Download citation
Download citation
link to html
The amino group of 2-amino-5-(4-halophen­yl)-1,3,4-chalcogena­diazole has been replaced with bromo/iodo substituents to obtain a library of four compositionally related com­pounds. These are 2-iodo-5-(4-iodo­phen­yl)-1,3,4-thia­di­azole, C8H4I2N2S, 2-bromo-5-(4-bromo­phen­yl)-1,3,4-selena­diazole, C8H4Br2N2Se, 2-bromo-5-(4-iodo­phen­yl)-1,3,4-selena­diazole, C8H4BrIN2Se, and 2-bromo-5-(4-iodo­phen­yl)-1,3,4-thia­diazole, C8H4BrIN2S. All were isostructural and contained bifurcated Ch...N (Ch is chalcogen) and X...X (X is halogen) inter­actions forming a zigzag packing motif. The noncovalent Ch...N inter­action between the chalcogen-bond donor and the best-acceptor N atom appeared preferentially instead of a possible halogen bond to the same N atom. Hirshfeld surface analysis and energy framework calculations showed that, collectively, a bifurcated chalcogen bond was stronger than halogen bonding and this is more structurally influential in this system.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322962201052X/bs3004sup1.cif
Contains datablocks T1, T2, T3, T4, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322962201052X/bs3004T1sup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322962201052X/bs3004T2sup3.hkl
Contains datablock T2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322962201052X/bs3004T3sup4.hkl
Contains datablock T3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322962201052X/bs3004T4sup5.hkl
Contains datablock T4

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S205322962201052X/bs3004T1sup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S205322962201052X/bs3004T2sup7.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S205322962201052X/bs3004T3sup8.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S205322962201052X/bs3004T4sup9.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205322962201052X/bs3004sup10.pdf
Additional figures

CCDC references: 2202927; 2202928; 2202931; 2202932

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020) for T1, T4; CrysAlis PRO 1.171.41.76a (Rigaku OD, 2020) for T2; CrysAlis PRO 1.171.40.84a (Rigaku OD, 2020) for T3. Cell refinement: CrysAlis PRO (Rigaku OD, 2020) for T1, T4; CrysAlis PRO 1.171.41.76a (Rigaku OD, 2020) for T2; CrysAlis PRO 1.171.40.84a (Rigaku OD, 2020) for T3. Data reduction: CrysAlis PRO (Rigaku OD, 2020) for T1, T4; CrysAlis PRO 1.171.41.76a (Rigaku OD, 2020) for T2; CrysAlis PRO 1.171.40.84a (Rigaku OD, 2020) for T3. Program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a) for T1; SHELXT (Sheldrick, 2015a) for T2, T3, T4. For all structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-Iodo-5-(4-iodophenyl)-1,3,4-thiadiazole (T1) top
Crystal data top
C8H4I2N2SDx = 2.608 Mg m3
Mr = 413.99Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 5508 reflections
a = 11.0392 (2) Åθ = 3.8–69.0°
b = 8.1756 (2) ŵ = 48.34 mm1
c = 23.3673 (4) ÅT = 293 K
V = 2108.95 (7) Å3Block, colourless
Z = 80.07 × 0.05 × 0.03 mm
F(000) = 1504
Data collection top
Rigaku XtaLAB Synergy Custom
diffractometer with a HyPix-Arc 150° detector
1942 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source1753 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.0000 pixels mm-1θmax = 69.1°, θmin = 3.8°
ω scansh = 1113
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2020)
k = 89
Tmin = 0.209, Tmax = 0.522l = 2428
8336 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0388P)2 + 4.6153P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1942 reflectionsΔρmax = 1.33 e Å3
118 parametersΔρmin = 1.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6455 (4)0.4015 (5)0.40675 (18)0.0196 (9)
C20.5284 (4)0.4540 (6)0.39544 (19)0.0209 (9)
H20.4650590.4212300.4190490.025*
C30.5054 (4)0.5556 (5)0.34887 (18)0.0207 (9)
H30.4270890.5917950.3414670.025*
C40.6006 (4)0.6024 (5)0.31353 (18)0.0218 (9)
C50.7186 (4)0.5514 (5)0.32447 (19)0.0245 (10)
H50.7820090.5849360.3010190.029*
C60.7402 (4)0.4498 (6)0.37097 (18)0.0219 (9)
H60.8185000.4135350.3783440.026*
C70.6712 (4)0.2974 (5)0.45654 (18)0.0205 (9)
N80.7801 (3)0.2525 (4)0.47101 (17)0.0242 (9)
N90.7827 (3)0.1583 (5)0.52011 (16)0.0243 (8)
C100.6745 (4)0.1372 (5)0.54045 (18)0.0212 (9)
S110.55940 (10)0.22850 (15)0.50283 (5)0.0246 (3)
I120.64084 (3)0.00912 (3)0.61590 (2)0.02546 (12)
I130.56375 (3)0.75148 (3)0.24272 (2)0.02576 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.021 (2)0.018 (2)0.020 (2)0.0000 (17)0.0006 (17)0.0003 (18)
C20.019 (2)0.020 (2)0.023 (2)0.0004 (18)0.0016 (18)0.0021 (18)
C30.021 (2)0.020 (2)0.021 (2)0.0020 (18)0.0001 (18)0.0002 (18)
C40.028 (2)0.0163 (19)0.021 (2)0.0016 (18)0.0005 (19)0.0001 (17)
C50.027 (2)0.019 (2)0.027 (2)0.0020 (19)0.0067 (18)0.0058 (19)
C60.021 (2)0.017 (2)0.028 (2)0.0010 (18)0.0026 (19)0.0052 (18)
C70.022 (2)0.019 (2)0.020 (2)0.0014 (18)0.0009 (18)0.0002 (18)
N80.021 (2)0.027 (2)0.0241 (19)0.0015 (16)0.0022 (15)0.0023 (16)
N90.024 (2)0.027 (2)0.0223 (17)0.0037 (17)0.0021 (16)0.0015 (16)
C100.022 (2)0.018 (2)0.024 (2)0.0003 (18)0.0040 (19)0.0023 (18)
S110.0187 (6)0.0283 (6)0.0267 (6)0.0013 (4)0.0004 (4)0.0053 (5)
I120.0279 (2)0.02557 (18)0.02293 (18)0.00177 (11)0.00234 (11)0.00194 (11)
I130.0349 (2)0.02059 (18)0.02173 (18)0.00176 (11)0.00195 (11)0.00162 (11)
Geometric parameters (Å, º) top
C1—C21.388 (6)C5—H50.9300
C1—C61.395 (6)C5—C61.389 (6)
C1—C71.469 (6)C6—H60.9300
C2—H20.9300C7—N81.302 (6)
C2—C31.392 (6)C7—S111.735 (4)
C3—H30.9300N8—N91.382 (5)
C3—C41.390 (6)N9—C101.297 (6)
C4—C51.391 (6)C10—S111.716 (4)
C4—I132.095 (4)C10—I122.084 (4)
C2—C1—C6119.7 (4)C6—C5—H5120.5
C2—C1—C7120.6 (4)C1—C6—H6119.7
C6—C1—C7119.6 (4)C5—C6—C1120.7 (4)
C1—C2—H2119.9C5—C6—H6119.7
C1—C2—C3120.2 (4)C1—C7—S11123.0 (3)
C3—C2—H2119.9N8—C7—C1123.2 (4)
C2—C3—H3120.3N8—C7—S11113.8 (3)
C4—C3—C2119.4 (4)C7—N8—N9113.1 (4)
C4—C3—H3120.3C10—N9—N8111.1 (3)
C3—C4—C5121.1 (4)N9—C10—S11115.9 (3)
C3—C4—I13118.8 (3)N9—C10—I12122.8 (3)
C5—C4—I13120.1 (3)S11—C10—I12121.3 (2)
C4—C5—H5120.5C10—S11—C786.2 (2)
C6—C5—C4118.9 (4)
C1—C2—C3—C40.7 (7)C6—C1—C7—S11179.0 (3)
C1—C7—N8—N9178.4 (4)C7—C1—C2—C3178.6 (4)
C1—C7—S11—C10178.5 (4)C7—C1—C6—C5178.4 (4)
C2—C1—C6—C50.7 (7)C7—N8—N9—C100.1 (5)
C2—C1—C7—N8175.9 (4)N8—C7—S11—C100.4 (4)
C2—C1—C7—S111.9 (6)N8—N9—C10—S110.2 (5)
C2—C3—C4—C51.0 (6)N8—N9—C10—I12177.7 (3)
C2—C3—C4—I13178.8 (3)N9—C10—S11—C70.3 (4)
C3—C4—C5—C61.2 (6)S11—C7—N8—N90.4 (5)
C4—C5—C6—C11.0 (7)I12—C10—S11—C7177.9 (3)
C6—C1—C2—C30.5 (7)I13—C4—C5—C6178.6 (3)
C6—C1—C7—N83.2 (7)
2-Bromo-5-(4-bromophenyl)-1,3,4-selenadiazole (T2) top
Crystal data top
C8H4Br2N2SeDx = 2.407 Mg m3
Mr = 366.91Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 3007 reflections
a = 11.1945 (5) Åθ = 3.5–74.7°
b = 7.1006 (3) ŵ = 13.90 mm1
c = 25.4725 (9) ÅT = 100 K
V = 2024.74 (15) Å3Irregular, orange
Z = 80.02 × 0.02 × 0.02 mm
F(000) = 1360
Data collection top
Rigaku XtaLAB Synergy Custom
diffractometer with a HyPix-Arc 150° detector
1965 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1709 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.0000 pixels mm-1θmax = 74.8°, θmin = 3.5°
ω scansh = 913
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)
k = 88
Tmin = 0.682, Tmax = 1.000l = 2930
6457 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0428P)2 + 15.9376P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1965 reflectionsΔρmax = 1.95 e Å3
118 parametersΔρmin = 1.46 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3302 (5)0.3834 (8)0.5943 (2)0.0221 (12)
C20.4462 (6)0.4100 (9)0.6138 (2)0.0281 (13)
H20.5131770.3829730.5921410.034*
C30.4634 (7)0.4753 (9)0.6643 (3)0.0350 (15)
H30.5417750.4950410.6775510.042*
C40.3654 (7)0.5113 (9)0.6952 (2)0.0329 (15)
C50.2498 (7)0.4874 (8)0.6768 (2)0.0316 (14)
H50.1833530.5153340.6986980.038*
C60.2326 (6)0.4222 (8)0.6263 (2)0.0276 (13)
H60.1538830.4039310.6133140.033*
C70.3101 (5)0.3151 (8)0.5401 (2)0.0180 (11)
N80.2045 (4)0.2908 (7)0.52118 (18)0.0227 (10)
N90.2012 (4)0.2252 (7)0.46988 (18)0.0227 (10)
C100.3064 (5)0.2028 (8)0.4508 (2)0.0211 (12)
Se110.43492 (5)0.25540 (9)0.49395 (2)0.02259 (19)
Br120.32759 (6)0.11997 (9)0.38120 (2)0.0301 (2)
Br130.39006 (10)0.60799 (12)0.76394 (3)0.0541 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.033 (3)0.017 (3)0.016 (3)0.000 (2)0.001 (2)0.002 (2)
C20.036 (3)0.030 (3)0.018 (3)0.008 (3)0.002 (3)0.009 (2)
C30.048 (4)0.031 (3)0.026 (3)0.007 (3)0.010 (3)0.007 (3)
C40.059 (4)0.026 (3)0.014 (3)0.003 (3)0.002 (3)0.004 (2)
C50.053 (4)0.018 (3)0.023 (3)0.005 (3)0.008 (3)0.002 (3)
C60.034 (3)0.020 (3)0.028 (3)0.004 (3)0.000 (3)0.002 (2)
C70.017 (3)0.013 (2)0.024 (3)0.002 (2)0.001 (2)0.002 (2)
N80.023 (2)0.027 (3)0.018 (2)0.002 (2)0.0004 (19)0.005 (2)
N90.024 (2)0.024 (3)0.020 (2)0.003 (2)0.0022 (19)0.002 (2)
C100.026 (3)0.017 (3)0.020 (3)0.003 (2)0.002 (2)0.001 (2)
Se110.0167 (3)0.0242 (3)0.0269 (3)0.0007 (2)0.0013 (2)0.0020 (2)
Br120.0405 (4)0.0285 (3)0.0213 (3)0.0041 (3)0.0050 (3)0.0039 (3)
Br130.1013 (8)0.0407 (4)0.0205 (3)0.0056 (5)0.0081 (4)0.0012 (3)
Geometric parameters (Å, º) top
C1—C21.403 (9)C5—H50.9500
C1—C61.391 (9)C5—C61.382 (8)
C1—C71.479 (8)C6—H60.9500
C2—H20.9500C7—N81.288 (7)
C2—C31.383 (9)C7—Se111.876 (5)
C3—H30.9500N8—N91.388 (7)
C3—C41.373 (10)N9—C101.284 (7)
C4—C51.387 (10)C10—Se111.849 (6)
C4—Br131.901 (6)C10—Br121.882 (6)
C2—C1—C7121.0 (5)C6—C5—H5120.5
C6—C1—C2119.5 (5)C1—C6—H6119.9
C6—C1—C7119.4 (5)C5—C6—C1120.2 (6)
C1—C2—H2119.9C5—C6—H6119.9
C3—C2—C1120.3 (6)C1—C7—Se11123.0 (4)
C3—C2—H2119.9N8—C7—C1122.2 (5)
C2—C3—H3120.5N8—C7—Se11114.7 (4)
C4—C3—C2119.0 (6)C7—N8—N9115.0 (5)
C4—C3—H3120.5C10—N9—N8112.0 (5)
C3—C4—C5122.0 (6)N9—C10—Se11117.6 (4)
C3—C4—Br13118.6 (5)N9—C10—Br12120.7 (4)
C5—C4—Br13119.3 (5)Se11—C10—Br12121.7 (3)
C4—C5—H5120.5C10—Se11—C780.7 (2)
C6—C5—C4119.0 (6)
C1—C2—C3—C40.8 (9)C6—C1—C7—Se11179.2 (4)
C1—C7—N8—N9179.7 (5)C7—C1—C2—C3179.5 (5)
C1—C7—Se11—C10179.8 (5)C7—C1—C6—C5179.6 (5)
C2—C1—C6—C50.3 (9)C7—N8—N9—C100.6 (7)
C2—C1—C7—N8179.5 (5)N8—C7—Se11—C100.6 (4)
C2—C1—C7—Se111.0 (8)N8—N9—C10—Se111.1 (6)
C2—C3—C4—C51.2 (10)N8—N9—C10—Br12178.7 (4)
C2—C3—C4—Br13178.2 (5)N9—C10—Se11—C71.0 (5)
C3—C4—C5—C61.2 (9)Se11—C7—N8—N90.2 (6)
C4—C5—C6—C10.7 (9)Br12—C10—Se11—C7178.8 (4)
C6—C1—C2—C30.3 (9)Br13—C4—C5—C6178.1 (4)
C6—C1—C7—N80.3 (8)
2-Bromo-5-(4-iodophenyl)-1,3,4-selenadiazole (T3) top
Crystal data top
C8H4BrIN2SeDx = 2.638 Mg m3
Mr = 413.90Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 7358 reflections
a = 11.1735 (4) Åθ = 2.4–33.0°
b = 7.1222 (2) ŵ = 10.36 mm1
c = 26.1875 (8) ÅT = 100 K
V = 2084.00 (11) Å3Plate, clear light yellow
Z = 80.3 × 0.1 × 0.06 mm
F(000) = 1504
Data collection top
Rigaku XtaLAB Synergy Custom
diffractometer with a HyPix-Arc 150° detector
2055 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source1815 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.0000 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)
k = 78
Tmin = 0.338, Tmax = 1.000l = 3232
12091 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.030P)2 + 10.0022P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2055 reflectionsΔρmax = 2.00 e Å3
118 parametersΔρmin = 1.01 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6730 (4)0.6139 (6)0.59069 (17)0.0149 (9)
C20.5578 (4)0.5876 (7)0.61022 (17)0.0196 (10)
H20.49020.61410.58940.023*
C30.5414 (5)0.5230 (7)0.65978 (18)0.0226 (10)
H30.46300.50450.67290.027*
C40.6408 (5)0.4859 (6)0.68987 (16)0.0195 (10)
C50.7557 (5)0.5112 (6)0.67115 (17)0.0213 (10)
H50.82270.48470.69230.026*
C60.7731 (4)0.5751 (6)0.62163 (17)0.0176 (10)
H60.85180.59250.60870.021*
C70.6914 (4)0.6814 (6)0.53853 (16)0.0122 (9)
N80.7974 (3)0.7053 (5)0.51957 (14)0.0171 (8)
N90.8006 (3)0.7683 (5)0.46942 (14)0.0184 (8)
C100.6957 (4)0.7927 (6)0.45060 (17)0.0151 (9)
Se110.56664 (4)0.74266 (7)0.49341 (2)0.01587 (12)
Br120.67471 (4)0.87353 (7)0.38316 (2)0.02129 (13)
I130.61637 (4)0.38409 (5)0.76407 (2)0.03129 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.021 (2)0.009 (2)0.015 (2)0.0004 (18)0.0006 (17)0.0032 (17)
C20.024 (2)0.020 (2)0.015 (2)0.001 (2)0.0017 (18)0.0052 (18)
C30.032 (3)0.017 (2)0.018 (2)0.005 (2)0.0090 (19)0.005 (2)
C40.037 (3)0.013 (2)0.009 (2)0.003 (2)0.0035 (18)0.0017 (18)
C50.032 (3)0.014 (2)0.018 (2)0.002 (2)0.006 (2)0.006 (2)
C60.021 (2)0.013 (2)0.019 (2)0.0007 (19)0.0012 (18)0.0013 (19)
C70.010 (2)0.010 (2)0.017 (2)0.0010 (16)0.0019 (16)0.0065 (18)
N80.022 (2)0.018 (2)0.0111 (18)0.0010 (16)0.0003 (15)0.0007 (15)
N90.022 (2)0.019 (2)0.0140 (18)0.0021 (17)0.0018 (15)0.0007 (16)
C100.021 (2)0.012 (2)0.012 (2)0.0014 (18)0.0026 (17)0.0018 (17)
Se110.0099 (2)0.0196 (2)0.0181 (2)0.00013 (18)0.00108 (16)0.00323 (18)
Br120.0272 (3)0.0214 (3)0.0153 (2)0.0024 (2)0.00289 (17)0.00333 (19)
I130.0553 (3)0.0243 (2)0.01430 (18)0.00140 (16)0.00484 (14)0.00152 (13)
Geometric parameters (Å, º) top
C1—C21.398 (7)C5—H50.9500
C1—C61.408 (6)C5—C61.388 (6)
C1—C71.462 (6)C6—H60.9500
C2—H20.9500C7—N81.295 (6)
C2—C31.389 (7)C7—Se111.879 (4)
C3—H30.9500N8—N91.388 (5)
C3—C41.387 (7)N9—C101.284 (6)
C4—C51.386 (7)C10—Se111.861 (5)
C4—I132.092 (4)C10—Br121.872 (4)
C2—C1—C6119.6 (4)C6—C5—H5119.9
C2—C1—C7121.0 (4)C1—C6—H6120.3
C6—C1—C7119.4 (4)C5—C6—C1119.4 (4)
C1—C2—H2119.7C5—C6—H6120.3
C3—C2—C1120.5 (5)C1—C7—Se11124.0 (3)
C3—C2—H2119.7N8—C7—C1122.0 (4)
C2—C3—H3120.4N8—C7—Se11114.0 (3)
C4—C3—C2119.2 (5)C7—N8—N9115.4 (4)
C4—C3—H3120.4C10—N9—N8112.5 (4)
C3—C4—I13119.3 (3)N9—C10—Se11116.8 (3)
C5—C4—C3121.1 (4)N9—C10—Br12121.2 (3)
C5—C4—I13119.6 (4)Se11—C10—Br12122.0 (2)
C4—C5—H5119.9C10—Se11—C781.29 (19)
C4—C5—C6120.2 (4)
C1—C2—C3—C40.4 (7)C6—C1—C7—Se11178.9 (3)
C1—C7—N8—N9179.4 (4)C7—C1—C2—C3179.8 (4)
C1—C7—Se11—C10179.4 (4)C7—C1—C6—C5180.0 (4)
C2—C1—C6—C50.0 (7)C7—N8—N9—C100.3 (6)
C2—C1—C7—N8179.5 (4)N8—C7—Se11—C101.1 (3)
C2—C1—C7—Se111.1 (6)N8—N9—C10—Se110.7 (5)
C2—C3—C4—C50.4 (7)N8—N9—C10—Br12179.0 (3)
C2—C3—C4—I13178.9 (3)N9—C10—Se11—C71.0 (4)
C3—C4—C5—C60.2 (7)Se11—C7—N8—N91.1 (5)
C4—C5—C6—C10.0 (7)Br12—C10—Se11—C7178.7 (3)
C6—C1—C2—C30.2 (7)I13—C4—C5—C6178.7 (3)
C6—C1—C7—N80.6 (6)
2-Bromo-5-(4-iodophenyl)-1,3,4-thiadiazole (T4) top
Crystal data top
C8H4BrIN2SDx = 2.401 Mg m3
Mr = 367.00Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 5134 reflections
a = 10.9919 (2) Åθ = 3.3–70.6°
b = 6.9945 (1) ŵ = 30.95 mm1
c = 26.4076 (4) ÅT = 293 K
V = 2030.29 (6) Å3Plate, colourless
Z = 80.05 × 0.04 × 0.01 mm
F(000) = 1360
Data collection top
Rigaku XtaLAB Synergy Custom
diffractometer with a HyPix-Arc 150° detector
1920 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source1802 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.0000 pixels mm-1θmax = 70.7°, θmin = 3.4°
ω scansh = 139
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)
k = 87
Tmin = 0.373, Tmax = 1.000l = 2731
7258 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0219P)2 + 2.6464P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1920 reflectionsΔρmax = 0.57 e Å3
118 parametersΔρmin = 0.67 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6729 (3)0.3732 (4)0.40837 (11)0.0202 (6)
C20.5551 (3)0.4009 (4)0.38896 (11)0.0228 (7)
H20.4876840.3780540.4093750.027*
C30.5392 (3)0.4619 (5)0.33964 (11)0.0252 (7)
H30.4612420.4829850.3270920.030*
C40.6391 (3)0.4915 (5)0.30907 (11)0.0245 (7)
C50.7571 (3)0.4651 (5)0.32710 (11)0.0232 (6)
H50.8238910.4870090.3062630.028*
C60.7730 (3)0.4053 (4)0.37681 (12)0.0217 (6)
H60.8511920.3863820.3892680.026*
C70.6931 (3)0.3097 (5)0.46055 (11)0.0205 (6)
N80.8022 (2)0.2851 (4)0.47936 (9)0.0229 (6)
N90.8006 (2)0.2255 (4)0.52908 (9)0.0236 (6)
C100.6900 (3)0.2081 (5)0.54533 (11)0.0225 (6)
S110.57681 (6)0.25939 (12)0.50282 (3)0.02332 (17)
Br120.65699 (3)0.13399 (5)0.61220 (2)0.02781 (10)
I130.61471 (2)0.58780 (3)0.23455 (2)0.03153 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0209 (14)0.0211 (16)0.0184 (15)0.0008 (12)0.0000 (12)0.0028 (11)
C20.0190 (15)0.0291 (18)0.0204 (15)0.0019 (12)0.0010 (12)0.0040 (12)
C30.0244 (15)0.0303 (18)0.0211 (14)0.0021 (14)0.0046 (13)0.0044 (13)
C40.0322 (16)0.0261 (17)0.0152 (14)0.0011 (14)0.0025 (12)0.0021 (13)
C50.0246 (14)0.0259 (17)0.0192 (14)0.0008 (13)0.0030 (12)0.0013 (13)
C60.0202 (14)0.0236 (16)0.0214 (15)0.0017 (12)0.0003 (12)0.0004 (12)
C70.0158 (13)0.0244 (16)0.0214 (14)0.0011 (13)0.0022 (11)0.0026 (12)
N80.0170 (12)0.0342 (15)0.0175 (12)0.0005 (12)0.0000 (9)0.0004 (11)
N90.0201 (12)0.0331 (15)0.0176 (12)0.0025 (12)0.0008 (10)0.0007 (11)
C100.0221 (14)0.0267 (16)0.0185 (14)0.0021 (13)0.0008 (12)0.0010 (12)
S110.0155 (3)0.0343 (4)0.0201 (3)0.0007 (3)0.0012 (3)0.0040 (3)
Br120.02913 (18)0.0356 (2)0.01864 (17)0.00341 (15)0.00365 (13)0.00393 (13)
I130.04468 (15)0.03386 (14)0.01605 (12)0.00057 (10)0.00390 (8)0.00102 (8)
Geometric parameters (Å, º) top
C1—C21.407 (4)C5—H50.9300
C1—C61.398 (4)C5—C61.388 (4)
C1—C71.465 (4)C6—H60.9300
C2—H20.9300C7—N81.309 (4)
C2—C31.382 (4)C7—S111.733 (3)
C3—H30.9300N8—N91.378 (3)
C3—C41.379 (4)N9—C101.295 (4)
C4—C51.394 (4)C10—S111.714 (3)
C4—I132.097 (3)C10—Br121.876 (3)
C2—C1—C7121.6 (3)C6—C5—H5120.7
C6—C1—C2119.0 (3)C1—C6—H6119.6
C6—C1—C7119.4 (3)C5—C6—C1120.9 (3)
C1—C2—H2119.9C5—C6—H6119.6
C3—C2—C1120.2 (3)C1—C7—S11123.8 (2)
C3—C2—H2119.9N8—C7—C1122.4 (3)
C2—C3—H3120.1N8—C7—S11113.9 (2)
C4—C3—C2119.8 (3)C7—N8—N9113.0 (2)
C4—C3—H3120.1C10—N9—N8110.8 (2)
C3—C4—C5121.4 (3)N9—C10—S11116.4 (2)
C3—C4—I13119.7 (2)N9—C10—Br12121.3 (2)
C5—C4—I13118.8 (2)S11—C10—Br12122.26 (17)
C4—C5—H5120.7C10—S11—C785.92 (14)
C6—C5—C4118.7 (3)
C1—C2—C3—C41.5 (5)C6—C1—C7—S11178.3 (2)
C1—C7—N8—N9179.9 (3)C7—C1—C2—C3179.6 (3)
C1—C7—S11—C10179.7 (3)C7—C1—C6—C5179.8 (3)
C2—C1—C6—C50.5 (5)C7—N8—N9—C100.0 (4)
C2—C1—C7—N8179.3 (3)N8—C7—S11—C100.6 (3)
C2—C1—C7—S111.0 (4)N8—N9—C10—S110.5 (4)
C2—C3—C4—C51.4 (5)N8—N9—C10—Br12178.7 (2)
C2—C3—C4—I13179.2 (2)N9—C10—S11—C70.6 (3)
C3—C4—C5—C60.8 (5)S11—C7—N8—N90.5 (4)
C4—C5—C6—C10.4 (5)Br12—C10—S11—C7178.6 (2)
C6—C1—C2—C31.0 (5)I13—C4—C5—C6178.6 (2)
C6—C1—C7—N81.3 (5)
Halogen- and chalcogen-bond geometries (Å, °) top
TargetRD···AD···ARD···A
T1I12···I133.7477 (6)174.33 (12)
I13···C33.368 (4)89.8 (3)
S11···N83.147 (4)143.32 (17)
S11···N93.236 (4)157.99 (19)
C2—H2···N93.478 (6)121.2 (5)
T2Br12···Br133.4685 (10)169.11 (17)
Se11···N83.060 (5)146.97 (19)
Se11···N93.123 (5)157.99 (19)
C2—H2···N93.690 (8)121.2 (5)
T3Br12···I133.6237 (7)168.76 (13)
Se11···N83.050 (3)146.11 (15)
Se11···N93.129 (3)158.18 (15)
C2—H2···N93.696 (6)121.1 (3)
T4Br12···I133.6141 (7)170.09 (11)
S11···N83.071 (2)147.59 (12)
S11···N93.153 (2)151.79 (12)
C2—H2···N93.646 (4)122.5 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds