Download citation
Download citation
link to html
The title compound, [Au(C14H7N2)(C18H15P)], was synthesized by the reaction of [AuCl(PPh3)] and 5-ethynyl-1,10-phenanthroline. The coordination geometry of gold(I) is two-coordinate (linear) and no inter­molecular Au...Au inter­actions are observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807020661/bt2351sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807020661/bt2351Isup2.hkl
Contains datablock I

CCDC reference: 650528

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.038
  • wR factor = 0.094
  • Data-to-parameter ratio = 17.9

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.461 1.000 Tmin and Tmax expected: 0.099 0.311 RR = 1.440 Please check that your absorption correction is appropriate. PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.45 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.31 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9 PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C2 - C8 ... 1.43 Ang.
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.311 Tmax scaled 0.311 Tmin scaled 0.143 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Acetylide-functionalized diimines have been used widely in the design of multi-component transition metal complexes composed of discrete redox and/or photoactive sub-units. (Pomestchenko et al., 2005; Ziessel et al., 1998) We have focused on such bridging ligands for the design of d–f bimetallic arrays by introducing d-block chromophores and f-block luminophores bound to acetylide and bipyridine/phenanthroline, respectively.

As shown in Fig. 1, the coordination geometry of Gold(I) is two-coordinate (linear), the Gold(I) atom is bound to (1,10-phenothrolin-5-yl)ethynyl as well as coordinated to P atom from triphenylposphine. The bond distance [2.013 (5) Å] of gold(I)–alkynyl is comparable to those observed in other Gold (I) acetylide complexes (Yam et al., 1999). The structure of (1,10-phenothrolin-5-yl)ethynyl is normal compared to the platinum compound (Xu et al., 2006). Unlike some Gold (I) acetylide complexes (Yam et al.,1999), no intermolecular Au···Au interaction is observed.

Related literature top

For related literature, see: McAuliffe et al. (1979); Pomestchenko et al. (2005); Xu et al. (2006); Yam et al. (1999); Ziessel et al. (1996, 1998).

Experimental top

[AuCl(PPh3)] (McAuliffe et al., 1979) (100 mg, 0.202 mmol)and 5-Ethynyl-1,10-phenanthroline (Ziessel et al., 1996) (40.4 mg, 0.02 mmol) were stirred in a solution of CH3ONa in MeOH (0.1 M, 15 ml) for 8 h. After filtration, the solid precipitate was washed with 2 ml MeOH and recrystallized by diffusion of n-hexane into its dichloromethane solution. Yellow crystals suitable for single-crystal X-ray analysis were obstained after 5 days.

Refinement top

All H atoms were included in calculated positions with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

Acetylide-functionalized diimines have been used widely in the design of multi-component transition metal complexes composed of discrete redox and/or photoactive sub-units. (Pomestchenko et al., 2005; Ziessel et al., 1998) We have focused on such bridging ligands for the design of d–f bimetallic arrays by introducing d-block chromophores and f-block luminophores bound to acetylide and bipyridine/phenanthroline, respectively.

As shown in Fig. 1, the coordination geometry of Gold(I) is two-coordinate (linear), the Gold(I) atom is bound to (1,10-phenothrolin-5-yl)ethynyl as well as coordinated to P atom from triphenylposphine. The bond distance [2.013 (5) Å] of gold(I)–alkynyl is comparable to those observed in other Gold (I) acetylide complexes (Yam et al., 1999). The structure of (1,10-phenothrolin-5-yl)ethynyl is normal compared to the platinum compound (Xu et al., 2006). Unlike some Gold (I) acetylide complexes (Yam et al.,1999), no intermolecular Au···Au interaction is observed.

For related literature, see: McAuliffe et al. (1979); Pomestchenko et al. (2005); Xu et al. (2006); Yam et al. (1999); Ziessel et al. (1996, 1998).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[(1,10-Phenanthrolin-5-yl)ethynyl](triphenylposphine-κP)gold(I) top
Crystal data top
[Au(C14H7N2)(C18H15P)]F(000) = 1288
Mr = 662.45Dx = 1.723 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5853 reflections
a = 8.6927 (7) Åθ = 3.0–27.5°
b = 18.9137 (11) ŵ = 5.85 mm1
c = 16.0457 (13) ÅT = 293 K
β = 104.512 (4)°Prism, yellow
V = 2553.9 (3) Å30.46 × 0.35 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury 70 CCD
diffractometer
5803 independent reflections
Radiation source: fine-focus sealed tube4969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 2424
Tmin = 0.461, Tmax = 1.000l = 2011
18982 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0401P)2 + 4.4814P]
where P = (Fo2 + 2Fc2)/3
5803 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 1.18 e Å3
0 restraintsΔρmin = 1.75 e Å3
Crystal data top
[Au(C14H7N2)(C18H15P)]V = 2553.9 (3) Å3
Mr = 662.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6927 (7) ŵ = 5.85 mm1
b = 18.9137 (11) ÅT = 293 K
c = 16.0457 (13) Å0.46 × 0.35 × 0.20 mm
β = 104.512 (4)°
Data collection top
Rigaku Mercury 70 CCD
diffractometer
5803 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
4969 reflections with I > 2σ(I)
Tmin = 0.461, Tmax = 1.000Rint = 0.028
18982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.10Δρmax = 1.18 e Å3
5803 reflectionsΔρmin = 1.75 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.89976 (2)0.047965 (11)0.329679 (12)0.04690 (8)
P10.94614 (14)0.01607 (7)0.20171 (8)0.0399 (3)
N10.5643 (6)0.2381 (3)0.7534 (3)0.0597 (12)
N20.3701 (6)0.1515 (2)0.6332 (3)0.0568 (11)
C10.8451 (6)0.0855 (3)0.4361 (3)0.0482 (12)
C20.8054 (7)0.1118 (3)0.4934 (3)0.0505 (12)
C30.2785 (7)0.1123 (3)0.5744 (4)0.0597 (14)
H3A0.17470.10470.57800.072*
C40.3268 (7)0.0810 (3)0.5065 (4)0.0576 (14)
H4A0.25620.05410.46560.069*
C50.4785 (7)0.0907 (3)0.5011 (3)0.0486 (12)
H5A0.51330.06990.45660.058*
C60.5826 (6)0.1320 (2)0.5627 (3)0.0425 (11)
C70.5225 (6)0.1622 (3)0.6278 (3)0.0446 (11)
C80.7466 (6)0.1438 (3)0.5600 (3)0.0447 (11)
C90.8397 (7)0.1859 (3)0.6210 (3)0.0518 (12)
H9A0.94490.19330.61980.062*
C100.7807 (7)0.2192 (3)0.6868 (3)0.0500 (12)
C110.6247 (7)0.2078 (3)0.6917 (3)0.0484 (12)
C120.8761 (8)0.2647 (3)0.7469 (4)0.0635 (15)
H12A0.98010.27410.74480.076*
C130.8153 (9)0.2951 (3)0.8081 (4)0.0682 (17)
H13A0.87670.32540.84870.082*
C140.6605 (9)0.2801 (3)0.8090 (4)0.0676 (17)
H14A0.62080.30100.85180.081*
C150.8246 (5)0.0706 (3)0.1168 (3)0.0438 (11)
C160.8142 (7)0.1420 (3)0.1320 (5)0.0646 (16)
H16A0.86860.16110.18460.077*
C170.7230 (8)0.1852 (3)0.0693 (6)0.085 (2)
H17A0.71660.23330.07980.102*
C180.6428 (9)0.1581 (4)0.0075 (5)0.089 (2)
H18A0.58560.18800.05020.106*
C190.6458 (8)0.0874 (4)0.0221 (4)0.0752 (19)
H19A0.58610.06880.07380.090*
C200.7374 (7)0.0429 (3)0.0393 (4)0.0560 (14)
H20A0.74030.00540.02860.067*
C211.1503 (5)0.0309 (3)0.1981 (3)0.0396 (10)
C221.2703 (6)0.0017 (3)0.2625 (4)0.0552 (13)
H22A1.24410.02550.30520.066*
C231.4268 (6)0.0123 (4)0.2641 (4)0.0643 (16)
H23A1.50610.00820.30720.077*
C241.4665 (7)0.0532 (3)0.2022 (5)0.0638 (16)
H24A1.57270.06110.20370.077*
C251.3492 (7)0.0825 (4)0.1377 (4)0.0600 (14)
H25A1.37640.10960.09520.072*
C261.1918 (6)0.0719 (3)0.1359 (3)0.0486 (12)
H26A1.11300.09250.09260.058*
C270.9016 (6)0.0739 (3)0.1666 (3)0.0435 (11)
C280.7915 (6)0.1114 (3)0.1980 (3)0.0505 (12)
H28A0.74970.09150.24050.061*
C290.7427 (7)0.1780 (3)0.1673 (4)0.0626 (15)
H29A0.66880.20270.18900.075*
C300.8047 (9)0.2073 (3)0.1041 (4)0.0710 (18)
H30A0.77120.25170.08210.085*
C310.9150 (8)0.1712 (3)0.0740 (4)0.0646 (16)
H31A0.95720.19150.03180.078*
C320.9650 (7)0.1052 (3)0.1049 (4)0.0532 (13)
H32A1.04170.08150.08430.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.03953 (11)0.06034 (14)0.04452 (12)0.00352 (9)0.01742 (8)0.00830 (8)
P10.0296 (6)0.0527 (7)0.0398 (6)0.0021 (5)0.0129 (5)0.0041 (5)
N10.070 (3)0.065 (3)0.051 (3)0.012 (2)0.028 (2)0.003 (2)
N20.055 (3)0.055 (3)0.066 (3)0.008 (2)0.026 (2)0.003 (2)
C10.039 (3)0.057 (3)0.055 (3)0.007 (2)0.023 (2)0.007 (2)
C20.057 (3)0.049 (3)0.049 (3)0.003 (2)0.019 (2)0.001 (2)
C30.045 (3)0.056 (3)0.081 (4)0.005 (2)0.022 (3)0.009 (3)
C40.056 (3)0.054 (3)0.061 (3)0.000 (3)0.009 (3)0.003 (3)
C50.058 (3)0.043 (3)0.046 (3)0.008 (2)0.015 (2)0.006 (2)
C60.052 (3)0.037 (2)0.040 (2)0.008 (2)0.014 (2)0.0074 (18)
C70.050 (3)0.042 (3)0.046 (3)0.009 (2)0.019 (2)0.006 (2)
C80.055 (3)0.042 (2)0.042 (3)0.007 (2)0.020 (2)0.0054 (19)
C90.051 (3)0.056 (3)0.050 (3)0.001 (2)0.016 (2)0.001 (2)
C100.063 (3)0.044 (3)0.043 (3)0.004 (2)0.012 (2)0.001 (2)
C110.061 (3)0.042 (3)0.043 (3)0.013 (2)0.016 (2)0.004 (2)
C120.067 (4)0.062 (3)0.057 (3)0.001 (3)0.007 (3)0.007 (3)
C130.084 (5)0.063 (4)0.051 (3)0.004 (3)0.004 (3)0.013 (3)
C140.094 (5)0.063 (4)0.047 (3)0.020 (3)0.020 (3)0.004 (3)
C150.028 (2)0.054 (3)0.053 (3)0.0031 (19)0.015 (2)0.001 (2)
C160.045 (3)0.057 (3)0.086 (4)0.006 (3)0.005 (3)0.004 (3)
C170.066 (4)0.048 (3)0.135 (7)0.002 (3)0.014 (4)0.010 (4)
C180.079 (5)0.077 (5)0.097 (6)0.002 (4)0.002 (4)0.037 (4)
C190.068 (4)0.090 (5)0.059 (4)0.015 (4)0.001 (3)0.010 (3)
C200.053 (3)0.062 (3)0.049 (3)0.006 (3)0.006 (2)0.002 (2)
C210.032 (2)0.050 (3)0.039 (2)0.0022 (19)0.0126 (18)0.0030 (19)
C220.038 (3)0.071 (4)0.058 (3)0.006 (2)0.015 (2)0.011 (3)
C230.035 (3)0.075 (4)0.080 (4)0.010 (3)0.008 (3)0.003 (3)
C240.031 (3)0.082 (4)0.082 (4)0.003 (3)0.020 (3)0.013 (3)
C250.048 (3)0.079 (4)0.062 (4)0.011 (3)0.029 (3)0.003 (3)
C260.037 (2)0.070 (3)0.042 (3)0.002 (2)0.014 (2)0.001 (2)
C270.038 (2)0.053 (3)0.039 (2)0.001 (2)0.008 (2)0.002 (2)
C280.041 (3)0.063 (3)0.050 (3)0.005 (2)0.017 (2)0.000 (2)
C290.050 (3)0.064 (4)0.073 (4)0.010 (3)0.014 (3)0.004 (3)
C300.081 (5)0.053 (3)0.070 (4)0.004 (3)0.002 (4)0.005 (3)
C310.084 (5)0.058 (3)0.054 (3)0.008 (3)0.021 (3)0.006 (3)
C320.056 (3)0.054 (3)0.055 (3)0.004 (2)0.025 (3)0.003 (2)
Geometric parameters (Å, º) top
Au1—C12.013 (5)C16—C171.382 (9)
Au1—P12.2710 (13)C16—H16A0.9300
P1—C271.804 (5)C17—C181.355 (11)
P1—C211.812 (5)C17—H17A0.9300
P1—C151.821 (5)C18—C191.360 (10)
N1—C141.324 (8)C18—H18A0.9300
N1—C111.359 (7)C19—C201.386 (8)
N2—C31.302 (8)C19—H19A0.9300
N2—C71.364 (7)C20—H20A0.9300
C1—C21.170 (7)C21—C261.382 (7)
C2—C81.430 (7)C21—C221.386 (7)
C3—C41.394 (9)C22—C231.369 (8)
C3—H3A0.9300C22—H22A0.9300
C4—C51.355 (8)C23—C241.370 (9)
C4—H4A0.9300C23—H23A0.9300
C5—C61.400 (7)C24—C251.373 (9)
C5—H5A0.9300C24—H24A0.9300
C6—C71.401 (7)C25—C261.376 (7)
C6—C81.454 (7)C25—H25A0.9300
C7—C111.458 (8)C26—H26A0.9300
C8—C91.360 (7)C27—C321.380 (7)
C9—C101.431 (7)C27—C281.384 (7)
C9—H9A0.9300C28—C291.379 (8)
C10—C111.395 (8)C28—H28A0.9300
C10—C121.399 (8)C29—C301.379 (9)
C12—C131.354 (9)C29—H29A0.9300
C12—H12A0.9300C30—C311.361 (9)
C13—C141.379 (10)C30—H30A0.9300
C13—H13A0.9300C31—C321.373 (8)
C14—H14A0.9300C31—H31A0.9300
C15—C161.380 (8)C32—H32A0.9300
C15—C201.386 (7)
C1—Au1—P1173.59 (16)C15—C16—H16A120.0
C27—P1—C21105.7 (2)C17—C16—H16A120.0
C27—P1—C15105.1 (2)C18—C17—C16120.6 (6)
C21—P1—C15106.1 (2)C18—C17—H17A119.7
C27—P1—Au1117.42 (17)C16—C17—H17A119.7
C21—P1—Au1112.66 (16)C17—C18—C19120.1 (6)
C15—P1—Au1108.97 (17)C17—C18—H18A119.9
C14—N1—C11116.8 (6)C19—C18—H18A119.9
C3—N2—C7117.8 (5)C18—C19—C20120.5 (7)
C2—C1—Au1174.1 (5)C18—C19—H19A119.8
C1—C2—C8176.3 (6)C20—C19—H19A119.8
N2—C3—C4123.9 (6)C15—C20—C19119.7 (6)
N2—C3—H3A118.0C15—C20—H20A120.2
C4—C3—H3A118.0C19—C20—H20A120.2
C5—C4—C3118.8 (6)C26—C21—C22118.6 (5)
C5—C4—H4A120.6C26—C21—P1123.1 (4)
C3—C4—H4A120.6C22—C21—P1118.3 (4)
C4—C5—C6119.8 (5)C23—C22—C21121.0 (5)
C4—C5—H5A120.1C23—C22—H22A119.5
C6—C5—H5A120.1C21—C22—H22A119.5
C5—C6—C7117.3 (5)C22—C23—C24119.9 (5)
C5—C6—C8122.0 (5)C22—C23—H23A120.0
C7—C6—C8120.8 (5)C24—C23—H23A120.0
N2—C7—C6122.4 (5)C23—C24—C25120.0 (5)
N2—C7—C11118.3 (5)C23—C24—H24A120.0
C6—C7—C11119.3 (5)C25—C24—H24A120.0
C9—C8—C2121.7 (5)C24—C25—C26120.3 (6)
C9—C8—C6118.7 (5)C24—C25—H25A119.9
C2—C8—C6119.6 (5)C26—C25—H25A119.9
C8—C9—C10122.0 (5)C25—C26—C21120.3 (5)
C8—C9—H9A119.0C25—C26—H26A119.8
C10—C9—H9A119.0C21—C26—H26A119.8
C11—C10—C12118.3 (5)C32—C27—C28118.5 (5)
C11—C10—C9120.4 (5)C32—C27—P1122.4 (4)
C12—C10—C9121.3 (6)C28—C27—P1119.0 (4)
N1—C11—C10122.3 (5)C29—C28—C27121.2 (6)
N1—C11—C7118.9 (5)C29—C28—H28A119.4
C10—C11—C7118.8 (5)C27—C28—H28A119.4
C13—C12—C10119.2 (7)C30—C29—C28119.2 (6)
C13—C12—H12A120.4C30—C29—H29A120.4
C10—C12—H12A120.4C28—C29—H29A120.4
C12—C13—C14118.7 (6)C31—C30—C29120.0 (6)
C12—C13—H13A120.6C31—C30—H30A120.0
C14—C13—H13A120.6C29—C30—H30A120.0
N1—C14—C13124.7 (6)C30—C31—C32121.0 (6)
N1—C14—H14A117.7C30—C31—H31A119.5
C13—C14—H14A117.7C32—C31—H31A119.5
C16—C15—C20118.9 (5)C31—C32—C27120.1 (6)
C16—C15—P1118.2 (4)C31—C32—H32A119.9
C20—C15—P1122.8 (4)C27—C32—H32A119.9
C15—C16—C17120.1 (6)

Experimental details

Crystal data
Chemical formula[Au(C14H7N2)(C18H15P)]
Mr662.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.6927 (7), 18.9137 (11), 16.0457 (13)
β (°) 104.512 (4)
V3)2553.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.85
Crystal size (mm)0.46 × 0.35 × 0.20
Data collection
DiffractometerRigaku Mercury 70 CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.461, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18982, 5803, 4969
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.094, 1.10
No. of reflections5803
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 1.75

Computer programs: CrystalClear (Rigaku, 2000), CrystalClear, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1999), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds