Download citation
Download citation
link to html
Three novel chalco­gen-bonded cocrystals featuring 3,4-di­cyano-1,2,5-seleno­diazole (C4N4Se) or 3,4-di­cyano-1,2,5-telluro­diazole (C4N4Te) as chalco­gen-bond donors and hydro­quinone (C6H6O2), tetra­phenyl­phospho­nium chloride (C24H20P+·Cl) or tetra­ethyl­phospho­nium chloride (C8H20P+·Cl) as chalco­gen-bond acceptors have been prepared and characterized by single-crystal X-ray diffraction (XRD), powder X-ray diffraction and 77Se/125Te magic-angle spinning solid-state NMR spectroscopy. The single-crystal XRD results show that the chalco­geno­diazole mol­ecules inter­act with the electron donors through two σ-holes on each of the chalco­gen atoms, which results in highly directional and moderately strong chalco­gen bonds. Powder XRD confirms that the crystalline phases are preserved upon moderate grinding of the samples for solid-state NMR experiments. Measurement of 77Se and 125Te chemical shift tensors via magic-angle spinning solid-state NMR spectroscopy confirms the number of magnetically unique chalco­gen sites in each asymmetric unit and reveals the impact of chalco­gen-bond formation on the local electronic structure. These NMR data are further assessed in the context of analogous data for a wider range of crystalline chalco­gen-bonded systems.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622008518/bs3001sup1.cif
Contains datablocks global, 2c, 2b, 1a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622008518/bs30011asup2.hkl
Contains datablock 1a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622008518/bs30012csup4.hkl
Contains datablock 2c

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622008518/bs30012bsup3.hkl
Contains datablock 2b

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622008518/bs30012csup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622008518/bs30012bsup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622008518/bs30011asup7.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229622008518/bs3001sup8.pdf
Supplementary material

CCDC references: 2174994; 2174995; 2174993

Computing details top

For all structures, data collection: APEX3 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b).

1,2,5-Tellurodiazole-3,4-dicarbonitrile tetraphenylphosphonium chloride (2c) top
Crystal data top
C4N4Te·C24H20P+·ClF(000) = 1200
Mr = 606.50Dx = 1.575 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 18.2538 (5) ÅCell parameters from 9980 reflections
b = 7.3008 (2) Åθ = 2.7–30.5°
c = 20.0497 (5) ŵ = 1.36 mm1
β = 106.867 (2)°T = 208 K
V = 2557.02 (12) Å3Needle, yellow
Z = 40.53 × 0.16 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
6408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and πhi scansθmax = 30.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 2626
Tmin = 0.665, Tmax = 0.746k = 106
58500 measured reflectionsl = 2828
7883 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.025P)2 + 1.3443P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
7883 reflectionsΔρmax = 0.73 e Å3
316 parametersΔρmin = 0.49 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.76837 (2)0.11309 (2)0.40232 (2)0.03137 (4)
Cl10.82995 (4)0.21490 (8)0.44379 (4)0.06429 (18)
P10.53900 (2)0.50383 (6)0.79116 (2)0.02281 (8)
N10.63058 (15)0.2746 (4)0.59019 (11)0.0706 (7)
N20.73064 (9)0.0947 (2)0.48627 (7)0.0318 (3)
N30.71542 (9)0.3628 (2)0.38961 (8)0.0342 (3)
N40.60955 (13)0.6811 (3)0.44978 (12)0.0590 (5)
C10.65878 (13)0.2594 (3)0.54712 (10)0.0442 (5)
C20.69348 (10)0.2427 (3)0.49107 (8)0.0314 (4)
C30.68536 (10)0.3871 (2)0.43973 (9)0.0313 (3)
C40.64358 (12)0.5536 (3)0.44507 (10)0.0401 (4)
C50.51895 (9)0.6486 (2)0.71539 (8)0.0253 (3)
C60.54541 (11)0.6101 (3)0.65862 (9)0.0344 (4)
H60.5745050.5041300.6582300.041*
C70.52839 (12)0.7302 (3)0.60231 (10)0.0443 (5)
H70.5462030.7049170.5637390.053*
C80.48569 (12)0.8857 (3)0.60252 (10)0.0410 (4)
H80.4753890.9669370.5645300.049*
C90.45806 (12)0.9228 (3)0.65808 (10)0.0374 (4)
H90.4280441.0276770.6576440.045*
C100.47469 (11)0.8047 (3)0.71477 (9)0.0328 (4)
H100.4560690.8299960.7528660.039*
C110.55642 (10)0.6521 (2)0.86513 (8)0.0263 (3)
C120.61184 (10)0.7894 (3)0.87283 (9)0.0318 (4)
H120.6392060.8013150.8399240.038*
C130.62606 (11)0.9071 (2)0.92906 (10)0.0347 (4)
H130.6630910.9997400.9345050.042*
C140.58572 (12)0.8883 (3)0.97730 (9)0.0373 (4)
H140.5961010.9672301.0159690.045*
C150.53041 (12)0.7550 (3)0.96921 (9)0.0361 (4)
H150.5029050.7445331.0020630.043*
C160.51505 (10)0.6361 (2)0.91292 (8)0.0294 (3)
H160.4770670.5456480.9072340.035*
C170.45931 (9)0.3566 (2)0.78705 (8)0.0239 (3)
C180.38917 (10)0.3841 (2)0.73768 (9)0.0290 (3)
H180.3825320.4826500.7063280.035*
C190.32895 (11)0.2660 (3)0.73467 (10)0.0375 (4)
H190.2816450.2827940.7006830.045*
C200.33854 (12)0.1233 (3)0.78173 (11)0.0399 (4)
H200.2974590.0438560.7798240.048*
C210.40827 (12)0.0964 (3)0.83176 (10)0.0367 (4)
H210.4141000.0000980.8639900.044*
C220.46904 (10)0.2110 (2)0.83420 (8)0.0301 (3)
H220.5167090.1914740.8673460.036*
C230.62056 (9)0.3594 (2)0.79919 (8)0.0269 (3)
C240.68523 (10)0.3713 (3)0.85649 (10)0.0370 (4)
H240.6880310.4588340.8915130.044*
C250.74562 (12)0.2515 (3)0.86109 (13)0.0516 (6)
H250.7897550.2589600.8994370.062*
C260.74176 (14)0.1230 (3)0.81068 (15)0.0553 (6)
H260.7832760.0435030.8144990.066*
C270.67729 (14)0.1092 (3)0.75417 (13)0.0482 (5)
H270.6750160.0201980.7197430.058*
C280.61616 (11)0.2258 (3)0.74808 (10)0.0348 (4)
H280.5719450.2155530.7099400.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.03376 (6)0.02925 (7)0.03059 (6)0.00399 (5)0.00851 (4)0.00111 (5)
Cl10.0535 (3)0.0394 (3)0.1012 (5)0.0189 (3)0.0244 (3)0.0182 (3)
P10.02465 (19)0.0229 (2)0.02068 (17)0.00148 (15)0.00630 (14)0.00144 (14)
N10.0948 (18)0.0807 (17)0.0481 (11)0.0158 (14)0.0395 (12)0.0028 (11)
N20.0339 (7)0.0317 (8)0.0268 (6)0.0013 (6)0.0042 (6)0.0045 (6)
N30.0409 (8)0.0309 (8)0.0291 (7)0.0061 (7)0.0076 (6)0.0049 (6)
N40.0655 (13)0.0429 (11)0.0709 (14)0.0170 (10)0.0235 (11)0.0014 (10)
C10.0554 (13)0.0454 (12)0.0329 (9)0.0056 (10)0.0145 (9)0.0007 (8)
C20.0347 (9)0.0339 (10)0.0237 (7)0.0006 (7)0.0054 (6)0.0000 (7)
C30.0344 (9)0.0276 (9)0.0284 (8)0.0032 (7)0.0037 (6)0.0005 (7)
C40.0451 (11)0.0361 (10)0.0374 (9)0.0054 (9)0.0094 (8)0.0004 (8)
C50.0265 (7)0.0252 (8)0.0233 (7)0.0005 (6)0.0059 (6)0.0003 (6)
C60.0365 (9)0.0395 (10)0.0306 (8)0.0059 (8)0.0149 (7)0.0030 (8)
C70.0471 (11)0.0583 (14)0.0317 (9)0.0030 (10)0.0181 (8)0.0081 (9)
C80.0402 (10)0.0441 (11)0.0348 (9)0.0046 (9)0.0048 (8)0.0139 (8)
C90.0402 (10)0.0267 (10)0.0398 (9)0.0026 (8)0.0030 (8)0.0043 (7)
C100.0398 (10)0.0278 (9)0.0318 (8)0.0044 (8)0.0121 (7)0.0011 (7)
C110.0307 (8)0.0245 (8)0.0222 (7)0.0012 (6)0.0054 (6)0.0021 (6)
C120.0348 (9)0.0298 (9)0.0303 (8)0.0027 (7)0.0085 (7)0.0009 (7)
C130.0369 (9)0.0248 (9)0.0357 (9)0.0024 (7)0.0003 (7)0.0018 (7)
C140.0481 (11)0.0296 (9)0.0281 (8)0.0054 (8)0.0017 (7)0.0074 (7)
C150.0479 (11)0.0353 (10)0.0266 (8)0.0048 (8)0.0131 (7)0.0039 (7)
C160.0346 (9)0.0273 (9)0.0266 (7)0.0002 (7)0.0093 (6)0.0023 (6)
C170.0271 (7)0.0217 (8)0.0234 (7)0.0020 (6)0.0083 (6)0.0021 (6)
C180.0294 (8)0.0274 (8)0.0278 (7)0.0025 (7)0.0046 (6)0.0023 (7)
C190.0281 (8)0.0389 (11)0.0440 (10)0.0021 (8)0.0082 (7)0.0122 (8)
C200.0409 (10)0.0350 (10)0.0512 (11)0.0116 (8)0.0250 (9)0.0152 (9)
C210.0548 (12)0.0265 (9)0.0358 (9)0.0017 (8)0.0243 (8)0.0008 (7)
C220.0365 (9)0.0286 (9)0.0256 (7)0.0045 (7)0.0093 (7)0.0015 (6)
C230.0246 (7)0.0275 (9)0.0290 (7)0.0026 (6)0.0082 (6)0.0024 (6)
C240.0298 (9)0.0398 (11)0.0380 (9)0.0006 (8)0.0045 (7)0.0053 (8)
C250.0282 (9)0.0591 (15)0.0628 (14)0.0097 (10)0.0056 (9)0.0166 (12)
C260.0435 (12)0.0514 (14)0.0794 (17)0.0227 (11)0.0309 (12)0.0203 (12)
C270.0575 (13)0.0364 (11)0.0617 (13)0.0156 (10)0.0348 (11)0.0056 (10)
C280.0394 (10)0.0322 (10)0.0352 (9)0.0060 (8)0.0144 (7)0.0001 (7)
Geometric parameters (Å, º) top
Te1—N21.9994 (15)C13—C141.382 (3)
Te1—N32.0448 (15)C13—H130.9400
Te1—Cl12.6734 (6)C14—C151.378 (3)
P1—C111.7887 (16)C14—H140.9400
P1—C171.7911 (17)C15—C161.386 (2)
P1—C231.7932 (17)C15—H150.9400
P1—C51.7991 (16)C16—H160.9400
N1—C11.132 (3)C17—C181.387 (2)
N2—C21.295 (2)C17—C221.399 (2)
N3—C31.289 (2)C18—C191.384 (3)
N4—C41.138 (3)C18—H180.9400
C1—C21.446 (3)C19—C201.382 (3)
C2—C31.451 (2)C19—H190.9400
C3—C41.455 (3)C20—C211.387 (3)
C5—C61.388 (2)C20—H200.9400
C5—C101.395 (2)C21—C221.379 (3)
C6—C71.391 (3)C21—H210.9400
C6—H60.9400C22—H220.9400
C7—C81.378 (3)C23—C241.391 (2)
C7—H70.9400C23—C281.400 (2)
C8—C91.377 (3)C24—C251.389 (3)
C8—H80.9400C24—H240.9400
C9—C101.388 (3)C25—C261.366 (4)
C9—H90.9400C25—H250.9400
C10—H100.9400C26—C271.380 (4)
C11—C161.386 (2)C26—H260.9400
C11—C121.400 (2)C27—C281.380 (3)
C12—C131.381 (3)C27—H270.9400
C12—H120.9400C28—H280.9400
N2—Te1—N384.21 (6)C15—C14—C13120.57 (17)
N2—Te1—Cl183.93 (5)C15—C14—H14119.7
N3—Te1—Cl1168.08 (5)C13—C14—H14119.7
C11—P1—C17110.37 (8)C14—C15—C16120.43 (17)
C11—P1—C23109.77 (8)C14—C15—H15119.8
C17—P1—C23107.06 (8)C16—C15—H15119.8
C11—P1—C5106.75 (8)C11—C16—C15119.18 (17)
C17—P1—C5110.50 (7)C11—C16—H16120.4
C23—P1—C5112.42 (8)C15—C16—H16120.4
C2—N2—Te1108.80 (11)C18—C17—C22120.13 (16)
C3—N3—Te1108.54 (12)C18—C17—P1121.02 (13)
N1—C1—C2178.7 (3)C22—C17—P1118.85 (13)
N2—C2—C1119.02 (17)C19—C18—C17119.86 (17)
N2—C2—C3120.12 (16)C19—C18—H18120.1
C1—C2—C3120.84 (17)C17—C18—H18120.1
N3—C3—C2118.32 (16)C20—C19—C18119.86 (18)
N3—C3—C4121.52 (17)C20—C19—H19120.1
C2—C3—C4120.16 (16)C18—C19—H19120.1
N4—C4—C3178.2 (2)C19—C20—C21120.54 (18)
C6—C5—C10119.77 (16)C19—C20—H20119.7
C6—C5—P1122.66 (13)C21—C20—H20119.7
C10—C5—P1117.57 (12)C22—C21—C20119.99 (18)
C5—C6—C7119.28 (18)C22—C21—H21120.0
C5—C6—H6120.4C20—C21—H21120.0
C7—C6—H6120.4C21—C22—C17119.59 (17)
C8—C7—C6120.66 (18)C21—C22—H22120.2
C8—C7—H7119.7C17—C22—H22120.2
C6—C7—H7119.7C24—C23—C28120.18 (17)
C9—C8—C7120.32 (18)C24—C23—P1121.41 (14)
C9—C8—H8119.8C28—C23—P1118.31 (13)
C7—C8—H8119.8C25—C24—C23118.9 (2)
C8—C9—C10119.74 (18)C25—C24—H24120.6
C8—C9—H9120.1C23—C24—H24120.6
C10—C9—H9120.1C26—C25—C24120.9 (2)
C9—C10—C5120.21 (17)C26—C25—H25119.5
C9—C10—H10119.9C24—C25—H25119.5
C5—C10—H10119.9C25—C26—C27120.4 (2)
C16—C11—C12120.36 (15)C25—C26—H26119.8
C16—C11—P1121.35 (13)C27—C26—H26119.8
C12—C11—P1118.27 (13)C26—C27—C28120.1 (2)
C13—C12—C11119.60 (17)C26—C27—H27119.9
C13—C12—H12120.2C28—C27—H27119.9
C11—C12—H12120.2C27—C28—C23119.45 (19)
C12—C13—C14119.84 (18)C27—C28—H28120.3
C12—C13—H13120.1C23—C28—H28120.3
C14—C13—H13120.1
Te1—N2—C2—C1178.40 (15)C13—C14—C15—C160.8 (3)
Te1—N2—C2—C30.0 (2)C12—C11—C16—C151.4 (3)
Te1—N3—C3—C20.7 (2)P1—C11—C16—C15179.64 (14)
Te1—N3—C3—C4179.86 (15)C14—C15—C16—C110.5 (3)
N2—C2—C3—N30.5 (3)C11—P1—C17—C18106.65 (14)
C1—C2—C3—N3177.89 (18)C23—P1—C17—C18133.92 (14)
N2—C2—C3—C4179.99 (17)C5—P1—C17—C1811.18 (16)
C1—C2—C3—C41.6 (3)C11—P1—C17—C2274.06 (14)
C11—P1—C5—C6140.98 (15)C23—P1—C17—C2245.37 (14)
C17—P1—C5—C698.98 (16)C5—P1—C17—C22168.10 (12)
C23—P1—C5—C620.56 (18)C22—C17—C18—C190.6 (2)
C11—P1—C5—C1039.24 (16)P1—C17—C18—C19178.63 (13)
C17—P1—C5—C1080.79 (15)C17—C18—C19—C201.2 (3)
C23—P1—C5—C10159.66 (14)C18—C19—C20—C210.5 (3)
C10—C5—C6—C71.1 (3)C19—C20—C21—C220.9 (3)
P1—C5—C6—C7179.11 (16)C20—C21—C22—C171.5 (3)
C5—C6—C7—C80.1 (3)C18—C17—C22—C210.7 (2)
C6—C7—C8—C91.2 (3)P1—C17—C22—C21179.99 (13)
C7—C8—C9—C101.3 (3)C11—P1—C23—C240.02 (17)
C8—C9—C10—C50.3 (3)C17—P1—C23—C24119.83 (15)
C6—C5—C10—C91.0 (3)C5—P1—C23—C24118.64 (15)
P1—C5—C10—C9179.26 (15)C11—P1—C23—C28176.35 (14)
C17—P1—C11—C164.56 (17)C17—P1—C23—C2856.53 (15)
C23—P1—C11—C16113.21 (15)C5—P1—C23—C2864.99 (16)
C5—P1—C11—C16124.68 (14)C28—C23—C24—C251.5 (3)
C17—P1—C11—C12173.73 (13)P1—C23—C24—C25177.76 (16)
C23—P1—C11—C1268.50 (15)C23—C24—C25—C260.5 (3)
C5—P1—C11—C1253.61 (15)C24—C25—C26—C270.3 (4)
C16—C11—C12—C131.1 (3)C25—C26—C27—C280.2 (4)
P1—C11—C12—C13179.39 (14)C26—C27—C28—C230.8 (3)
C11—C12—C13—C140.2 (3)C24—C23—C28—C271.6 (3)
C12—C13—C14—C151.1 (3)P1—C23—C28—C27178.06 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N10.942.553.397 (3)149
C18—H18···N3i0.942.483.278 (2)142
C24—H24···N2ii0.942.663.485 (2)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+3/2.
1,2,5-Tellurodiazole-3,4-dicarbonitrile tetraethylphosphonium chloride (2b) top
Crystal data top
C4N4Te·C8H20P+·ClZ = 2
Mr = 414.34F(000) = 408
Triclinic, P1Dx = 1.593 Mg m3
a = 6.9500 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5921 (15) ÅCell parameters from 9536 reflections
c = 13.604 (2) Åθ = 2.2–30.5°
α = 102.427 (2)°µ = 1.96 mm1
β = 101.890 (2)°T = 213 K
γ = 91.876 (2)°Plate, yellow
V = 863.8 (2) Å30.72 × 0.35 × 0.31 mm
Data collection top
Bruker APEXII CCD
diffractometer
5740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and πhi scansθmax = 32.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 1010
Tmin = 0.617, Tmax = 0.746k = 1414
20481 measured reflectionsl = 2019
5948 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0118P)2 + 3.3734P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
5948 reflectionsΔρmax = 2.00 e Å3
179 parametersΔρmin = 1.44 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.09776 (3)0.78751 (2)0.14068 (2)0.02687 (6)
Cl10.0000000.5000000.0000000.0513 (4)
Cl20.0000000.0000000.0000000.0631 (5)
P10.69352 (14)0.30361 (10)0.21843 (7)0.03072 (17)
N10.1463 (5)0.9557 (3)0.2638 (2)0.0342 (6)
N20.1952 (5)0.6719 (3)0.2462 (2)0.0330 (6)
N30.2738 (9)1.0727 (6)0.5311 (4)0.0741 (15)
N40.3786 (10)0.6562 (6)0.4970 (4)0.0762 (16)
C10.2461 (7)1.0040 (5)0.4494 (3)0.0464 (9)
C20.2101 (6)0.9088 (4)0.3469 (3)0.0340 (7)
C30.2396 (6)0.7571 (4)0.3366 (3)0.0345 (7)
C40.3174 (8)0.7015 (5)0.4266 (3)0.0485 (10)
C50.6400 (7)0.2837 (5)0.0812 (3)0.0447 (9)
H5A0.7201500.3577620.0646190.054*
H5AB0.6791240.1904320.0493380.054*
C60.4254 (10)0.2944 (9)0.0344 (5)0.082 (2)
H6A0.4111220.2982340.0373440.124*
H6B0.3801160.3804660.0717170.124*
H6C0.3473360.2112030.0389530.124*
C70.6058 (7)0.4660 (4)0.2809 (3)0.0395 (8)
H7A0.4626200.4624060.2559270.047*
H7AB0.6316210.4710970.3552420.047*
C80.6992 (9)0.6007 (5)0.2632 (5)0.0590 (13)
H8A0.6668600.5999150.1902630.089*
H8B0.8412920.6046620.2867300.089*
H8C0.6493340.6839470.3014230.089*
C90.9574 (6)0.3056 (5)0.2575 (4)0.0480 (10)
H9A0.9994290.2158660.2214200.058*
H9AB1.0179880.3841550.2357250.058*
C101.0346 (10)0.3230 (8)0.3728 (5)0.083 (2)
H10A0.9966690.2368630.3930350.125*
H10B0.9791750.4041870.4099430.125*
H10C1.1773110.3389970.3890620.125*
C110.5701 (7)0.1561 (4)0.2504 (4)0.0439 (9)
H11A0.5997510.1687910.3255100.053*
H11B0.4272860.1588490.2274690.053*
C120.6282 (8)0.0105 (5)0.2025 (5)0.0608 (14)
H12A0.6101930.0001740.1285770.091*
H12B0.5461620.0636570.2162090.091*
H12C0.7655310.0017950.2320050.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.03133 (11)0.02183 (9)0.02766 (10)0.00372 (7)0.00701 (7)0.00531 (7)
Cl10.0608 (9)0.0270 (6)0.0644 (10)0.0003 (6)0.0212 (8)0.0000 (6)
Cl20.0891 (13)0.0414 (8)0.0815 (12)0.0247 (8)0.0449 (11)0.0347 (8)
P10.0322 (4)0.0283 (4)0.0333 (4)0.0051 (3)0.0112 (3)0.0064 (3)
N10.0407 (16)0.0250 (13)0.0358 (15)0.0058 (11)0.0087 (12)0.0035 (11)
N20.0414 (16)0.0273 (13)0.0323 (14)0.0066 (11)0.0086 (12)0.0099 (11)
N30.100 (4)0.067 (3)0.041 (2)0.019 (3)0.004 (2)0.008 (2)
N40.125 (5)0.065 (3)0.043 (2)0.029 (3)0.016 (3)0.024 (2)
C10.052 (2)0.041 (2)0.039 (2)0.0064 (18)0.0028 (18)0.0009 (16)
C20.0368 (17)0.0307 (16)0.0314 (16)0.0035 (13)0.0066 (13)0.0010 (13)
C30.0404 (18)0.0329 (16)0.0318 (16)0.0064 (14)0.0099 (14)0.0087 (13)
C40.065 (3)0.051 (2)0.0308 (18)0.009 (2)0.0108 (18)0.0107 (17)
C50.048 (2)0.053 (2)0.0363 (19)0.0048 (19)0.0132 (17)0.0127 (17)
C60.076 (4)0.098 (5)0.057 (3)0.018 (4)0.021 (3)0.014 (3)
C70.050 (2)0.0304 (16)0.044 (2)0.0082 (15)0.0221 (17)0.0083 (15)
C80.066 (3)0.032 (2)0.088 (4)0.006 (2)0.038 (3)0.012 (2)
C90.0339 (19)0.037 (2)0.068 (3)0.0059 (15)0.0054 (19)0.0054 (19)
C100.066 (4)0.077 (4)0.081 (4)0.017 (3)0.024 (3)0.001 (3)
C110.052 (2)0.0333 (18)0.054 (2)0.0032 (16)0.025 (2)0.0120 (17)
C120.055 (3)0.031 (2)0.099 (4)0.0029 (18)0.032 (3)0.007 (2)
Geometric parameters (Å, º) top
Te1—N22.020 (3)C7—C81.514 (6)
Te1—N12.023 (3)C7—H7A0.9800
P1—C51.793 (4)C7—H7AB0.9800
P1—C71.796 (4)C8—H8A0.9700
P1—C91.800 (4)C8—H8B0.9700
P1—C111.807 (4)C8—H8C0.9700
N1—C21.305 (5)C9—C101.520 (8)
N2—C31.293 (5)C9—H9A0.9800
N3—C11.138 (6)C9—H9AB0.9800
N4—C41.145 (6)C10—H10A0.9700
C1—C21.460 (5)C10—H10B0.9700
C2—C31.457 (5)C10—H10C0.9700
C3—C41.450 (6)C11—C121.514 (6)
C5—C61.512 (7)C11—H11A0.9800
C5—H5A0.9800C11—H11B0.9800
C5—H5AB0.9800C12—H12A0.9700
C6—H6A0.9700C12—H12B0.9700
C6—H6B0.9700C12—H12C0.9700
C6—H6C0.9700
N2—Te1—N184.57 (13)P1—C7—H7AB108.8
C5—P1—C7110.9 (2)H7A—C7—H7AB107.6
C5—P1—C9106.0 (2)C7—C8—H8A109.5
C7—P1—C9111.1 (2)C7—C8—H8B109.5
C5—P1—C11109.7 (2)H8A—C8—H8B109.5
C7—P1—C11107.54 (19)C7—C8—H8C109.5
C9—P1—C11111.5 (2)H8A—C8—H8C109.5
C2—N1—Te1108.5 (2)H8B—C8—H8C109.5
C3—N2—Te1108.7 (2)C10—C9—P1114.5 (4)
N3—C1—C2176.8 (6)C10—C9—H9A108.6
N1—C2—C3118.8 (3)P1—C9—H9A108.6
N1—C2—C1121.4 (4)C10—C9—H9AB108.6
C3—C2—C1119.7 (4)P1—C9—H9AB108.6
N2—C3—C4120.0 (4)H9A—C9—H9AB107.6
N2—C3—C2119.4 (3)C9—C10—H10A109.5
C4—C3—C2120.6 (4)C9—C10—H10B109.5
N4—C4—C3179.3 (5)H10A—C10—H10B109.5
C6—C5—P1114.1 (4)C9—C10—H10C109.5
C6—C5—H5A108.7H10A—C10—H10C109.5
P1—C5—H5A108.7H10B—C10—H10C109.5
C6—C5—H5AB108.7C12—C11—P1113.9 (3)
P1—C5—H5AB108.7C12—C11—H11A108.8
H5A—C5—H5AB107.6P1—C11—H11A108.8
C5—C6—H6A109.5C12—C11—H11B108.8
C5—C6—H6B109.5P1—C11—H11B108.8
H6A—C6—H6B109.5H11A—C11—H11B107.7
C5—C6—H6C109.5C11—C12—H12A109.5
H6A—C6—H6C109.5C11—C12—H12B109.5
H6B—C6—H6C109.5H12A—C12—H12B109.5
C8—C7—P1114.0 (3)C11—C12—H12C109.5
C8—C7—H7A108.8H12A—C12—H12C109.5
P1—C7—H7A108.8H12B—C12—H12C109.5
C8—C7—H7AB108.8
Te1—N1—C2—C32.1 (4)C11—P1—C5—C665.2 (5)
Te1—N1—C2—C1175.9 (3)C5—P1—C7—C861.2 (4)
Te1—N2—C3—C4178.8 (3)C9—P1—C7—C856.5 (5)
Te1—N2—C3—C21.4 (4)C11—P1—C7—C8178.8 (4)
N1—C2—C3—N22.6 (6)C5—P1—C9—C10179.5 (4)
C1—C2—C3—N2175.5 (4)C7—P1—C9—C1058.9 (5)
N1—C2—C3—C4177.7 (4)C11—P1—C9—C1061.1 (5)
C1—C2—C3—C44.3 (6)C5—P1—C11—C1259.0 (5)
C7—P1—C5—C653.5 (5)C7—P1—C11—C12179.7 (4)
C9—P1—C5—C6174.3 (4)C9—P1—C11—C1258.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cl1i0.982.733.684 (5)164
C7—H7AB···N4ii0.982.583.451 (6)148
C11—H11A···N4ii0.982.603.460 (7)147
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
1,2,5-Selenodiazole-3,4-dicarbonitrile–hydroquinone (1/1) (1a) top
Crystal data top
2C4N4Se·C6H6O2F(000) = 460
Mr = 476.19Dx = 1.872 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.2634 (16) ÅCell parameters from 5992 reflections
b = 7.4089 (19) Åθ = 3.0–37.6°
c = 18.320 (5) ŵ = 4.41 mm1
β = 96.420 (5)°T = 203 K
V = 844.8 (4) Å3Plate, orange
Z = 20.55 × 0.49 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
3289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω and πhi scansθmax = 38.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 1010
Tmin = 0.478, Tmax = 0.747k = 1212
17649 measured reflectionsl = 3131
4607 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0302P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.63 e Å3
4607 reflectionsΔρmin = 0.55 e Å3
120 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0216 (11)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.72849 (2)0.36938 (2)0.97332 (2)0.02089 (5)
O10.38261 (18)0.32324 (16)0.54309 (6)0.0253 (2)
H10.4101460.3262070.5884590.038*
N10.9199 (2)0.48058 (17)0.92321 (6)0.0212 (2)
N21.0510 (3)0.6182 (2)0.75384 (9)0.0459 (5)
N30.5560 (2)0.31610 (19)0.89180 (7)0.0250 (3)
N40.4783 (3)0.3335 (3)0.70232 (9)0.0428 (4)
C10.9651 (3)0.5513 (2)0.79843 (8)0.0289 (3)
C20.8484 (2)0.47000 (19)0.85316 (7)0.0203 (3)
C30.6477 (2)0.3788 (2)0.83607 (8)0.0217 (3)
C40.5494 (3)0.3530 (2)0.76190 (9)0.0293 (3)
C50.1915 (2)0.41095 (19)0.52294 (8)0.0189 (2)
C60.1351 (2)0.44688 (19)0.44862 (7)0.0198 (3)
H60.2261850.4107570.4138720.024*
C70.0553 (2)0.53587 (19)0.42603 (7)0.0204 (3)
H70.0927490.5604880.3759020.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.02157 (8)0.02412 (8)0.01721 (7)0.00006 (6)0.00320 (5)0.00112 (5)
O10.0211 (5)0.0326 (6)0.0213 (5)0.0056 (4)0.0022 (4)0.0012 (4)
N10.0215 (6)0.0228 (6)0.0195 (5)0.0017 (5)0.0027 (4)0.0020 (4)
N20.0533 (11)0.0546 (11)0.0321 (8)0.0183 (9)0.0149 (8)0.0007 (7)
N30.0206 (6)0.0314 (6)0.0226 (6)0.0034 (5)0.0011 (5)0.0019 (5)
N40.0370 (9)0.0612 (11)0.0279 (7)0.0035 (8)0.0064 (7)0.0023 (7)
C10.0309 (8)0.0328 (8)0.0237 (7)0.0070 (7)0.0064 (6)0.0021 (6)
C20.0212 (6)0.0216 (6)0.0185 (6)0.0000 (5)0.0044 (5)0.0003 (5)
C30.0196 (6)0.0259 (7)0.0191 (6)0.0011 (6)0.0000 (5)0.0002 (5)
C40.0249 (8)0.0369 (9)0.0251 (7)0.0006 (7)0.0010 (6)0.0020 (6)
C50.0177 (6)0.0183 (6)0.0200 (6)0.0004 (5)0.0003 (5)0.0010 (5)
C60.0197 (6)0.0229 (7)0.0170 (6)0.0008 (5)0.0034 (5)0.0025 (5)
C70.0231 (7)0.0224 (6)0.0154 (6)0.0001 (5)0.0006 (5)0.0013 (5)
Geometric parameters (Å, º) top
Se1—N31.7869 (13)C1—C21.437 (2)
Se1—N11.7901 (13)C2—C31.431 (2)
O1—C51.3760 (19)C3—C41.440 (2)
O1—H10.8300C5—C7i1.391 (2)
N1—C21.3134 (18)C5—C61.3934 (19)
N2—C11.141 (2)C6—C71.385 (2)
N3—C31.311 (2)C6—H60.9400
N4—C41.141 (2)C7—H70.9400
N3—Se1—N192.87 (6)N4—C4—C3177.64 (19)
C5—O1—H1109.5O1—C5—C7i122.27 (13)
C2—N1—Se1107.40 (10)O1—C5—C6118.04 (13)
C3—N3—Se1107.20 (10)C7i—C5—C6119.68 (13)
N2—C1—C2177.6 (2)C7—C6—C5119.90 (13)
N1—C2—C3115.92 (13)C7—C6—H6120.0
N1—C2—C1120.83 (14)C5—C6—H6120.0
C3—C2—C1123.23 (13)C6—C7—C5i120.42 (12)
N3—C3—C2116.60 (13)C6—C7—H7119.8
N3—C3—C4120.63 (14)C5i—C7—H7119.8
C2—C3—C4122.77 (14)
N3—Se1—N1—C20.58 (11)C1—C2—C3—N3177.88 (15)
N1—Se1—N3—C30.71 (11)N1—C2—C3—C4178.91 (14)
Se1—N1—C2—C30.32 (16)C1—C2—C3—C43.0 (2)
Se1—N1—C2—C1178.50 (12)O1—C5—C6—C7179.61 (13)
Se1—N3—C3—C20.67 (17)C7i—C5—C6—C70.3 (2)
Se1—N3—C3—C4178.50 (12)C5—C6—C7—C5i0.3 (2)
N1—C2—C3—N30.2 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N40.832.082.913 (2)180
Chalcogen bond geometriesa top
CocrystalCh···X distance (Å)N—Ch···X angle (°)Nc
1a2.997 (1) (X = O)174.41 (5)0.88
1a2.957 (1) (X = N)162.97 (5)0.86
2b2.9664 (1) (X = Cl1)164.87 (5)0.77
2b3.0842 (1) (X = Cl2)171.04 (5)0.80
2c2.6733 (6) (X = Cl)168.08 (5)0.69
2c3.959 (X = Ph)159.10.87
(a) Van der Waals radii (Å) used: Te 2.06, Se 1.90, Cl- 1.81, O 1.52, and N 1.55 (Bondi, 1964; Shannon, 1976).
Selenium-77 and tellurium-125 chemical shift tensor dataa top
CompoundNucleusδiso (ppm)Ω (ppm)κδ11 (ppm)δ22 (ppm)δ33 (ppm)
1b,c(site 1)77Se1592.2(0.1)472 (5)0.05(0.01)1824 (4)1600 (2)1352 (3)
1b,c(site 2)77Se1548.7(0.1)456 (3)-0.47(0.01)1812 (3)1477 (1)1356 (2)
1a77Se1601 (2)466 (10)-0.11(0.02)1849 (4)1582 (3)1366 (3)
2b125Te2332.8(0.1)1268 (3)0.49(0.01)2863 (5)2540 (3)1595 (4)
2b125Te2385 (1)955 (10)0.72(0.02)2746 (3)2614 (2)1791 (2)
2c125Te2160 (1)966 (10)0.23(0.02)2606 (4)2234 (3)1640 (3)
Notes: (a) errors given are estimated from independently fitting data acquired at 9.4 and 11.75 T using an iterative Herzfeld–Berger routine. (b) Data from Kumar et al. (2020a). (c) Two crystallographic sites.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds