structure of is complex similar to those of sodium N-chloro-benzenesulfonamide (George et al., 2000), sodium N-chloro-4-chlorobenzenesulfonamide (Gowda, Srilatha, et al., 2007), sodium N-chloro-4-methylbenzenesulfonamide (Olmstead & Power, 1986) and sodium N-chloro-2-methyl-4-chlorobenzenesulfonamide (Gowda, Jyothi et al., 2007). There is no interaction between the nitrogen and sodium atoms in the molecule, and Na+ is attached to one of the sulfonyl oxygen atoms.

The effects of N-chlorination and substitution in the phenyl ring on the structural data of sulfonamides have been considered by comparing the geometric parameters of them. The comparison revealed that on mono N-chlorination of benzenesulfonamide (George et al., 2000) and 4-chlorbenzenesulfonamide (Gowda, Jyothi et al., 2003), the C—S and S—O bond lengths increased marginally, while the S—N bond length remained more or less the same or decreased marginally. Further, N-chlorination of N-chloro-4-chlorobenzenesulfonamide decreases the C—S, S—O and N—Cl, but increased the S—N bond length (Gowda, Jyothi et al., 2007). The introduction of an additional Cl atom to the benzene ring at the ortho position marginally increased the C—S bond length and decreased the S—N bond length, while the S—O and N—Cl bond lengths remained more or less the same. The bond angles also changed on both N-chlorination and introduction of Cl atoms to the benzene ring.

Related literature top

For related literature, see: George et al. (2000); Gowda & Kumar (2003); Gowda & Shetty (2004); Gowda et al. (2002, 2005); Gowda, D'Souza & Kumar (2003); Gowda, Jyothi, Kozisek & Fuess (2003); Gowda, Jyothi, Kozisek, Tokarcik & Fuess (2007); Gowda, Srilatha, Foro, Kozisek & Fuess (2007); Olmstead & Power (1986).

Experimental top

The title compound was prepared according to the literature method (Gowda, D'Souza et al., 2003 a). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared, and NMR spectra (Gowda, D'Souza et al., 2003 a). Single crystals of the title compound were obtained from a slow evaporation of its chloroform solution and used for X-ray diffraction studies at room temperature.

Refinement top

Crystals of the title compound are monoclinic; space group C2/c. H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2 Ueq(C). No restraints were applied for non-hydrogen atoms. Friedel equivalents were merged prior to the final refinements.

H atoms bonded to O atoms were found in fourier map and finally refined with O—H bond length restrained to 0.82 (1)Å and Uiso(H) = 1.2 Ueq(O).

Structure description top

The chemistry of arylsulfonamides and their N-halo compounds is of interest as they show distinct physical, chemical and biological properties. Many of these compounds exhibit pharmacological, fungicidal and herbicidal activities due to their oxidizing action in aqueous, partial aqueous and non-aqueous media. Thus N-halo arylsulfonamides are of interest in synthetic, mechanistic, analytical and biological chemistry (Gowda & Kumar, 2003; Gowda & Shetty, 2004; Gowda et al., 2002; Gowda et al.,2005; Gowda, Srilatha et al., 2007). In the present work, the structure of sodium N-chloro-2,4-dichlorobenzenesulfonamide has been determined to explore the substituent effects on the solid state structures of sulfonamides and N-halo arylsulfonamides (Gowda, Jyothi et al., 2003; Gowda, Srilatha et al., 2007).

The crystal structure of is complex similar to those of sodium N-chloro-benzenesulfonamide (George et al., 2000), sodium N-chloro-4-chlorobenzenesulfonamide (Gowda, Srilatha, et al., 2007), sodium N-chloro-4-methylbenzenesulfonamide (Olmstead & Power, 1986) and sodium N-chloro-2-methyl-4-chlorobenzenesulfonamide (Gowda, Jyothi et al., 2007). There is no interaction between the nitrogen and sodium atoms in the molecule, and Na+ is attached to one of the sulfonyl oxygen atoms.

The effects of N-chlorination and substitution in the phenyl ring on the structural data of sulfonamides have been considered by comparing the geometric parameters of them. The comparison revealed that on mono N-chlorination of benzenesulfonamide (George et al., 2000) and 4-chlorbenzenesulfonamide (Gowda, Jyothi et al., 2003), the C—S and S—O bond lengths increased marginally, while the S—N bond length remained more or less the same or decreased marginally. Further, N-chlorination of N-chloro-4-chlorobenzenesulfonamide decreases the C—S, S—O and N—Cl, but increased the S—N bond length (Gowda, Jyothi et al., 2007). The introduction of an additional Cl atom to the benzene ring at the ortho position marginally increased the C—S bond length and decreased the S—N bond length, while the S—O and N—Cl bond lengths remained more or less the same. The bond angles also changed on both N-chlorination and introduction of Cl atoms to the benzene ring.

For related literature, see: George et al. (2000); Gowda & Kumar (2003); Gowda & Shetty (2004); Gowda et al. (2002, 2005); Gowda, D'Souza & Kumar (2003); Gowda, Jyothi, Kozisek & Fuess (2003); Gowda, Jyothi, Kozisek, Tokarcik & Fuess (2007); Gowda, Srilatha, Foro, Kozisek & Fuess (2007); Olmstead & Power (1986).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound showing the atom labelling scheme (50% probability displacement ellipsoids)
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the axis b.
Sodium 2,4,N-trichlorobenzenesulfonamidate sesquihydrate top
Crystal data top
Na+·C6H3Cl3NO2S·1.5H2OF(000) = 1240.0
Mr = 309.52Dx = 1.834 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3687 reflections
a = 11.033 (2) Åθ = 3.6–30.1°
b = 6.7410 (13) ŵ = 1.04 mm1
c = 30.187 (6) ÅT = 294 K
β = 98.51 (3)°Block, yellow
V = 2220.4 (8) Å30.46 × 0.32 × 0.16 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
2162 independent reflections
Radiation source: fine-focus sealed tube1872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Rotation method data acquisition using ω and phi scansθmax = 26.2°, θmin = 6.8°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2003)
h = 1313
Tmin = 0.646, Tmax = 0.851k = 08
3256 measured reflectionsl = 037
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0305P)2 + 4.9463P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.038(Δ/σ)max = 0.001
wR(F2) = 0.081Δρmax = 0.40 e Å3
S = 1.09Δρmin = 0.41 e Å3
2162 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
151 parametersExtinction coefficient: 0.0083 (6)
7 restraints
Crystal data top
Na+·C6H3Cl3NO2S·1.5H2OV = 2220.4 (8) Å3
Mr = 309.52Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.033 (2) ŵ = 1.04 mm1
b = 6.7410 (13) ÅT = 294 K
c = 30.187 (6) Å0.46 × 0.32 × 0.16 mm
β = 98.51 (3)°
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
2162 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2003)
1872 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.851Rint = 0.047
3256 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0387 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.40 e Å3
2162 reflectionsΔρmin = 0.41 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3266 (2)0.3152 (3)0.61865 (8)0.0221 (5)
C20.4082 (2)0.3777 (4)0.59049 (8)0.0260 (5)
C30.3651 (3)0.4513 (4)0.54803 (9)0.0348 (6)
H30.41980.49370.52930.042*
C40.2411 (3)0.4607 (4)0.53402 (9)0.0374 (7)
C50.1587 (3)0.4044 (5)0.56120 (10)0.0413 (7)
H50.07490.41460.55140.05*
C60.2020 (2)0.3320 (4)0.60359 (9)0.0329 (6)
H60.14630.29390.62230.039*
N10.46541 (19)0.0345 (3)0.66974 (7)0.0267 (5)
O10.44434 (16)0.3586 (3)0.70026 (6)0.0317 (4)
O20.25872 (17)0.1563 (3)0.68763 (6)0.0359 (5)
S10.37271 (5)0.21142 (9)0.672848 (19)0.02257 (18)
Cl10.39467 (6)0.15130 (10)0.63434 (2)0.0345 (2)
Cl20.56526 (6)0.36763 (12)0.60616 (3)0.0424 (2)
Cl30.18902 (9)0.53791 (12)0.47951 (3)0.0579 (3)
Na10.14565 (9)0.00688 (16)0.73657 (3)0.0328 (3)
O300.2632 (4)0.750.0346 (6)
H310.010 (3)0.339 (3)0.7290 (7)0.041*
O40.28754 (17)0.1707 (3)0.79286 (6)0.0350 (5)
H410.247 (2)0.196 (4)0.8128 (6)0.042*
H420.3478 (17)0.111 (4)0.8039 (8)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0252 (12)0.0203 (12)0.0208 (11)0.0009 (10)0.0029 (9)0.0014 (9)
C20.0301 (13)0.0220 (12)0.0255 (12)0.0008 (10)0.0031 (10)0.0002 (10)
C30.0514 (18)0.0274 (14)0.0264 (13)0.0040 (13)0.0084 (12)0.0034 (11)
C40.0562 (19)0.0245 (14)0.0272 (13)0.0024 (13)0.0080 (13)0.0030 (11)
C50.0357 (16)0.0397 (16)0.0429 (17)0.0060 (13)0.0124 (13)0.0002 (14)
C60.0288 (14)0.0348 (15)0.0343 (14)0.0027 (11)0.0025 (11)0.0006 (12)
N10.0279 (11)0.0251 (11)0.0259 (11)0.0004 (9)0.0003 (9)0.0017 (9)
O10.0341 (10)0.0343 (10)0.0258 (9)0.0022 (8)0.0010 (8)0.0077 (8)
O20.0307 (10)0.0484 (12)0.0314 (10)0.0019 (9)0.0142 (8)0.0066 (9)
S10.0237 (3)0.0258 (3)0.0183 (3)0.0003 (2)0.0035 (2)0.0003 (2)
Cl10.0408 (4)0.0289 (4)0.0344 (4)0.0029 (3)0.0080 (3)0.0068 (3)
Cl20.0277 (4)0.0522 (5)0.0487 (4)0.0044 (3)0.0104 (3)0.0122 (4)
Cl30.0932 (7)0.0384 (4)0.0331 (4)0.0024 (4)0.0209 (4)0.0076 (3)
Na10.0320 (6)0.0350 (6)0.0330 (6)0.0054 (4)0.0105 (4)0.0002 (5)
O30.0487 (16)0.0275 (15)0.0256 (14)00.0007 (12)0
O40.0287 (10)0.0442 (12)0.0321 (10)0.0026 (9)0.0047 (8)0.0021 (9)
Geometric parameters (Å, º) top
C1—C61.387 (4)O2—S11.4440 (19)
C1—C21.392 (3)O2—Na12.344 (2)
C1—S11.783 (2)S1—Na1i3.3597 (13)
C2—C31.391 (4)Na1—O42.446 (2)
C2—Cl21.729 (3)Na1—O1iii2.450 (2)
C3—C41.372 (4)Na1—O1iv2.497 (2)
C3—H30.93Na1—O4iii2.500 (2)
C4—C51.366 (4)Na1—O32.501 (2)
C4—Cl31.741 (3)Na1—S1iii3.3597 (13)
C5—C61.387 (4)Na1—Na1v3.429 (2)
C5—H50.93Na1—Na1i4.0948 (13)
C6—H60.93Na1—Na1iii4.0948 (13)
N1—S11.583 (2)O3—Na1v2.501 (2)
N1—Cl11.753 (2)O3—H310.809 (10)
O1—S11.4493 (18)O4—Na1i2.500 (2)
O1—Na1i2.450 (2)O4—H410.817 (10)
O1—Na1ii2.497 (2)O4—H420.806 (10)
C6—C1—C2118.3 (2)O4—Na1—O383.78 (6)
C6—C1—S1117.86 (19)O1iii—Na1—O378.42 (6)
C2—C1—S1123.82 (19)O1iv—Na1—O377.55 (6)
C3—C2—C1120.5 (2)O4iii—Na1—O3157.05 (7)
C3—C2—Cl2117.3 (2)O2—Na1—S1iii151.64 (6)
C1—C2—Cl2122.25 (19)O4—Na1—S1iii79.67 (6)
C4—C3—C2119.3 (3)O1iii—Na1—S1iii22.68 (4)
C4—C3—H3120.3O1iv—Na1—S1iii89.73 (6)
C2—C3—H3120.3O4iii—Na1—S1iii81.63 (6)
C5—C4—C3121.6 (3)O3—Na1—S1iii99.33 (5)
C5—C4—Cl3119.7 (2)O2—Na1—Na1v138.93 (7)
C3—C4—Cl3118.7 (2)O4—Na1—Na1v111.20 (6)
C4—C5—C6118.9 (3)O1iii—Na1—Na1v46.70 (5)
C4—C5—H5120.6O1iv—Na1—Na1v45.57 (5)
C6—C5—H5120.6O4iii—Na1—Na1v114.84 (5)
C5—C6—C1121.4 (3)O3—Na1—Na1v46.72 (5)
C5—C6—H6119.3S1iii—Na1—Na1v68.66 (4)
C1—C6—H6119.3O2—Na1—Na1i53.30 (6)
S1—N1—Cl1109.95 (12)O4—Na1—Na1i34.54 (5)
S1—O1—Na1i116.63 (10)O1iii—Na1—Na1i115.54 (6)
S1—O1—Na1ii150.88 (11)O1iv—Na1—Na1i145.42 (6)
Na1i—O1—Na1ii87.74 (7)O4iii—Na1—Na1i126.81 (6)
S1—O2—Na1152.22 (13)O3—Na1—Na1i74.01 (5)
O2—S1—O1115.22 (11)S1iii—Na1—Na1i113.82 (5)
O2—S1—N1115.11 (12)Na1v—Na1—Na1i118.20 (3)
O1—S1—N1104.31 (11)O2—Na1—Na1iii100.07 (7)
O2—S1—C1103.96 (11)O4—Na1—Na1iii88.97 (7)
O1—S1—C1108.23 (11)O1iii—Na1—Na1iii79.75 (5)
N1—S1—C1109.90 (11)O1iv—Na1—Na1iii103.04 (5)
O2—S1—Na1i74.56 (9)O4iii—Na1—Na1iii33.70 (4)
O1—S1—Na1i40.69 (8)O3—Na1—Na1iii157.39 (5)
N1—S1—Na1i126.25 (8)S1iii—Na1—Na1iii58.23 (3)
C1—S1—Na1i118.80 (8)Na1v—Na1—Na1iii118.20 (3)
O2—Na1—O482.10 (8)Na1i—Na1—Na1iii110.80 (5)
O2—Na1—O1iii168.19 (8)Na1v—O3—Na186.55 (10)
O4—Na1—O1iii86.09 (7)Na1v—O3—H31125 (2)
O2—Na1—O1iv114.55 (8)Na1—O3—H31110 (2)
O4—Na1—O1iv156.75 (8)Na1—O4—Na1i111.76 (8)
O1iii—Na1—O1iv76.75 (8)Na1—O4—H41104.5 (19)
O2—Na1—O4iii88.36 (8)Na1i—O4—H41108 (2)
O4—Na1—O4iii118.70 (6)Na1—O4—H42117 (2)
O1iii—Na1—O4iii97.45 (7)Na1i—O4—H42108 (2)
O1iv—Na1—O4iii79.53 (7)H41—O4—H42108 (2)
O2—Na1—O3100.09 (8)
C6—C1—C2—C31.3 (4)C2—C1—S1—O161.2 (2)
S1—C1—C2—C3177.9 (2)C6—C1—S1—N1127.0 (2)
C6—C1—C2—Cl2178.9 (2)C2—C1—S1—N152.1 (2)
S1—C1—C2—Cl22.0 (3)C6—C1—S1—Na1i76.5 (2)
C1—C2—C3—C40.4 (4)C2—C1—S1—Na1i104.3 (2)
Cl2—C2—C3—C4179.5 (2)S1—O2—Na1—O451.6 (3)
C2—C3—C4—C51.8 (4)S1—O2—Na1—O1iii52.1 (6)
C2—C3—C4—Cl3175.9 (2)S1—O2—Na1—O1iv145.4 (3)
C3—C4—C5—C61.5 (4)S1—O2—Na1—O4iii67.7 (3)
Cl3—C4—C5—C6176.1 (2)S1—O2—Na1—O3133.8 (3)
C4—C5—C6—C10.2 (4)S1—O2—Na1—S1iii1.2 (4)
C2—C1—C6—C51.6 (4)S1—O2—Na1—Na1v165.0 (2)
S1—C1—C6—C5177.6 (2)S1—O2—Na1—Na1i72.6 (3)
Na1—O2—S1—O173.5 (3)S1—O2—Na1—Na1iii35.9 (3)
Na1—O2—S1—N147.9 (3)O2—Na1—O3—Na1v152.16 (7)
Na1—O2—S1—C1168.2 (3)O4—Na1—O3—Na1v127.04 (6)
Na1—O2—S1—Na1i75.3 (3)O1iii—Na1—O3—Na1v39.77 (5)
Na1i—O1—S1—O22.58 (16)O1iv—Na1—O3—Na1v39.03 (5)
Na1ii—O1—S1—O2141.4 (2)O4iii—Na1—O3—Na1v41.92 (16)
Na1i—O1—S1—N1129.75 (11)S1iii—Na1—O3—Na1v48.61 (3)
Na1ii—O1—S1—N114.3 (3)Na1i—Na1—O3—Na1v160.87 (5)
Na1i—O1—S1—C1113.26 (12)Na1iii—Na1—O3—Na1v55.04 (13)
Na1ii—O1—S1—C1102.7 (2)O2—Na1—O4—Na1i30.41 (8)
Na1ii—O1—S1—Na1i144.0 (3)O1iii—Na1—O4—Na1i149.48 (8)
Cl1—N1—S1—O256.49 (15)O1iv—Na1—O4—Na1i107.28 (19)
Cl1—N1—S1—O1176.27 (11)O4iii—Na1—O4—Na1i114.16 (12)
Cl1—N1—S1—C160.44 (15)O3—Na1—O4—Na1i70.72 (7)
Cl1—N1—S1—Na1i145.30 (7)S1iii—Na1—O4—Na1i171.42 (8)
C6—C1—S1—O23.3 (2)Na1v—Na1—O4—Na1i109.28 (7)
C2—C1—S1—O2175.8 (2)Na1iii—Na1—O4—Na1i130.72 (8)
C6—C1—S1—O1119.6 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z+3/2; (iv) x1/2, y1/2, z; (v) x, y, z+3/2.

Experimental details

Crystal data
Chemical formulaNa+·C6H3Cl3NO2S·1.5H2O
Mr309.52
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)11.033 (2), 6.7410 (13), 30.187 (6)
β (°) 98.51 (3)
V3)2220.4 (8)
Z8
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.46 × 0.32 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur System
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2003)
Tmin, Tmax0.646, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
3256, 2162, 1872
Rint0.047
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.081, 1.09
No. of reflections2162
No. of parameters151
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.41

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds