Download citation
Download citation
link to html
The crystal structure of the R2SnS5 (R = Pr, Nd, Gd and Tb) compounds has been investigated using X-ray single-crystal diffraction. Crystal architecture and structural relationships among U3S5, Y2HfS5, R2SnS5 compounds are discussed and a structural origin is determined. It is shown that the complex architecture of the crystal structure of Eu5Sn3S12 is a result of interweaving of the simple crystal structures. The location of the copper ions in the non-stoichiometric compound Y2Cu0.20Sn0.95S5 is proposed on the basis of comparative analysis of the R-S interatomic distances in the R2SnS5 series of compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768108004175/bs5058sup1.cif
Contains datablocks pr, nd, gd, tb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108004175/bs5058prsup2.hkl
Contains datablock pr

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108004175/bs5058ndsup3.hkl
Contains datablock nd

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108004175/bs5058gdsup4.hkl
Contains datablock gd

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108004175/bs5058tbsup5.hkl
Contains datablock tb

Computing details top

For all compounds, data collection: CrysAlis 1.171.32.6; cell refinement: CrysAlis 1.171.32.6; data reduction: CrysAlis 1.171.32.6; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
(pr) top
Crystal data top
Pr2S5SnF(000) = 496
Mr = 560.81Dx = 5.382 Mg m3
Orthorhombic, PbamMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2 2abCell parameters from 424 reflections
a = 7.8195 (9) Åθ = 3.2–27.5°
b = 11.2145 (14) ŵ = 18.82 mm1
c = 3.9462 (5) ÅT = 293 K
V = 346.05 (7) Å3Prism, dark red
Z = 20.09 × 0.08 × 0.06 mm
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
452 independent reflections
Radiation source: fine-focus sealed tube424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 27.5°, θmin = 3.2°
ω–scanh = 109
Absorption correction: numerical
M. Mayer, CrysAlis Data Reduction Program, Oxford Diffraction Ltd, 2007
k = 1214
Tmin = 0.239, Tmax = 0.458l = 54
4036 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.0102P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.025(Δ/σ)max = 0.001
S = 1.12Δρmax = 0.64 e Å3
452 reflectionsΔρmin = 0.70 e Å3
28 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0093 (4)
Crystal data top
Pr2S5SnV = 346.05 (7) Å3
Mr = 560.81Z = 2
Orthorhombic, PbamMo Kα radiation
a = 7.8195 (9) ŵ = 18.82 mm1
b = 11.2145 (14) ÅT = 293 K
c = 3.9462 (5) Å0.09 × 0.08 × 0.06 mm
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
452 independent reflections
Absorption correction: numerical
M. Mayer, CrysAlis Data Reduction Program, Oxford Diffraction Ltd, 2007
424 reflections with I > 2σ(I)
Tmin = 0.239, Tmax = 0.458Rint = 0.041
4036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01328 parameters
wR(F2) = 0.0250 restraints
S = 1.12Δρmax = 0.64 e Å3
452 reflectionsΔρmin = 0.70 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
ND10.43360 (3)0.169372 (18)0.50000.00845 (9)
Sn10.00000.00000.00000.00849 (11)
S10.81432 (12)0.07439 (8)0.50000.0097 (2)
S20.15009 (12)0.20120 (8)0.00000.0083 (2)
S30.50000.00000.00000.0094 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
ND10.01044 (13)0.00759 (13)0.00732 (14)0.00072 (7)0.0000.000
Sn10.0101 (2)0.00657 (18)0.0088 (2)0.00151 (13)0.0000.000
S10.0084 (5)0.0123 (5)0.0084 (5)0.0017 (3)0.0000.000
S20.0088 (5)0.0072 (4)0.0090 (5)0.0003 (3)0.0000.000
S30.0114 (7)0.0084 (6)0.0085 (8)0.0011 (5)0.0000.000
Geometric parameters (Å, º) top
ND1—S32.7876 (3)Sn1—S1viii2.5879 (6)
ND1—S3i2.7876 (3)Sn1—S1v2.5879 (6)
ND1—S2ii2.9775 (7)Sn1—S1ix2.5879 (6)
ND1—S2iii2.9775 (7)Sn1—S1x2.5879 (6)
ND1—S22.9892 (8)S1—Sn1xi2.5879 (6)
ND1—S2i2.9892 (8)S1—Sn1xii2.5879 (6)
ND1—S1iv3.0211 (10)S1—ND1iii3.0211 (10)
ND1—S13.1618 (10)S2—ND1xiii2.9775 (7)
ND1—ND1v3.9382 (6)S2—ND1iv2.9775 (7)
ND1—ND1i3.9462 (5)S2—ND1vi2.9892 (8)
ND1—ND1vi3.9462 (5)S3—ND1x2.7876 (3)
Sn1—S2vii2.5433 (9)S3—ND1vi2.7876 (3)
Sn1—S22.5433 (9)S3—ND1v2.7876 (3)
S3—ND1—S3i90.116 (12)S3i—ND1—ND1vi135.058 (6)
S3—ND1—S2ii134.053 (19)S2ii—ND1—ND1vi131.504 (13)
S3i—ND1—S2ii75.949 (17)S2iii—ND1—ND1vi48.496 (13)
S3—ND1—S2iii75.949 (17)S2—ND1—ND1vi48.694 (13)
S3i—ND1—S2iii134.053 (19)S2i—ND1—ND1vi131.306 (13)
S2ii—ND1—S2iii83.01 (3)S1iv—ND1—ND1vi90.0
S3—ND1—S275.658 (16)S1—ND1—ND1vi90.0
S3i—ND1—S2133.371 (18)ND1v—ND1—ND1vi90.0
S2ii—ND1—S2143.212 (13)ND1i—ND1—ND1vi180.000 (17)
S2iii—ND1—S285.758 (11)S2vii—Sn1—S2180.000 (19)
S3—ND1—S2i133.371 (18)S2vii—Sn1—S1viii91.55 (3)
S3i—ND1—S2i75.658 (16)S2—Sn1—S1viii88.45 (3)
S2ii—ND1—S2i85.758 (11)S2vii—Sn1—S1v88.45 (3)
S2iii—ND1—S2i143.212 (13)S2—Sn1—S1v91.55 (3)
S2—ND1—S2i82.61 (3)S1viii—Sn1—S1v180.00 (4)
S3—ND1—S1iv134.879 (6)S2vii—Sn1—S1ix91.55 (3)
S3i—ND1—S1iv134.879 (6)S2—Sn1—S1ix88.45 (3)
S2ii—ND1—S1iv73.25 (2)S1viii—Sn1—S1ix99.36 (3)
S2iii—ND1—S1iv73.25 (2)S1v—Sn1—S1ix80.64 (3)
S2—ND1—S1iv69.97 (2)S2vii—Sn1—S1x88.45 (3)
S2i—ND1—S1iv69.97 (2)S2—Sn1—S1x91.55 (3)
S3—ND1—S166.115 (12)S1viii—Sn1—S1x80.64 (3)
S3i—ND1—S166.115 (12)S1v—Sn1—S1x99.36 (3)
S2ii—ND1—S168.22 (2)S1ix—Sn1—S1x180.00 (3)
S2iii—ND1—S168.22 (2)Sn1xi—S1—Sn1xii99.36 (3)
S2—ND1—S1137.606 (14)Sn1xi—S1—ND1iii97.67 (2)
S2i—ND1—S1137.606 (14)Sn1xii—S1—ND1iii97.67 (2)
S1iv—ND1—S1127.67 (3)Sn1xi—S1—ND1129.558 (17)
S3—ND1—ND1v45.058 (6)Sn1xii—S1—ND1129.558 (17)
S3i—ND1—ND1v45.058 (6)ND1iii—S1—ND188.30 (2)
S2ii—ND1—ND1v108.682 (19)Sn1—S2—ND1xiii99.79 (3)
S2iii—ND1—ND1v108.682 (19)Sn1—S2—ND1iv99.79 (3)
S2—ND1—ND1v108.103 (18)ND1xiii—S2—ND1iv83.01 (3)
S2i—ND1—ND1v108.103 (18)Sn1—S2—ND1103.67 (3)
S1iv—ND1—ND1v177.30 (2)ND1xiii—S2—ND1156.53 (3)
S1—ND1—ND1v55.026 (17)ND1iv—S2—ND192.433 (11)
S3—ND1—ND1i135.058 (6)Sn1—S2—ND1vi103.67 (3)
S3i—ND1—ND1i44.942 (6)ND1xiii—S2—ND1vi92.433 (12)
S2ii—ND1—ND1i48.496 (13)ND1iv—S2—ND1vi156.53 (3)
S2iii—ND1—ND1i131.504 (13)ND1—S2—ND1vi82.61 (3)
S2—ND1—ND1i131.306 (13)ND1—S3—ND1x180.000 (8)
S2i—ND1—ND1i48.694 (13)ND1—S3—ND1vi90.116 (12)
S1iv—ND1—ND1i90.0ND1x—S3—ND1vi89.884 (12)
S1—ND1—ND1i90.0ND1—S3—ND1v89.884 (12)
ND1v—ND1—ND1i90.0ND1x—S3—ND1v90.116 (12)
S3—ND1—ND1vi44.942 (6)ND1vi—S3—ND1v180.000 (6)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z; (v) x+1, y, z+1; (vi) x, y, z1; (vii) x, y, z; (viii) x1, y, z1; (ix) x1, y, z; (x) x+1, y, z; (xi) x+1, y, z+1; (xii) x+1, y, z; (xiii) x1/2, y+1/2, z1.
(nd) top
Crystal data top
Nd2S5SnF(000) = 500
Mr = 567.47Dx = 5.504 Mg m3
Orthorhombic, PbamMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2 2abCell parameters from 392 reflections
a = 7.7721 (14) Åθ = 3.2–26.7°
b = 11.218 (2) ŵ = 19.96 mm1
c = 3.9272 (9) ÅT = 293 K
V = 342.41 (12) Å3Prism, black
Z = 20.22 × 0.21 × 0.19 mm
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
402 independent reflections
Radiation source: fine-focus sealed tube392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 26.7°, θmin = 3.2°
ω–scanh = 89
Absorption correction: numerical
M. Mayer, CrysAlis Data Reduction Program, Oxford Diffraction Ltd, 2007
k = 1414
Tmin = 0.123, Tmax = 0.258l = 44
3642 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.026Secondary atom site location: difference Fourier map
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.030P)2 + 3.9487P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
402 reflectionsΔρmax = 1.33 e Å3
27 parametersΔρmin = 1.83 e Å3
Crystal data top
Nd2S5SnV = 342.41 (12) Å3
Mr = 567.47Z = 2
Orthorhombic, PbamMo Kα radiation
a = 7.7721 (14) ŵ = 19.96 mm1
b = 11.218 (2) ÅT = 293 K
c = 3.9272 (9) Å0.22 × 0.21 × 0.19 mm
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
402 independent reflections
Absorption correction: numerical
M. Mayer, CrysAlis Data Reduction Program, Oxford Diffraction Ltd, 2007
392 reflections with I > 2σ(I)
Tmin = 0.123, Tmax = 0.258Rint = 0.094
3642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02627 parameters
wR(F2) = 0.0670 restraints
S = 1.09Δρmax = 1.33 e Å3
402 reflectionsΔρmin = 1.83 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.43909 (6)0.16988 (4)0.50000.0100 (2)
Sn10.00000.00000.00000.0101 (3)
S10.8162 (3)0.0772 (2)0.50000.0117 (5)
S20.1544 (3)0.20048 (19)0.00000.0103 (5)
S30.50000.00000.00000.0107 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.0097 (3)0.0105 (3)0.0100 (3)0.00091 (16)0.0000.000
Sn10.0107 (5)0.0087 (5)0.0110 (5)0.0023 (3)0.0000.000
S10.0078 (10)0.0141 (11)0.0132 (11)0.0029 (8)0.0000.000
S20.0076 (9)0.0092 (10)0.0142 (12)0.0012 (8)0.0000.000
S30.0112 (15)0.0087 (14)0.0123 (15)0.0005 (11)0.0000.000
Geometric parameters (Å, º) top
Nd1—S32.7770 (5)Sn1—S1viii2.5782 (14)
Nd1—S3i2.7770 (5)Sn1—S1vi2.5782 (14)
Nd1—S2ii2.9618 (16)Sn1—S1ix2.5782 (14)
Nd1—S2iii2.9618 (16)Sn1—S1x2.5782 (14)
Nd1—S22.9779 (17)S1—Sn1xi2.5782 (14)
Nd1—S2i2.9779 (17)S1—Sn1xii2.5782 (14)
Nd1—S1iv2.993 (2)S1—Nd1iii2.993 (2)
Nd1—S13.110 (2)S2—Nd1xiii2.9618 (16)
Nd1—Nd1i3.9272 (9)S2—Nd1iv2.9618 (16)
Nd1—Nd1v3.9272 (9)S2—Nd1v2.9779 (17)
Nd1—Nd1vi3.9274 (11)S3—Nd1x2.7770 (5)
Sn1—S22.549 (2)S3—Nd1vi2.7770 (5)
Sn1—S2vii2.549 (2)S3—Nd1v2.7770 (5)
S3—Nd1—S3i90.00 (2)S3i—Nd1—Nd1vi44.999 (11)
S3—Nd1—S2ii135.19 (4)S2ii—Nd1—Nd1vi109.90 (4)
S3i—Nd1—S2ii76.81 (4)S2iii—Nd1—Nd1vi109.90 (4)
S3—Nd1—S2iii76.81 (4)S2—Nd1—Nd1vi106.92 (4)
S3i—Nd1—S2iii135.19 (4)S2i—Nd1—Nd1vi106.92 (4)
S2ii—Nd1—S2iii83.06 (6)S1iv—Nd1—Nd1vi175.35 (5)
S3—Nd1—S274.90 (4)S1—Nd1—Nd1vi56.52 (4)
S3i—Nd1—S2132.22 (4)Nd1i—Nd1—Nd1vi90.0
S2ii—Nd1—S2143.17 (3)Nd1v—Nd1—Nd1vi90.0
S2iii—Nd1—S285.76 (2)S2—Sn1—S2vii180.00 (5)
S3—Nd1—S2i132.22 (4)S2—Sn1—S1viii87.96 (6)
S3i—Nd1—S2i74.90 (4)S2vii—Sn1—S1viii92.04 (6)
S2ii—Nd1—S2i85.76 (2)S2—Sn1—S1vi92.04 (6)
S2iii—Nd1—S2i143.17 (3)S2vii—Sn1—S1vi87.96 (6)
S2—Nd1—S2i82.51 (6)S1viii—Sn1—S1vi180.0
S3—Nd1—S1iv134.813 (11)S2—Sn1—S1ix87.96 (6)
S3i—Nd1—S1iv134.813 (11)S2vii—Sn1—S1ix92.04 (6)
S2ii—Nd1—S1iv73.44 (5)S1viii—Sn1—S1ix99.21 (7)
S2iii—Nd1—S1iv73.44 (5)S1vi—Sn1—S1ix80.79 (7)
S2—Nd1—S1iv69.74 (5)S2—Sn1—S1x92.04 (6)
S2i—Nd1—S1iv69.74 (5)S2vii—Sn1—S1x87.96 (6)
S3—Nd1—S167.04 (3)S1viii—Sn1—S1x80.79 (7)
S3i—Nd1—S167.04 (3)S1vi—Sn1—S1x99.21 (7)
S2ii—Nd1—S168.38 (5)S1ix—Sn1—S1x180.00 (12)
S2iii—Nd1—S168.38 (5)Sn1xi—S1—Sn1xii99.21 (7)
S2—Nd1—S1137.62 (3)Sn1xi—S1—Nd1iii98.15 (6)
S2i—Nd1—S1137.62 (3)Sn1xii—S1—Nd1iii98.15 (6)
S1iv—Nd1—S1128.13 (6)Sn1xi—S1—Nd1129.38 (4)
S3—Nd1—Nd1i134.999 (10)Sn1xii—S1—Nd1129.38 (4)
S3i—Nd1—Nd1i45.001 (11)Nd1iii—S1—Nd189.08 (6)
S2ii—Nd1—Nd1i48.47 (3)Sn1—S2—Nd1xiii99.62 (6)
S2iii—Nd1—Nd1i131.53 (3)Sn1—S2—Nd1iv99.62 (6)
S2—Nd1—Nd1i131.25 (3)Nd1xiii—S2—Nd1iv83.06 (6)
S2i—Nd1—Nd1i48.75 (3)Sn1—S2—Nd1104.36 (6)
S1iv—Nd1—Nd1i90.0Nd1xiii—S2—Nd1156.01 (8)
S1—Nd1—Nd1i90.0Nd1iv—S2—Nd192.25 (2)
S3—Nd1—Nd1v45.001 (11)Sn1—S2—Nd1v104.36 (6)
S3i—Nd1—Nd1v134.999 (11)Nd1xiii—S2—Nd1v92.25 (2)
S2ii—Nd1—Nd1v131.53 (3)Nd1iv—S2—Nd1v156.01 (8)
S2iii—Nd1—Nd1v48.47 (3)Nd1—S2—Nd1v82.51 (6)
S2—Nd1—Nd1v48.75 (3)Nd1x—S3—Nd1180.00 (2)
S2i—Nd1—Nd1v131.25 (3)Nd1x—S3—Nd1vi90.00 (2)
S1iv—Nd1—Nd1v90.0Nd1—S3—Nd1vi90.00 (2)
S1—Nd1—Nd1v90.0Nd1x—S3—Nd1v90.00 (2)
Nd1i—Nd1—Nd1v180.00 (4)Nd1—S3—Nd1v90.00 (2)
S3—Nd1—Nd1vi44.999 (11)Nd1vi—S3—Nd1v180.000 (13)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z; (v) x, y, z1; (vi) x+1, y, z+1; (vii) x, y, z; (viii) x1, y, z1; (ix) x1, y, z; (x) x+1, y, z; (xi) x+1, y, z+1; (xii) x+1, y, z; (xiii) x1/2, y+1/2, z1.
(gd) top
Crystal data top
Gd2S5SnF(000) = 516
Mr = 593.49Dx = 5.907 Mg m3
Orthorhombic, PbamMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2 2abCell parameters from 348 reflections
a = 7.7330 (17) Åθ = 3.2–26.7°
b = 11.290 (2) ŵ = 24.80 mm1
c = 3.8217 (9) ÅT = 293 K
V = 333.66 (13) Å3Prism, black
Z = 20.10 × 0.03 × 0.02 mm
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
401 independent reflections
Radiation source: fine-focus sealed tube348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 26.7°, θmin = 3.2°
ω–scanh = 99
Absorption correction: numerical
M. Mayer, CrysAlis Data Reduction Program, Oxford Diffraction Ltd, 2007
k = 1414
Tmin = 0.242, Tmax = 0.546l = 44
3712 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0053P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.027(Δ/σ)max < 0.001
S = 0.87Δρmax = 0.77 e Å3
401 reflectionsΔρmin = 0.96 e Å3
28 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0222 (6)
Crystal data top
Gd2S5SnV = 333.66 (13) Å3
Mr = 593.49Z = 2
Orthorhombic, PbamMo Kα radiation
a = 7.7330 (17) ŵ = 24.80 mm1
b = 11.290 (2) ÅT = 293 K
c = 3.8217 (9) Å0.10 × 0.03 × 0.02 mm
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
401 independent reflections
Absorption correction: numerical
M. Mayer, CrysAlis Data Reduction Program, Oxford Diffraction Ltd, 2007
348 reflections with I > 2σ(I)
Tmin = 0.242, Tmax = 0.546Rint = 0.062
3712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01828 parameters
wR(F2) = 0.0270 restraints
S = 0.87Δρmax = 0.77 e Å3
401 reflectionsΔρmin = 0.96 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.46231 (5)0.17255 (4)0.50000.00938 (16)
Sn10.00000.00000.00000.0090 (2)
S10.8270 (2)0.09066 (18)0.50000.0097 (5)
S20.1701 (2)0.19536 (18)0.00000.0086 (4)
S30.50000.00000.00000.0095 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.0113 (2)0.0095 (2)0.0073 (2)0.00074 (19)0.0000.000
Sn10.0116 (5)0.0085 (4)0.0069 (4)0.0001 (3)0.0000.000
S10.0107 (10)0.0105 (10)0.0079 (11)0.0018 (9)0.0000.000
S20.0091 (9)0.0089 (11)0.0077 (10)0.0011 (8)0.0000.000
S30.0114 (16)0.0113 (14)0.0057 (13)0.0010 (11)0.0000.000
Geometric parameters (Å, º) top
Gd1—S32.7444 (5)Sn1—S1vi2.5472 (13)
Gd1—S3i2.7444 (5)Sn1—S1ix2.5472 (13)
Gd1—S1ii2.871 (2)Sn1—S2x2.568 (2)
Gd1—S2iii2.9082 (15)Sn1—S22.568 (2)
Gd1—S2iv2.9082 (15)S1—Sn1xi2.5472 (13)
Gd1—S12.968 (2)S1—Sn1xii2.5472 (13)
Gd1—S22.9704 (15)S1—Gd1iv2.871 (2)
Gd1—S2i2.9704 (15)S2—Gd1ii2.9082 (15)
Gd1—Gd1v3.8217 (9)S2—Gd1xiii2.9082 (15)
Gd1—Gd1i3.8217 (9)S2—Gd1v2.9704 (15)
Gd1—Gd1vi3.9396 (12)S3—Gd1ix2.7444 (5)
Sn1—S1vii2.5472 (13)S3—Gd1v2.7444 (5)
Sn1—S1viii2.5472 (13)S3—Gd1vi2.7444 (5)
S3—Gd1—S3i88.26 (2)S3i—Gd1—Gd1vi44.130 (11)
S3—Gd1—S1ii134.407 (14)S1ii—Gd1—Gd1vi167.14 (4)
S3i—Gd1—S1ii134.407 (14)S2iii—Gd1—Gd1vi115.17 (4)
S3—Gd1—S2iii139.71 (4)S2iv—Gd1—Gd1vi115.17 (4)
S3i—Gd1—S2iii81.25 (3)S1—Gd1—Gd1vi63.34 (4)
S1ii—Gd1—S2iii73.97 (5)S2—Gd1—Gd1vi101.44 (4)
S3—Gd1—S2iv81.25 (3)S2i—Gd1—Gd1vi101.44 (4)
S3i—Gd1—S2iv139.71 (4)Gd1v—Gd1—Gd1vi90.0
S1ii—Gd1—S2iv73.97 (5)Gd1i—Gd1—Gd1vi90.0
S2iii—Gd1—S2iv82.15 (5)S1vii—Sn1—S1viii97.21 (7)
S3—Gd1—S171.21 (3)S1vii—Sn1—S1vi180.0
S3i—Gd1—S171.21 (3)S1viii—Sn1—S1vi82.79 (7)
S1ii—Gd1—S1129.52 (5)S1vii—Sn1—S1ix82.79 (7)
S2iii—Gd1—S168.57 (5)S1viii—Sn1—S1ix180.00 (7)
S2iv—Gd1—S168.57 (5)S1vi—Sn1—S1ix97.21 (7)
S3—Gd1—S272.21 (3)S1vii—Sn1—S2x94.37 (5)
S3i—Gd1—S2126.17 (4)S1viii—Sn1—S2x94.37 (5)
S1ii—Gd1—S269.03 (5)S1vi—Sn1—S2x85.63 (5)
S2iii—Gd1—S2142.99 (3)S1ix—Sn1—S2x85.63 (5)
S2iv—Gd1—S287.32 (2)S1vii—Sn1—S285.63 (5)
S1—Gd1—S2138.58 (3)S1viii—Sn1—S285.63 (5)
S3—Gd1—S2i126.17 (4)S1vi—Sn1—S294.37 (5)
S3i—Gd1—S2i72.21 (3)S1ix—Sn1—S294.37 (5)
S1ii—Gd1—S2i69.03 (5)S2x—Sn1—S2180.00 (8)
S2iii—Gd1—S2i87.32 (2)Sn1xi—S1—Sn1xii97.21 (7)
S2iv—Gd1—S2i142.99 (3)Sn1xi—S1—Gd1iv100.53 (5)
S1—Gd1—S2i138.58 (3)Sn1xii—S1—Gd1iv100.53 (5)
S2—Gd1—S2i80.08 (5)Sn1xi—S1—Gd1128.62 (4)
S3—Gd1—Gd1v45.870 (11)Sn1xii—S1—Gd1128.62 (4)
S3i—Gd1—Gd1v134.130 (11)Gd1iv—S1—Gd193.22 (6)
S1ii—Gd1—Gd1v90.0Sn1—S2—Gd1ii99.05 (5)
S2iii—Gd1—Gd1v131.08 (3)Sn1—S2—Gd1xiii99.05 (5)
S2iv—Gd1—Gd1v48.92 (3)Gd1ii—S2—Gd1xiii82.15 (5)
S1—Gd1—Gd1v90.0Sn1—S2—Gd1108.37 (6)
S2—Gd1—Gd1v49.96 (2)Gd1ii—S2—Gd192.41 (3)
S2i—Gd1—Gd1v130.04 (3)Gd1xiii—S2—Gd1152.56 (7)
S3—Gd1—Gd1i134.130 (11)Sn1—S2—Gd1v108.37 (6)
S3i—Gd1—Gd1i45.870 (11)Gd1ii—S2—Gd1v152.56 (7)
S1ii—Gd1—Gd1i90.0Gd1xiii—S2—Gd1v92.41 (3)
S2iii—Gd1—Gd1i48.92 (3)Gd1—S2—Gd1v80.08 (5)
S2iv—Gd1—Gd1i131.08 (3)Gd1—S3—Gd1ix180.000 (12)
S1—Gd1—Gd1i90.0Gd1—S3—Gd1v88.26 (2)
S2—Gd1—Gd1i130.04 (2)Gd1ix—S3—Gd1v91.74 (2)
S2i—Gd1—Gd1i49.96 (2)Gd1—S3—Gd1vi91.74 (2)
Gd1v—Gd1—Gd1i180.000 (17)Gd1ix—S3—Gd1vi88.26 (2)
S3—Gd1—Gd1vi44.130 (11)Gd1v—S3—Gd1vi180.000 (12)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z; (v) x, y, z1; (vi) x+1, y, z+1; (vii) x1, y, z1; (viii) x1, y, z; (ix) x+1, y, z; (x) x, y, z; (xi) x+1, y, z+1; (xii) x+1, y, z; (xiii) x1/2, y+1/2, z1.
(tb) top
Crystal data top
S5SnTb2F(000) = 520
Mr = 596.83Dx = 6.002 Mg m3
Orthorhombic, PbamMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2 2abCell parameters from 436 reflections
a = 7.717 (2) Åθ = 3.6–28.3°
b = 11.2460 (15) ŵ = 26.38 mm1
c = 3.8056 (8) ÅT = 293 K
V = 330.27 (13) Å3Prism, black
Z = 20.11 × 0.06 × 0.03 mm
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
467 independent reflections
Radiation source: fine-focus sealed tube436 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 28.3°, θmin = 3.6°
ω–scanh = 109
Absorption correction: numerical
M. Mayer, CrysAlis Data Reduction Program, Oxford Diffraction Ltd, 2007
k = 1414
Tmin = 0.155, Tmax = 0.422l = 55
4139 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0124P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.028(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.95 e Å3
467 reflectionsΔρmin = 1.06 e Å3
28 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0076 (3)
Crystal data top
S5SnTb2V = 330.27 (13) Å3
Mr = 596.83Z = 2
Orthorhombic, PbamMo Kα radiation
a = 7.717 (2) ŵ = 26.38 mm1
b = 11.2460 (15) ÅT = 293 K
c = 3.8056 (8) Å0.11 × 0.06 × 0.03 mm
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
467 independent reflections
Absorption correction: numerical
M. Mayer, CrysAlis Data Reduction Program, Oxford Diffraction Ltd, 2007
436 reflections with I > 2σ(I)
Tmin = 0.155, Tmax = 0.422Rint = 0.042
4139 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01628 parameters
wR(F2) = 0.0280 restraints
S = 1.04Δρmax = 0.95 e Å3
467 reflectionsΔρmin = 1.06 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.46598 (3)0.17285 (2)0.50000.00959 (9)
Sn20.00000.00000.00000.00902 (12)
S10.82826 (17)0.09314 (10)0.50000.0098 (2)
S20.17306 (17)0.19510 (9)0.00000.0095 (2)
S30.50000.00000.00000.0100 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.01379 (15)0.00798 (13)0.00699 (13)0.00089 (9)0.0000.000
Sn20.0134 (3)0.0072 (2)0.0065 (2)0.00044 (17)0.0000.000
S10.0104 (6)0.0105 (5)0.0084 (6)0.0019 (5)0.0000.000
S20.0108 (6)0.0084 (5)0.0094 (6)0.0007 (4)0.0000.000
S30.0138 (10)0.0080 (7)0.0081 (8)0.0001 (6)0.0000.000
Geometric parameters (Å, º) top
Tb1—S32.7328 (4)Sn2—S1vi2.5445 (9)
Tb1—S3i2.7328 (4)Sn2—S1ix2.5445 (9)
Tb1—S1ii2.8381 (12)Sn2—S2x2.5686 (12)
Tb1—S2iii2.8948 (10)Sn2—S22.5686 (12)
Tb1—S2iv2.8948 (10)S1—Sn2xi2.5445 (9)
Tb1—S12.9359 (15)S1—Sn2xii2.5445 (9)
Tb1—S22.9653 (12)S1—Tb1iv2.8381 (12)
Tb1—S2i2.9653 (12)S2—Tb1ii2.8948 (10)
Tb1—Tb1v3.8056 (8)S2—Tb1xiii2.8948 (10)
Tb1—Tb1i3.8056 (8)S2—Tb1v2.9653 (12)
Tb1—Tb1vi3.9231 (7)S3—Tb1ix2.7328 (4)
Sn2—S1vii2.5445 (9)S3—Tb1vi2.7328 (4)
Sn2—S1viii2.5445 (9)S3—Tb1v2.7328 (4)
S3—Tb1—S3i88.258 (16)S3i—Tb1—Tb1vi44.129 (8)
S3—Tb1—S1ii134.069 (10)S1ii—Tb1—Tb1vi165.70 (3)
S3i—Tb1—S1ii134.069 (10)S2iii—Tb1—Tb1vi115.75 (2)
S3—Tb1—S2iii140.31 (3)S2iv—Tb1—Tb1vi115.75 (2)
S3i—Tb1—S2iii81.62 (2)S1—Tb1—Tb1vi64.53 (2)
S1ii—Tb1—S2iii74.40 (3)S2—Tb1—Tb1vi100.70 (2)
S3—Tb1—S2iv81.62 (2)S2i—Tb1—Tb1vi100.70 (2)
S3i—Tb1—S2iv140.31 (3)Tb1v—Tb1—Tb1vi90.0
S1ii—Tb1—S2iv74.40 (3)Tb1i—Tb1—Tb1vi90.0
S2iii—Tb1—S2iv82.19 (4)S1vii—Sn2—S1viii96.80 (4)
S3—Tb1—S172.021 (17)S1vii—Sn2—S1vi180.00 (5)
S3i—Tb1—S172.021 (17)S1viii—Sn2—S1vi83.20 (4)
S1ii—Tb1—S1129.77 (4)S1vii—Sn2—S1ix83.20 (4)
S2iii—Tb1—S168.34 (3)S1viii—Sn2—S1ix180.0
S2iv—Tb1—S168.34 (3)S1vi—Sn2—S1ix96.80 (4)
S3—Tb1—S271.73 (2)S1vii—Sn2—S2x94.64 (4)
S3i—Tb1—S2125.45 (2)S1viii—Sn2—S2x94.64 (4)
S1ii—Tb1—S268.67 (3)S1vi—Sn2—S2x85.36 (4)
S2iii—Tb1—S2143.07 (2)S1ix—Sn2—S2x85.36 (4)
S2iv—Tb1—S287.46 (2)S1vii—Sn2—S285.36 (4)
S1—Tb1—S2138.73 (2)S1viii—Sn2—S285.36 (4)
S3—Tb1—S2i125.45 (2)S1vi—Sn2—S294.64 (4)
S3i—Tb1—S2i71.73 (2)S1ix—Sn2—S294.64 (4)
S1ii—Tb1—S2i68.67 (3)S2x—Sn2—S2180.00 (2)
S2iii—Tb1—S2i87.46 (2)Sn2xi—S1—Sn2xii96.80 (4)
S2iv—Tb1—S2i143.07 (2)Sn2xi—S1—Tb1iv100.76 (4)
S1—Tb1—S2i138.73 (2)Sn2xii—S1—Tb1iv100.76 (4)
S2—Tb1—S2i79.84 (4)Sn2xi—S1—Tb1128.44 (3)
S3—Tb1—Tb1v45.871 (8)Sn2xii—S1—Tb1128.44 (3)
S3i—Tb1—Tb1v134.129 (8)Tb1iv—S1—Tb194.21 (4)
S1ii—Tb1—Tb1v90.0Sn2—S2—Tb1ii98.70 (4)
S2iii—Tb1—Tb1v131.096 (18)Sn2—S2—Tb1xiii98.70 (4)
S2iv—Tb1—Tb1v48.904 (18)Tb1ii—S2—Tb1xiii82.19 (4)
S1—Tb1—Tb1v90.0Sn2—S2—Tb1108.92 (3)
S2—Tb1—Tb1v50.08 (2)Tb1ii—S2—Tb192.42 (2)
S2i—Tb1—Tb1v129.92 (2)Tb1xiii—S2—Tb1152.36 (4)
S3—Tb1—Tb1i134.129 (8)Sn2—S2—Tb1v108.92 (3)
S3i—Tb1—Tb1i45.871 (8)Tb1ii—S2—Tb1v152.36 (4)
S1ii—Tb1—Tb1i90.0Tb1xiii—S2—Tb1v92.42 (2)
S2iii—Tb1—Tb1i48.904 (18)Tb1—S2—Tb1v79.84 (4)
S2iv—Tb1—Tb1i131.096 (18)Tb1ix—S3—Tb1180.000 (11)
S1—Tb1—Tb1i90.0Tb1ix—S3—Tb1vi88.258 (16)
S2—Tb1—Tb1i129.92 (2)Tb1—S3—Tb1vi91.742 (16)
S2i—Tb1—Tb1i50.08 (2)Tb1ix—S3—Tb1v91.742 (16)
Tb1v—Tb1—Tb1i180.000 (17)Tb1—S3—Tb1v88.258 (16)
S3—Tb1—Tb1vi44.129 (8)Tb1vi—S3—Tb1v180.000 (12)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z; (v) x, y, z1; (vi) x+1, y, z+1; (vii) x1, y, z1; (viii) x1, y, z; (ix) x+1, y, z; (x) x, y, z; (xi) x+1, y, z+1; (xii) x+1, y, z; (xiii) x1/2, y+1/2, z1.

Experimental details

(pr)(nd)(gd)(tb)
Crystal data
Chemical formulaPr2S5SnNd2S5SnGd2S5SnS5SnTb2
Mr560.81567.47593.49596.83
Crystal system, space groupOrthorhombic, PbamOrthorhombic, PbamOrthorhombic, PbamOrthorhombic, Pbam
Temperature (K)293293293293
a, b, c (Å)7.8195 (9), 11.2145 (14), 3.9462 (5)7.7721 (14), 11.218 (2), 3.9272 (9)7.7330 (17), 11.290 (2), 3.8217 (9)7.717 (2), 11.2460 (15), 3.8056 (8)
V3)346.05 (7)342.41 (12)333.66 (13)330.27 (13)
Z2222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)18.8219.9624.8026.38
Crystal size (mm)0.09 × 0.08 × 0.060.22 × 0.21 × 0.190.10 × 0.03 × 0.020.11 × 0.06 × 0.03
Data collection
DiffractometerKUMA KM-4 with area CCD detector
diffractometer
KUMA KM-4 with area CCD detector
diffractometer
KUMA KM-4 with area CCD detector
diffractometer
KUMA KM-4 with area CCD detector
diffractometer
Absorption correctionNumerical
M. Mayer, CrysAlis Data Reduction Program, Oxford Diffraction Ltd, 2007
Numerical
M. Mayer, CrysAlis Data Reduction Program, Oxford Diffraction Ltd, 2007
Numerical
M. Mayer, CrysAlis Data Reduction Program, Oxford Diffraction Ltd, 2007
Numerical
M. Mayer, CrysAlis Data Reduction Program, Oxford Diffraction Ltd, 2007
Tmin, Tmax0.239, 0.4580.123, 0.2580.242, 0.5460.155, 0.422
No. of measured, independent and
observed [I > 2σ(I)] reflections
4036, 452, 424 3642, 402, 392 3712, 401, 348 4139, 467, 436
Rint0.0410.0940.0620.042
(sin θ/λ)max1)0.6490.6310.6320.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.025, 1.12 0.026, 0.067, 1.09 0.018, 0.027, 0.87 0.016, 0.028, 1.04
No. of reflections452402401467
No. of parameters28272828
Δρmax, Δρmin (e Å3)0.64, 0.701.33, 1.830.77, 0.960.95, 1.06

Computer programs: CrysAlis 1.171.32.6, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds