Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Ir(η5-C5Me5)Cl(en-κ2N)](CF3SO3) (en is ethyl­enediamine) or [Ir(C10H15)Cl(C2H8N2)](CF3SO3), contains a half-sandwich (η5-C5Me5)IrIII fragment coordinated in a bidentate manner by the N atoms of an en ligand. N—H...O hydrogen bonds between the en amino groups and O atoms of the trifluoro­methane­sulfonate anions generate polymeric chains. The cation and anion both have Cs symmetry. The C atoms of the en ligand are disordered about a mirror plane. The crystal structure involves N—H...O, C—H...O and N—H...Cl hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807019575/bt2350sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807019575/bt2350Isup2.hkl
Contains datablock I

CCDC reference: 646647

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.012 Å
  • Disorder in main residue
  • R factor = 0.037
  • wR factor = 0.079
  • Data-to-parameter ratio = 13.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.94 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.38 Ratio PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for S1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C10 PLAT301_ALERT_3_C Main Residue Disorder ......................... 18.00 Perc. PLAT342_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 12 PLAT733_ALERT_1_C Torsion Calc -93.7(4), Rep -93.72(9) ...... 4.44 su-Ra CL1 -IR1 -C11 -C11 1.555 1.555 1.555 7.565 PLAT751_ALERT_4_C Bond Calc 0.00000, Rep 0.00(2) ...... Senseless su O2 -O2 1.555 1.555 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.27 Ratio PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 0.00 Deg. O2 -S1 -O2 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 0.00 Deg. O2 -O2 -S1 1.555 1.555 1.555 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C F3 O3 S
Alert level G ABSTY01_ALERT_1_G Extra text has been found in the _exptl_absorpt_correction_type field, which should be only a single keyword. A literature citation should be included in the _exptl_absorpt_process_details field.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 12 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Although many (pentamethylcyclopentadienyl)iridium(III) complexes with bidentate aromatic N-donor ligands such as 2,2-bipyridine (Dadci et al., 1995; Youinou & Ziessel, 1989) or 1,10-phenanthroline (Gencaslan & Sheldrick, 2005) have been structurally characterized, few examples are known for ligands containing two or three amino or alkylamino N-donor functions. The Cambridge Structural Database (Version 5.27, December 2006; Allen, 2002) contain two entries [(η5-C5Me5)Ir(1,2-diaminocyclohexane-κ2N)](ClO4)2*2H2O (Poth et al., 2001) and [(η5-C5Me5)IrCl(2-amino-3-dimethylaminopropionate-κ2N)] *H2O (Bergs et al., 1997) for bidentate ligands of this type. Crystal structures have also been reported for [(η5-C5Me5)Ir(1,4,7-triazacyclononane-κ3N)](PF6)2 *CH3NO2 (Grant et al., 2005) and [(η5-C5Me5)Ir(dien-κ3N)](CF3SO3)2 (dien is diethylenetriamine) (Scharwitz et al., 2007c), both of which contain κ3N amino ligands. As part of our continuing studies on organoruthenium(II) and organoiridium(III) half-sandwhich complexes with N and S donor ligands (Gleichmann et al., 1995, Korn & Sheldrick, 1997; Schäfer & Sheldrick, 2007; Scharwitz et al., 2007a,b,c, Scharwitz et al., 2007) we have now determined the structure of the title compound [(η5-C5Me5)IrCl(en-κ2N)](CF3SO3), (I).

The molecular structure of (I) is depicted in Fig. 1. Both the cation and anion exhibit crystallographic Cs symmetry with the ethylenediamine carbon atoms C2 and C3 being disordered (s.o.f.s = 1/2) with symmetry-equivalent sites (i) [(i) = x, 0.5 - y, z] generated by the mirror plane. A twist δ conformation is observed for the five-membered chelate ring containing C2 and C3 with a λ conformation for the alternative disordered ring with C2i and C3i. Carbon atoms C2 and C3 are displaced respectively 0.258 (9) and -0.292 (19) Å from the best plane through the ring atoms. The Ir1—C13 distance of 2.127 (10) Å is somewhat shorter than the Ir1—C11 and Ir1—C12 distances of respectively 2.156 (7) and 2.162 (7) Å. Participation of the N1 atoms in N1—H1···O2 hydrogen bonds of length 2.954 (9) Å (H1···O2 = 2.09 Å, N1—H1···O2 = 161.8°) to symmetry-related trifluoromethanesulfonate counter-anions is observed (Fig. 1). Hydrogen bonding interactions of the type N1—H2···Cl1i [(i) = 1 - x, -y, -z] (Table 1) link the cations and anions of (I) (Fig. 2).

Related literature top

For related literature, see: Allen (2002); Bergs et al. (1997); Dadci et al. (1995); Gencaslan & Sheldrick (2005); Gleichmann et al. (1995); Grant et al. (2005); Korn & Sheldrick (1997); Poth et al. (2001); Schäfer & Sheldrick (2007); Scharwitz et al. (2007, 2007a,b,c); Youinou & Ziessel (1989).

Experimental top

Ag(CF3SO3) (25.7 mg, 0.1 mmol) was added to a solution of [(η5-C5Me5)IrCl2]2 (39.8 mg, 0.05 mmol) in acetone (10 ml) and stirred at room temperature for 30 min. After centrifugation of the precipitated AgCl and solvent removal from the resulting solution, the yellow residue was redissolved in CH3OH/CH2Cl2 (10 ml, 1:1) and treated with 6.1 µl ethylendiamine (0.1 mmol). The reaction solution was heated for 2 h at 348 K and the solvent subsequently removed to afford (I), which was dissolved in methanol (3 ml) and reprecipitated with diethyl ether prior to drying in vacuum (yield 89%). Suitable crystals for X-ray analysis were grown by slow evaporation of a solution of (I) in CH3OH/H2O (1:). Elemental analysis found: C 27.4, H 4.5, N 5.2%; calculated for C13H23ClF3IrN2O3S: C 27.3, H 4.1, N 4.9%. FAB-MS on a VG Autospec instrument (m/z): 537 (30) [M—Cl]+, 423 (100) [M—CF3SO3]+, 387 (60) [M—CF3SO3—Cl]+.

Refinement top

H atoms were constrained to idealized positions and refined using a riding model, with C—H distances of 0.97 Å for the methylene C atoms and 0.96 Å for the methyl groups; Uiso(H) = 1.2 Uiso(C) for methylene and 1.5 Uiso(C) for methyl groups. The methyl groups were allowed to rotate but not tip.

Structure description top

Although many (pentamethylcyclopentadienyl)iridium(III) complexes with bidentate aromatic N-donor ligands such as 2,2-bipyridine (Dadci et al., 1995; Youinou & Ziessel, 1989) or 1,10-phenanthroline (Gencaslan & Sheldrick, 2005) have been structurally characterized, few examples are known for ligands containing two or three amino or alkylamino N-donor functions. The Cambridge Structural Database (Version 5.27, December 2006; Allen, 2002) contain two entries [(η5-C5Me5)Ir(1,2-diaminocyclohexane-κ2N)](ClO4)2*2H2O (Poth et al., 2001) and [(η5-C5Me5)IrCl(2-amino-3-dimethylaminopropionate-κ2N)] *H2O (Bergs et al., 1997) for bidentate ligands of this type. Crystal structures have also been reported for [(η5-C5Me5)Ir(1,4,7-triazacyclononane-κ3N)](PF6)2 *CH3NO2 (Grant et al., 2005) and [(η5-C5Me5)Ir(dien-κ3N)](CF3SO3)2 (dien is diethylenetriamine) (Scharwitz et al., 2007c), both of which contain κ3N amino ligands. As part of our continuing studies on organoruthenium(II) and organoiridium(III) half-sandwhich complexes with N and S donor ligands (Gleichmann et al., 1995, Korn & Sheldrick, 1997; Schäfer & Sheldrick, 2007; Scharwitz et al., 2007a,b,c, Scharwitz et al., 2007) we have now determined the structure of the title compound [(η5-C5Me5)IrCl(en-κ2N)](CF3SO3), (I).

The molecular structure of (I) is depicted in Fig. 1. Both the cation and anion exhibit crystallographic Cs symmetry with the ethylenediamine carbon atoms C2 and C3 being disordered (s.o.f.s = 1/2) with symmetry-equivalent sites (i) [(i) = x, 0.5 - y, z] generated by the mirror plane. A twist δ conformation is observed for the five-membered chelate ring containing C2 and C3 with a λ conformation for the alternative disordered ring with C2i and C3i. Carbon atoms C2 and C3 are displaced respectively 0.258 (9) and -0.292 (19) Å from the best plane through the ring atoms. The Ir1—C13 distance of 2.127 (10) Å is somewhat shorter than the Ir1—C11 and Ir1—C12 distances of respectively 2.156 (7) and 2.162 (7) Å. Participation of the N1 atoms in N1—H1···O2 hydrogen bonds of length 2.954 (9) Å (H1···O2 = 2.09 Å, N1—H1···O2 = 161.8°) to symmetry-related trifluoromethanesulfonate counter-anions is observed (Fig. 1). Hydrogen bonding interactions of the type N1—H2···Cl1i [(i) = 1 - x, -y, -z] (Table 1) link the cations and anions of (I) (Fig. 2).

For related literature, see: Allen (2002); Bergs et al. (1997); Dadci et al. (1995); Gencaslan & Sheldrick (2005); Gleichmann et al. (1995); Grant et al. (2005); Korn & Sheldrick (1997); Poth et al. (2001); Schäfer & Sheldrick (2007); Scharwitz et al. (2007, 2007a,b,c); Youinou & Ziessel (1989).

Computing details top

Data collection: R3m/V (Siemens, 1989); cell refinement: R3m/V; data reduction: XDISK (Siemens, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Structure of the cation and counter anion of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding interactions in the crystal structure of (I) in a projection along [100].
Chlorido(ethylenediamine-κ2N)(η5-pentamethylcyclopentadienyl)iridium(III) trifluoromethanesulfonate top
Crystal data top
[Ir(C10H15)Cl(C2H8N2)](CF3O3S)F(000) = 1104
Mr = 572.04Dx = 2.027 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 14 reflections
a = 15.400 (5) Åθ = 3.5–12.7°
b = 8.5728 (16) ŵ = 7.42 mm1
c = 14.202 (5) ÅT = 292 K
V = 1874.9 (10) Å3Block, colourless
Z = 40.22 × 0.20 × 0.16 mm
Data collection top
Siemens P4 four-circle
diffractometer
1308 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.0°, θmin = 2.7°
ω scansh = 118
Absorption correction: ψ scan
(XPREP; Sheldrick, 1995)
k = 110
Tmin = 0.211, Tmax = 0.308l = 116
2309 measured reflections3 standard reflections every 97 reflections
1743 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0415P)2]
where P = (Fo2 + 2Fc2)/3
1743 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.77 e Å3
3 restraintsΔρmin = 0.93 e Å3
Crystal data top
[Ir(C10H15)Cl(C2H8N2)](CF3O3S)V = 1874.9 (10) Å3
Mr = 572.04Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 15.400 (5) ŵ = 7.42 mm1
b = 8.5728 (16) ÅT = 292 K
c = 14.202 (5) Å0.22 × 0.20 × 0.16 mm
Data collection top
Siemens P4 four-circle
diffractometer
1308 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XPREP; Sheldrick, 1995)
Rint = 0.037
Tmin = 0.211, Tmax = 0.3083 standard reflections every 97 reflections
2309 measured reflections intensity decay: 0.0%
1743 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 0.99Δρmax = 0.77 e Å3
1743 reflectionsΔρmin = 0.93 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.40783 (2)0.25000.10854 (3)0.03035 (15)
Cl10.4968 (2)0.25000.0318 (2)0.0512 (8)
N10.5019 (3)0.0926 (8)0.1612 (4)0.0391 (16)0.50
H10.48080.04640.21330.047*0.50
H20.51120.01770.11790.047*0.50
C20.5844 (9)0.166 (3)0.1841 (14)0.054 (5)0.50
H210.61930.18050.12790.065*0.50
H220.61680.10340.22870.065*0.50
C30.5607 (14)0.321 (3)0.2265 (13)0.068 (8)0.50
H310.53180.30510.28640.081*0.50
H320.61280.38180.23770.081*0.50
N1'0.5019 (3)0.0926 (8)0.1612 (4)0.0391 (16)0.50
H1'0.47560.01390.19200.047*0.50
H2'0.53280.05200.11330.047*0.50
C110.2866 (5)0.1665 (10)0.0516 (5)0.053 (2)
C1110.2773 (7)0.0629 (15)0.0350 (6)0.106 (4)
H1110.21700.05260.05090.159*
H1120.30120.03820.02190.159*
H1130.30800.10900.08690.159*
C120.2946 (5)0.1144 (9)0.1460 (6)0.0400 (19)
C1210.2943 (6)0.0504 (9)0.1767 (7)0.070 (3)
H1210.31970.05810.23830.105*
H1220.32740.11190.13310.105*
H1230.23560.08810.17870.105*
C130.3020 (7)0.25000.2048 (7)0.036 (3)
C1310.3134 (8)0.25000.3093 (8)0.063 (4)
H13A0.36500.19320.32540.095*0.50
H13B0.26400.20130.33830.095*0.50
H13C0.31840.35550.33130.095*0.50
S10.5106 (2)0.25000.3332 (2)0.0544 (9)
O10.5902 (7)0.25000.2830 (8)0.105 (4)
O20.4614 (5)0.1126 (9)0.3224 (5)0.099 (3)
C100.5384 (16)0.25000.4557 (12)0.096 (6)
F10.4739 (11)0.25000.5110 (7)0.149 (6)
F20.5861 (6)0.1274 (14)0.4760 (7)0.192 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.0303 (2)0.0298 (2)0.0309 (2)0.0000.0003 (2)0.000
Cl10.0616 (19)0.0525 (19)0.0396 (15)0.0000.0153 (14)0.000
N10.038 (3)0.042 (4)0.038 (4)0.003 (3)0.008 (3)0.002 (3)
C20.039 (10)0.065 (12)0.059 (13)0.006 (11)0.002 (10)0.003 (14)
C30.056 (13)0.093 (19)0.054 (14)0.017 (13)0.008 (10)0.018 (14)
N1'0.038 (3)0.042 (4)0.038 (4)0.003 (3)0.008 (3)0.002 (3)
C110.032 (4)0.074 (6)0.053 (4)0.005 (5)0.008 (4)0.006 (5)
C1110.084 (8)0.154 (12)0.079 (7)0.010 (9)0.024 (7)0.070 (8)
C120.026 (4)0.031 (4)0.063 (5)0.003 (4)0.001 (4)0.005 (4)
C1210.056 (6)0.032 (5)0.122 (8)0.011 (5)0.010 (6)0.015 (6)
C130.032 (6)0.036 (6)0.039 (6)0.0000.007 (5)0.000
C1310.040 (7)0.106 (12)0.044 (7)0.0000.005 (6)0.000
S10.059 (2)0.059 (2)0.0449 (18)0.0000.0136 (17)0.000
O10.080 (8)0.139 (11)0.098 (9)0.0000.011 (7)0.000
O20.122 (6)0.093 (6)0.081 (5)0.046 (5)0.004 (5)0.030 (5)
C100.142 (18)0.093 (15)0.052 (10)0.0000.033 (12)0.000
F10.217 (15)0.173 (13)0.057 (6)0.0000.017 (8)0.000
F20.206 (9)0.233 (12)0.137 (7)0.095 (8)0.065 (7)0.045 (8)
Geometric parameters (Å, º) top
Ir1—N1'i2.116 (6)C111—H1120.9600
Ir1—N1i2.116 (6)C111—H1130.9600
Ir1—N12.116 (6)C12—C131.436 (9)
Ir1—C132.127 (10)C12—C1211.479 (10)
Ir1—C112.156 (7)C121—H1210.9600
Ir1—C11i2.156 (7)C121—H1220.9600
Ir1—C122.162 (7)C121—H1230.9600
Ir1—C12i2.162 (7)C13—C12i1.436 (9)
Ir1—Cl12.419 (3)C13—C1311.494 (14)
N1—C21.455 (10)C131—H13A0.9600
N1—H10.9000C131—H13B0.9600
N1—H20.9000C131—H13C0.9600
C2—C31.503 (13)S1—O2ii1.409 (7)
C2—H210.9700S1—O21.409 (7)
C2—H220.9700S1—O21.409 (7)
C3—N1i1.49 (2)S1—O11.417 (11)
C3—H310.9700S1—C101.791 (16)
C3—H320.9700O2—O20.00 (2)
C11—C121.417 (10)C10—F11.27 (2)
C11—C11i1.431 (18)C10—F21.315 (15)
C11—C1111.525 (11)C10—F2ii1.315 (15)
C111—H1110.9600
N1'i—Ir1—N1i0.0 (5)C12—C11—C11i108.4 (5)
N1'i—Ir1—N179.2 (3)C12—C11—C111126.0 (8)
N1i—Ir1—N179.2 (3)C11i—C11—C111125.6 (6)
N1'i—Ir1—C13107.3 (3)C12—C11—Ir171.1 (4)
N1i—Ir1—C13107.3 (3)C11i—C11—Ir170.6 (2)
N1—Ir1—C13107.3 (3)C111—C11—Ir1125.2 (6)
N1'i—Ir1—C11159.5 (3)C11—C111—H111109.5
N1i—Ir1—C11159.5 (3)C11—C111—H112109.5
N1—Ir1—C11120.9 (3)H111—C111—H112109.5
C13—Ir1—C1165.0 (3)C11—C111—H113109.5
N1'i—Ir1—C11i120.9 (3)H111—C111—H113109.5
N1i—Ir1—C11i120.9 (3)H112—C111—H113109.5
N1—Ir1—C11i159.5 (3)C11—C12—C13107.6 (7)
C13—Ir1—C11i65.0 (3)C11—C12—C121125.4 (8)
C11—Ir1—C11i38.8 (5)C13—C12—C121127.0 (8)
N1'i—Ir1—C12143.9 (3)C11—C12—Ir170.6 (4)
N1i—Ir1—C12143.9 (3)C13—C12—Ir169.1 (5)
N1—Ir1—C1297.0 (3)C121—C12—Ir1126.0 (6)
C13—Ir1—C1239.1 (2)C12—C121—H121109.5
C11—Ir1—C1238.3 (3)C12—C121—H122109.5
C11i—Ir1—C1264.7 (3)H121—C121—H122109.5
N1'i—Ir1—C12i97.0 (3)C12—C121—H123109.5
N1i—Ir1—C12i97.0 (3)H121—C121—H123109.5
N1—Ir1—C12i143.9 (3)H122—C121—H123109.5
C13—Ir1—C12i39.1 (2)C12—C13—C12i108.1 (9)
C11—Ir1—C12i64.7 (3)C12—C13—C131126.0 (4)
C11i—Ir1—C12i38.3 (3)C12i—C13—C131126.0 (4)
C12—Ir1—C12i65.0 (4)C12—C13—Ir171.8 (5)
N1'i—Ir1—Cl184.45 (17)C12i—C13—Ir171.8 (5)
N1i—Ir1—Cl184.45 (17)C131—C13—Ir1123.3 (8)
N1—Ir1—Cl184.45 (17)C13—C131—H13A109.5
C13—Ir1—Cl1164.5 (3)C13—C131—H13B109.5
C11—Ir1—Cl1100.5 (2)H13A—C131—H13B109.5
C11i—Ir1—Cl1100.5 (2)C13—C131—H13C109.5
C12—Ir1—Cl1131.3 (2)H13A—C131—H13C109.5
C12i—Ir1—Cl1131.3 (2)H13B—C131—H13C109.5
C2—N1—Ir1113.6 (12)O2ii—S1—O2113.4 (7)
C2—N1—H1108.9O2ii—S1—O2113.4 (7)
Ir1—N1—H1108.9O2—S1—O20.0 (8)
C2—N1—H2108.9O2ii—S1—O1114.2 (4)
Ir1—N1—H2108.9O2—S1—O1114.2 (4)
H1—N1—H2107.7O2—S1—O1114.2 (4)
N1—C2—C3105.1 (18)O2ii—S1—C10103.5 (5)
N1—C2—H21110.7O2—S1—C10103.5 (5)
C3—C2—H21110.7O2—S1—C10103.5 (5)
N1—C2—H22110.7O1—S1—C10106.4 (10)
C3—C2—H22110.7O2—O2—S10 (10)
H21—C2—H22108.8F1—C10—F2107.6 (12)
N1i—C3—C2109.6 (18)F1—C10—F2ii107.6 (12)
N1i—C3—H31109.7F2—C10—F2ii106.1 (19)
C2—C3—H31109.7F1—C10—S1114.6 (16)
N1i—C3—H32109.7F2—C10—S1110.3 (11)
C2—C3—H32109.7F2ii—C10—S1110.3 (11)
H31—C3—H32108.2
N1'i—Ir1—N1—C212.7 (10)N1'i—Ir1—C12—C12193.8 (9)
N1i—Ir1—N1—C212.7 (10)N1i—Ir1—C12—C12193.8 (9)
C13—Ir1—N1—C2117.7 (9)N1—Ir1—C12—C12112.4 (8)
C11—Ir1—N1—C2171.6 (9)C13—Ir1—C12—C121121.3 (10)
C11i—Ir1—N1—C2177.8 (9)C11—Ir1—C12—C121120.3 (10)
C12—Ir1—N1—C2156.4 (9)C11i—Ir1—C12—C121157.9 (9)
C12i—Ir1—N1—C299.9 (9)C12i—Ir1—C12—C121159.6 (7)
Cl1—Ir1—N1—C272.7 (9)Cl1—Ir1—C12—C12176.4 (8)
Ir1—N1—C2—C338.5 (15)C11—C12—C13—C12i2.6 (12)
N1—C2—C3—N1i53.5 (14)C121—C12—C13—C12i176.9 (6)
N1'i—Ir1—C11—C12109.7 (8)Ir1—C12—C13—C12i63.0 (7)
N1i—Ir1—C11—C12109.7 (8)C11—C12—C13—C131178.7 (9)
N1—Ir1—C11—C1258.2 (5)C121—C12—C13—C1311.8 (16)
C13—Ir1—C11—C1237.7 (4)Ir1—C12—C13—C131118.3 (11)
C11i—Ir1—C11—C12118.3 (4)C11—C12—C13—Ir160.4 (6)
C12i—Ir1—C11—C1281.1 (6)C121—C12—C13—Ir1120.1 (8)
Cl1—Ir1—C11—C12148.0 (4)N1'i—Ir1—C13—C12163.5 (4)
N1'i—Ir1—C11—C11i8.6 (7)N1i—Ir1—C13—C12163.5 (4)
N1i—Ir1—C11—C11i8.6 (7)N1—Ir1—C13—C1279.7 (5)
N1—Ir1—C11—C11i176.5 (3)C11—Ir1—C13—C1237.0 (5)
C13—Ir1—C11—C11i80.56 (18)C11i—Ir1—C13—C1279.9 (6)
C12—Ir1—C11—C11i118.3 (4)C12i—Ir1—C13—C12116.9 (9)
C12i—Ir1—C11—C11i37.2 (3)Cl1—Ir1—C13—C1258.4 (4)
Cl1—Ir1—C11—C11i93.72 (9)N1'i—Ir1—C13—C12i79.7 (5)
N1'i—Ir1—C11—C111129.1 (9)N1i—Ir1—C13—C12i79.7 (5)
N1i—Ir1—C11—C111129.1 (9)N1—Ir1—C13—C12i163.5 (4)
N1—Ir1—C11—C11163.0 (9)C11—Ir1—C13—C12i79.9 (6)
C13—Ir1—C11—C111158.9 (9)C11i—Ir1—C13—C12i37.0 (5)
C11i—Ir1—C11—C111120.5 (8)C12—Ir1—C13—C12i116.9 (9)
C12—Ir1—C11—C111121.2 (10)Cl1—Ir1—C13—C12i58.4 (4)
C12i—Ir1—C11—C111157.7 (9)N1'i—Ir1—C13—C13141.90 (19)
Cl1—Ir1—C11—C11126.8 (8)N1i—Ir1—C13—C13141.90 (19)
C11i—C11—C12—C131.6 (7)N1—Ir1—C13—C13141.90 (19)
C111—C11—C12—C13179.8 (8)C11—Ir1—C13—C131158.5 (3)
Ir1—C11—C12—C1359.5 (6)C11i—Ir1—C13—C131158.5 (3)
C11i—C11—C12—C121177.9 (7)C12—Ir1—C13—C131121.6 (4)
C111—C11—C12—C1210.7 (13)C12i—Ir1—C13—C131121.6 (4)
Ir1—C11—C12—C121121.0 (8)Cl1—Ir1—C13—C131180.000 (1)
C11i—C11—C12—Ir161.1 (2)O2ii—S1—O2—O20.00 (12)
C111—C11—C12—Ir1120.3 (8)O1—S1—O2—O20.0 (3)
N1'i—Ir1—C12—C11146.0 (5)C10—S1—O2—O20.0 (2)
N1i—Ir1—C12—C11146.0 (5)O2ii—S1—C10—F159.3 (4)
N1—Ir1—C12—C11132.7 (5)O2—S1—C10—F159.3 (4)
C13—Ir1—C12—C11118.5 (7)O2—S1—C10—F159.3 (4)
C11i—Ir1—C12—C1137.6 (5)O1—S1—C10—F1180.000 (2)
C12i—Ir1—C12—C1180.1 (5)O2ii—S1—C10—F2179.2 (14)
Cl1—Ir1—C12—C1143.9 (5)O2—S1—C10—F262.3 (17)
N1'i—Ir1—C12—C1327.5 (7)O2—S1—C10—F262.3 (17)
N1i—Ir1—C12—C1327.5 (7)O1—S1—C10—F258.4 (15)
N1—Ir1—C12—C13108.9 (5)O2ii—S1—C10—F2ii62.3 (17)
C11—Ir1—C12—C13118.5 (7)O2—S1—C10—F2ii179.2 (14)
C11i—Ir1—C12—C1380.9 (5)O2—S1—C10—F2ii179.2 (14)
C12i—Ir1—C12—C1338.4 (5)O1—S1—C10—F2ii58.4 (15)
Cl1—Ir1—C12—C13162.3 (4)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.902.092.954 (9)162
C121—H121···O20.962.533.345 (12)143
N1—H2···Cl1iii0.902.603.464 (7)160
N1—H1···O20.902.162.954 (9)147
Symmetry code: (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ir(C10H15)Cl(C2H8N2)](CF3O3S)
Mr572.04
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)292
a, b, c (Å)15.400 (5), 8.5728 (16), 14.202 (5)
V3)1874.9 (10)
Z4
Radiation typeMo Kα
µ (mm1)7.42
Crystal size (mm)0.22 × 0.20 × 0.16
Data collection
DiffractometerSiemens P4 four-circle
Absorption correctionψ scan
(XPREP; Sheldrick, 1995)
Tmin, Tmax0.211, 0.308
No. of measured, independent and
observed [I > 2σ(I)] reflections
2309, 1743, 1308
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.079, 0.99
No. of reflections1743
No. of parameters133
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.93

Computer programs: R3m/V (Siemens, 1989), R3m/V, XDISK (Siemens, 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1995), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.902.092.954 (9)161.8
C121—H121···O20.962.533.345 (12)142.5
N1—H2···Cl1i0.902.603.464 (7)160.4
N1'—H1'···O20.902.162.954 (9)147.1
Symmetry code: (i) x+1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds