Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, K2[CoII(H2O)6]2[V10O28]·4H2O, was obtained by reacting CoCl2 with KVO3 and it was found to crystallize in the triclinic system in space group P\overline 1. The V...V distances are in the range 3.050 (1)–3.291 (2) Å; the four types of V—O bond length are in the ranges 1.604 (3)–1.608 (3) (Ot), 1.902 (3)–2.006 (3) (Oc), 1.678 (3)–2.054 (3) (Ob) and 2.105 (3)–2.342 (3) Å (Oh).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803006317/br6089sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803006317/br6089Isup2.hkl
Contains datablock I

Comment top

The decavanadate anion, [V10O28]6−, is a very stable and typical isopolyanion species of vanadium. Since its crystal structure was reported by Evans (1966), structures of many salts have been characterized. Crystal structures of double salts, e.g. K2[Zn(H2O)6]2[V10O28]·4H2O (Evans, 1966), (NH4)2[Co2[V10O28].16H2O (Nowogrocki et al., 1997), [Na(H2O)3]2[Ni(H2O)]2[V10O28]·4H2O, (Higami et al., 2002), and Na4[Ni(H2O)6][[V10O28].17H2O (Sun et al., 2002), consisting of transition metal and alkali metal have been reported. The structure of the title compound, K2[CoII(H2O)6]2[V10O28]·4H2O, (I), is isostructural with K2[Zn(H2O)6]2[V10O28]·4H2O (Evans, 1966).

The configuration of the polyanion is shown in Fig. 1. The centrosymmetric polyanion consists of five independent [VO6] octahedra sharing edges with approximate D2 h symmetry. The O atoms in the anion can be divided into four groups by the environment of coordination, viz. Ot, Ob, Oc, and Oh, where Ot represents a terminal O atom bound to a V atom, Ob represents a doubly bridging O atoms bound to two V atoms, Oc represents a triply bridging O atoms bound to three V atoms, and Oh represents a central O atom coordinated to six V atoms. The V···V distances are in the range 3.050 (1)–3.291 (2) Å; four types of V—O bond length are in the ranges 1.604 (3)–1.608 (3) (Ot), 1.902 (3)–2.006 (3) (Oc), 1.678 (3)–2.054 (3)(Ob) and 2.105 (3)–2.342 (3) Å (Oh). The bond lengths and angles of [V10O28]6− shows the similar trends to those found in the reference literature. The framework of [V10O28]6− has been studied in detail previously (Evans, 1966; Nowogrocki et al., 1997).

Fig. 2 shows the crystal packing of (I) with the hydrogen-bonding interactions. All the O atoms of the anion, except Oh1, Oc3,Ob6, Ot13 and Ot14, form hydrogen bonds with water molecules. The [V10O28]6− and [Co(H2O)6]2+ ions are linked together by strong hydrogen bonds. The Co2+ ion is surrounded by six water molecules in the form of a regular octahedron, with distances ranging from 2.072 (3) to 2.111 (3) Å. The K+ ion is coordinated to eight O atoms, with distances in the range 2.756 (4)–3.030 (3) Å. A list of hydrogen-bond distances involving water molecules below 3.1 Å is given in Table 2.

Experimental top

Compound (I) was obtained by mixing hot aqueous solutions of KVO3 (0.5 g per 20 ml) and CoCl2 (0.1 g per 20 ml), and adjusting the pH to about 5.0 with 3 M HNO3. The solution was concentrated to about 20 ml by heating in a water bath. After a day, crystals of (I) were isolated at room temperature.

Refinement top

All H atoms were placed in calculated positions, with O—H distances ranging from 0.85 to 1.06 Å and O—H—O angles ranging from 85 to 170°. They were included in the refinement in riding-motion approximation, with Uiso(H) = 1.2Ueq(O). The highest peak in the difference map is 1.26 Å from H5b and the largest hole is 0.80 Å from V3.

Computing details top

Data collection: STADI4 (Stoe & Cie, 1996); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The polyanion structure in K2[CoII(H2O)6]2[V10O28]·4H2O. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) 1 − x, 1 − y, 1 − z.]
[Figure 2] Fig. 2. Unit-cell packing of K2[CoII(H2O)6]2[V10O28]·4H2O. Probable O···O hydrogen bonds are shown in red broken lines. [Symmetry code: (i) 1 − x, 1 − y, 1 − z; (ii) −1 + x, y, z; (iii) x, y, −1 + z; (iv) 1 − x, 1 − y, −z; (v) x, −1 + y, z; (vi) −x, 1 − y, 1 − z; (vii) 1 + x, y, z; (viii) x, y, 1 + z; (ix) 1 − x, −y, 1 − z.]
(I) top
Crystal data top
K2[Co(H2O)6]2[V10O28]·4H2OZ = 1
Mr = 1441.72F(000) = 706
Triclinic, P1Dx = 2.692 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 10.762 (2) ÅCell parameters from 28 reflections
b = 11.122 (3) Åθ = 9.5–10.4°
c = 8.771 (2) ŵ = 3.78 mm1
α = 105.12 (2)°T = 298 K
β = 109.379 (18)°Triclinic, pale brown
γ = 65.112 (18)°0.13 × 0.10 × 0.09 mm
V = 889.3 (4) Å3
Data collection top
Stoe Stadi-4
diffractometer
3403 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ω/2–θ scansh = 1313
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1996)
k = 1413
Tmin = 0.591, Tmax = 0.704l = 011
4092 measured reflections3 standard reflections every 60 min
4092 independent reflections intensity decay: 3.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.7547P]
where P = (Fo2 + 2Fc2)/3
4092 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
K2[Co(H2O)6]2[V10O28]·4H2Oγ = 65.112 (18)°
Mr = 1441.72V = 889.3 (4) Å3
Triclinic, P1Z = 1
a = 10.762 (2) ÅMo Kα radiation
b = 11.122 (3) ŵ = 3.78 mm1
c = 8.771 (2) ÅT = 298 K
α = 105.12 (2)°0.13 × 0.10 × 0.09 mm
β = 109.379 (18)°
Data collection top
Stoe Stadi-4
diffractometer
3403 reflections with I > 2σ(I)
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1996)
Rint = 0.000
Tmin = 0.591, Tmax = 0.7043 standard reflections every 60 min
4092 measured reflections intensity decay: 3.6%
4092 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.12Δρmax = 0.54 e Å3
4092 reflectionsΔρmin = 0.67 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.73135 (5)0.78797 (5)0.22397 (6)0.01776 (13)
V10.21943 (6)0.55217 (6)0.38463 (8)0.01514 (14)
V20.44893 (6)0.27453 (6)0.35229 (7)0.01450 (14)
V30.50332 (6)0.52219 (6)0.32330 (7)0.01313 (13)
V40.73705 (6)0.24400 (6)0.30740 (8)0.01748 (14)
V50.72672 (6)0.19784 (6)0.63300 (8)0.01756 (14)
K0.08436 (10)0.22436 (10)0.31861 (12)0.0319 (2)
Oh10.5993 (2)0.3789 (2)0.4847 (3)0.0136 (5)
Oc20.6429 (2)0.5906 (2)0.4773 (3)0.0143 (5)
Oc30.3624 (2)0.4455 (2)0.2592 (3)0.0142 (5)
Ob40.1578 (3)0.6545 (2)0.5641 (3)0.0175 (5)
Ob50.5692 (3)0.2033 (2)0.2210 (3)0.0179 (5)
Ob60.6089 (3)0.4152 (3)0.2034 (3)0.0172 (5)
Ob70.4039 (3)0.6627 (3)0.2322 (3)0.0178 (5)
Ob80.5611 (3)0.1637 (2)0.5078 (3)0.0173 (5)
Ob90.8046 (3)0.1282 (3)0.4564 (3)0.0193 (5)
Ob100.8375 (3)0.3037 (3)0.7200 (3)0.0186 (5)
Ot110.1026 (3)0.4849 (3)0.2944 (3)0.0237 (6)
Ot120.3274 (3)0.2140 (3)0.2596 (3)0.0225 (6)
Ot130.8226 (3)0.1603 (3)0.1711 (4)0.0270 (6)
Ot140.8068 (3)0.0789 (3)0.7410 (4)0.0294 (7)
Ow10.8948 (3)0.8571 (3)0.3700 (4)0.0244 (6)
H1a0.98240.81930.34540.029*
H1b0.86090.94970.37720.029*
Ow20.8227 (3)0.6302 (3)0.3619 (4)0.0253 (6)
H2a0.77790.60620.40490.030*
H2b0.89970.55560.31350.030*
Ow30.6271 (3)0.8983 (3)0.4051 (4)0.0319 (7)
H3a0.55600.87790.41870.038*
H3b0.60790.99570.42940.038*
Ow40.6568 (3)0.9393 (3)0.0825 (4)0.0290 (6)
H4a0.72130.94380.03710.035*
H4b0.59981.02060.09530.035*
Ow50.8480 (3)0.6640 (3)0.0553 (4)0.0333 (7)
H5a0.90140.69970.05950.040*
H5b0.85440.58020.02740.040*
Ow60.5635 (4)0.7279 (4)0.0932 (4)0.0449 (9)
H6a0.50120.75830.01670.054*
H6b0.50340.71660.13560.054*
Ow70.1544 (4)0.4081 (3)0.0684 (4)0.0417 (8)
H7a0.25100.40590.07250.050*
H7b0.16100.35730.03820.050*
Ow80.0784 (4)0.1119 (4)0.0022 (4)0.0465 (9)
H8a0.12250.15720.03610.056*
H8b0.02120.14740.05780.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0183 (2)0.0171 (2)0.0192 (3)0.0066 (2)0.00568 (19)0.00332 (19)
V10.0103 (3)0.0148 (3)0.0198 (3)0.0044 (2)0.0027 (2)0.0033 (2)
V20.0127 (3)0.0136 (3)0.0180 (3)0.0058 (2)0.0044 (2)0.0011 (2)
V30.0125 (3)0.0143 (3)0.0142 (3)0.0051 (2)0.0041 (2)0.0034 (2)
V40.0146 (3)0.0171 (3)0.0209 (3)0.0046 (2)0.0079 (2)0.0007 (2)
V50.0143 (3)0.0151 (3)0.0228 (3)0.0035 (2)0.0031 (2)0.0073 (2)
K0.0255 (5)0.0412 (6)0.0339 (5)0.0148 (4)0.0127 (4)0.0018 (4)
Oh10.0119 (11)0.0139 (12)0.0163 (12)0.0052 (9)0.0038 (9)0.0033 (9)
Oc20.0122 (11)0.0143 (12)0.0177 (12)0.0047 (9)0.0041 (9)0.0042 (9)
Oc30.0140 (11)0.0157 (12)0.0141 (12)0.0062 (10)0.0033 (9)0.0030 (9)
Ob40.0130 (12)0.0175 (12)0.0228 (13)0.0045 (10)0.0071 (10)0.0027 (10)
Ob50.0190 (12)0.0157 (12)0.0202 (13)0.0082 (10)0.0072 (10)0.0014 (10)
Ob60.0164 (12)0.0183 (13)0.0174 (13)0.0048 (10)0.0069 (10)0.0025 (10)
Ob70.0162 (12)0.0193 (13)0.0186 (13)0.0061 (10)0.0034 (10)0.0057 (10)
Ob80.0169 (12)0.0137 (12)0.0225 (13)0.0055 (10)0.0052 (10)0.0045 (10)
Ob90.0167 (12)0.0145 (12)0.0258 (14)0.0040 (10)0.0054 (11)0.0043 (10)
Ob100.0157 (12)0.0183 (13)0.0220 (13)0.0062 (10)0.0028 (10)0.0057 (10)
Ot110.0172 (13)0.0248 (14)0.0301 (15)0.0109 (11)0.0020 (11)0.0054 (12)
Ot120.0198 (13)0.0251 (14)0.0255 (14)0.0135 (11)0.0051 (11)0.0003 (11)
Ot130.0254 (15)0.0271 (15)0.0306 (16)0.0096 (12)0.0148 (13)0.0025 (12)
Ot140.0281 (15)0.0220 (14)0.0373 (17)0.0057 (12)0.0029 (13)0.0162 (13)
Ow10.0156 (13)0.0184 (13)0.0364 (16)0.0058 (11)0.0043 (12)0.0031 (12)
Ow20.0242 (14)0.0223 (14)0.0348 (16)0.0047 (12)0.0129 (12)0.0122 (12)
Ow30.0385 (17)0.0217 (15)0.0473 (19)0.0139 (13)0.0297 (15)0.0055 (13)
Ow40.0335 (16)0.0208 (14)0.0324 (16)0.0073 (13)0.0087 (13)0.0072 (12)
Ow50.0393 (18)0.0296 (16)0.0314 (17)0.0096 (14)0.0174 (14)0.0011 (13)
Ow60.049 (2)0.084 (3)0.0267 (17)0.052 (2)0.0029 (15)0.0161 (17)
Ow70.047 (2)0.0389 (19)0.039 (2)0.0213 (17)0.0096 (16)0.0031 (15)
Ow80.053 (2)0.057 (2)0.038 (2)0.0292 (19)0.0136 (17)0.0032 (17)
Geometric parameters (Å, º) top
V1—V23.050 (1)V2—Ob51.811 (3)
V1—V33.142 (1)V2—Ob81.836 (3)
V1—V3i3.179 (1)V2—Ot121.604 (3)
V1—V4i3.084 (1)V3—Oh12.105 (2)
V1—V5i3.119 (1)V3—Oh1i2.124 (2)
V2—V33.133 (1)V3—Oc21.933 (2)
V2—V3i3.182 (1)V3—Oc31.902 (2)
V2—V43.121 (1)V3—Ob61.678 (3)
V2—V53.129 (1)V3—Ob71.704 (3)
V3—V3i3.291 (1)V4—Oh12.304 (2)
V3—V43.062 (1)V4—Ob62.054 (3)
V3—V5i3.081 (1)V4—Ob4i1.841 (3)
V4—V53.075 (1)V4—Ob51.908 (3)
V4—V1i3.084 (1)V4—Ob91.832 (3)
Co—Ow12.111 (3)V4—Ot131.604 (3)
Co—Ow22.092 (3)V5—Oh12.342 (3)
Co—Ow32.072 (3)V5—Ob7i2.022 (3)
Co—Ow42.076 (3)V5—Ob81.892 (3)
Co—Ow52.092 (3)V5—Ob91.841 (3)
Co—Ow62.066 (3)V5—Ob101.870 (3)
V1—Oh1i2.241 (2)V5—OT141.594 (3)
V1—Oc2i2.004 (3)K—Ob4ii2.786 (3)
V1—Oc31.973 (2)K—Ow82.756 (4)
V1—Ob41.826 (3)K—Ot113.051 (3)
V1—Ob10i1.832 (3)K—Ot122.782 (3)
V1—Ot111.608 (3)K—Ot13iii2.984 (3)
V2—Oh12.224 (2)K—Ot14iv3.030 (3)
V2—Oc2i2.006 (3)K—Ow1i3.008 (3)
V2—Oc31.992 (3)K—Ow2i2.934 (3)
V2—V1—V4i119.88 (3)Ot12—V2—Oh1174.02 (12)
V2—V1—V5i119.67 (3)Ob5—V2—Oh180.86 (10)
V2—V1—V360.76 (3)Ob8—V2—Oh181.28 (10)
V4i—V1—V390.18 (3)Oc3—V2—Oh176.14 (10)
V5i—V1—V358.94 (2)Oc2i—V2—Oh175.88 (9)
V2—V1—V3i61.39 (3)Ob6—V3—Ob7107.18 (13)
V3—V1—V3i62.75 (3)Ob6—V3—Oc398.84 (12)
V1—V2—V4119.64 (3)Ob7—V3—Oc397.50 (11)
V1—V2—V5119.72 (3)Ob6—V3—Oc296.46 (12)
V4—V2—V558.95 (3)Ob7—V3—Oc296.41 (12)
V1—V2—V361.07 (3)Oc3—V3—Oc2155.25 (10)
V4—V2—V358.63 (2)Ob6—V3—Oh187.87 (11)
V5—V2—V390.13 (3)Ob7—V3—Oh1164.90 (11)
V1—V2—V3i61.30 (3)Oc3—V3—Oh180.97 (10)
V4—V2—V3i88.81 (3)Oc2—V3—Oh180.28 (10)
V5—V2—V3i58.43 (3)Ob6—V3—Oh1i165.58 (11)
V3—V2—V3i62.82 (3)Ob7—V3—Oh1i87.13 (11)
V4—V3—V5i175.71 (3)Oc3—V3—Oh1i80.58 (10)
V5i—V3—V2118.30 (3)Oc2—V3—Oh1i79.78 (10)
V4—V3—V1118.59 (3)Oh1—V3—Oh1i77.80 (10)
V5i—V3—V160.16 (3)Ot13—V4—Ob9103.26 (14)
V2—V3—V158.17 (2)Ot13—V4—Ob4i102.36 (13)
V4—V3—V3i87.84 (4)Ob9—V4—Ob4i93.31 (12)
V2—V3—V3i59.31 (3)Ot13—V4—Ob5101.55 (13)
V1—V3—V3i59.17 (3)Ob9—V4—Ob590.24 (12)
V4—V3—V4i131.78 (3)Ob4i—V4—Ob5154.31 (11)
V2—V3—V4i87.78 (3)Ot13—V4—Ob699.96 (13)
V1—V3—V4i44.38 (2)Ob9—V4—Ob6156.62 (11)
V3—V4—V592.49 (3)Ob4i—V4—Ob684.27 (11)
V3—V4—V260.88 (3)Ob5—V4—Ob682.49 (11)
V5—V4—V260.66 (3)Ot13—V4—Oh1174.26 (13)
V1i—V4—V291.57 (3)Ob9—V4—Oh182.31 (10)
V4—V5—V3i91.52 (3)Ob4i—V4—Oh178.44 (10)
V4—V5—V1i59.72 (3)Ob5—V4—Oh176.84 (10)
V4—V5—V260.39 (3)Ob6—V4—Oh174.41 (9)
V3i—V5—V261.64 (3)Ot14—V5—Ob9102.42 (14)
V1i—V5—V290.76 (3)Ot14—V5—Ob10102.87 (14)
V4—V5—V343.64 (2)Ob9—V5—Ob1090.62 (12)
V3i—V5—V347.90 (3)Ot14—V5—Ob8102.06 (14)
V1i—V5—V345.81 (2)Ob9—V5—Ob890.61 (12)
V2—V5—V344.97 (2)Ob10—V5—Ob8154.16 (11)
Ow6—Co—Ow390.84 (14)Ot14—V5—Ob7i102.00 (14)
Ow6—Co—Ow490.92 (13)Ob9—V5—Ob7i155.58 (11)
Ow3—Co—Ow497.41 (12)Ob10—V5—Ob7i84.68 (11)
Ow6—Co—Ow590.44 (14)Ob8—V5—Ob7i83.60 (11)
Ow3—Co—Ow5174.88 (13)Ot14—V5—Oh1176.47 (13)
Ow4—Co—Ow587.52 (12)Ob9—V5—Oh181.04 (10)
Ow6—Co—Ow291.95 (13)Ob10—V5—Oh177.68 (10)
Ow3—Co—Ow286.36 (12)Ob8—V5—Oh177.02 (10)
Ow4—Co—Ow2175.23 (11)Ob7i—V5—Oh174.54 (9)
Ow5—Co—Ow288.65 (12)V3—Oh1—V3i102.20 (10)
Ow6—Co—Ow1175.99 (13)V3—Oh1—V292.69 (9)
Ow3—Co—Ow185.15 (12)V3i—Oh1—V294.05 (9)
Ow4—Co—Ow189.58 (12)V3—Oh1—V1i93.95 (9)
Ow5—Co—Ow193.56 (12)V2—Oh1—V1i169.85 (12)
Ow2—Co—Ow187.82 (11)V3—Oh1—V487.86 (9)
Ot11—V1—Ob4102.41 (13)V3i—Oh1—V4169.79 (12)
Ot11—V1—Ob10i104.73 (13)V2—Oh1—V487.13 (9)
Ob4—V1—Ob10i93.80 (12)V1i—Oh1—V485.46 (8)
Ot11—V1—Oc399.93 (13)V3—Oh1—V5170.73 (12)
Ob4—V1—Oc3155.06 (11)V3i—Oh1—V587.07 (9)
Ob10i—V1—Oc391.10 (11)V2—Oh1—V586.48 (8)
Ot11—V1—Oc2i98.16 (13)V1i—Oh1—V585.73 (8)
Ob4—V1—Oc2i89.15 (11)V4—Oh1—V582.88 (8)
Oc3—V1—Oc2i76.79 (10)V3—Oc2—V1i107.68 (11)
Ot11—V1—Oh1i173.15 (12)V3—Oc2—V2i107.71 (11)
Ob4—V1—Oh1i80.43 (10)V3—Oc3—V1108.39 (12)
Oc3—V1—Oh1i76.19 (9)V3—Oc3—V2107.14 (12)
Ot12—V2—Ob5103.42 (13)V1—Oc3—V2100.61 (11)
Ot12—V2—Ob8102.27 (13)V1—Ob4—V4i114.48 (13)
Ob5—V2—Ob895.51 (12)V1—Ob4—Kii141.57 (13)
Ot12—V2—Oc399.48 (13)V2—Ob5—V4114.05 (13)
Ob5—V2—Oc390.42 (11)V3—Ob6—V4109.86 (13)
Ob8—V2—Oc3155.43 (11)V3—Ob7—V5i111.25 (13)
Ot12—V2—Oc2i99.24 (12)V2—Ob8—V5114.14 (13)
Ob5—V2—Oc2i155.35 (11)V4—Ob9—V5113.71 (14)
Ob8—V2—Oc2i88.97 (11)V1i—Ob10—V5114.83 (14)
Oc3—V2—Oc2i76.30 (10)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
Ow1—H1b···Ob9v0.931.832.728 (4)163
Ow1—H1a···Ob10vi0.932.012.925 (4)166
Ow1—H1b···Ow40.932.792.950 (4)90
Ow1—H1a···Ow50.932.993.063 (4)86
Ow1—H1a···Ob4vii0.932.673.069 (4)107
Ow2—H2a···Oc20.851.852.685 (3)166
Ow2—H2b···Ow51.012.632.923 (4)97
Ow2—H2b···Ow7vii1.012.413.063 (4)122
Ow2—H2b···Ot11vii1.012.042.937 (4)147
Ow3—H3b···Ob8v0.991.732.702 (4)167
Ow3—H3a···Ob8i0.931.842.763 (4)167
Ow4—H4b···Ob5v0.861.992.749 (4)147
Ow4—H4b···Ow4viii0.862.593.041 (6)114
Ow4—H4a···Ow8ix0.932.082.949 (5)154
Ow4—H4a···Ot12ix0.932.763.060 (4)100
Ow5—H5b···Ow7vii0.882.082.889 (5)152
Ow6—H6b···Ob70.911.912.804 (4)170
Ow7—H7b···Ob10x0.962.042.958 (4)160
Symmetry codes: (i) x+1, y+1, z+1; (v) x, y+1, z; (vi) x+2, y+1, z+1; (vii) x+1, y, z; (viii) x+1, y+2, z; (ix) x+1, y+1, z; (x) x1, y, z1.

Experimental details

Crystal data
Chemical formulaK2[Co(H2O)6]2[V10O28]·4H2O
Mr1441.72
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.762 (2), 11.122 (3), 8.771 (2)
α, β, γ (°)105.12 (2), 109.379 (18), 65.112 (18)
V3)889.3 (4)
Z1
Radiation typeMo Kα
µ (mm1)3.78
Crystal size (mm)0.13 × 0.10 × 0.09
Data collection
DiffractometerStoe Stadi-4
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1996)
Tmin, Tmax0.591, 0.704
No. of measured, independent and
observed [I > 2σ(I)] reflections
4092, 4092, 3403
Rint0.000
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.12
No. of reflections4092
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.67

Computer programs: STADI4 (Stoe & Cie, 1996), STADI4, X-RED (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), SHELXL97.

Selected bond lengths (Å) top
V1—Oh1i2.241 (2)V3—Oc31.902 (2)
V1—Oc2i2.004 (3)V3—Ob61.678 (3)
V1—Oc31.973 (2)V3—Ob71.704 (3)
V1—Ob41.826 (3)V4—Oh12.304 (2)
V1—Ob10i1.832 (3)V4—Ob62.054 (3)
V1—Ot111.608 (3)V4—Ob4i1.841 (3)
V2—Oh12.224 (2)V4—Ob51.908 (3)
V2—Oc2i2.006 (3)V4—Ob91.832 (3)
V2—Oc31.992 (3)V4—Ot131.604 (3)
V2—Ob51.811 (3)V5—Oh12.342 (3)
V2—Ob81.836 (3)V5—Ob7i2.022 (3)
V2—Ot121.604 (3)V5—Ob81.892 (3)
V3—Oh12.105 (2)V5—Ob91.841 (3)
V3—Oh1i2.124 (2)V5—Ob101.870 (3)
V3—Oc21.933 (2)V5—OT141.594 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
Ow1—H1b···Ob9ii0.931.832.728 (4)163
Ow1—H1a···Ob10iii0.932.012.925 (4)166
Ow1—H1b···Ow40.932.792.950 (4)90
Ow1—H1a···Ow50.932.993.063 (4)86
Ow1—H1a···Ob4iv0.932.673.069 (4)107
Ow2—H2a···Oc20.851.852.685 (3)166
Ow2—H2b···Ow51.012.632.923 (4)97
Ow2—H2b···Ow7iv1.012.413.063 (4)122
Ow2—H2b···Ot11iv1.012.042.937 (4)147
Ow3—H3b···Ob8ii0.991.732.702 (4)167
Ow3—H3a···Ob8i0.931.842.763 (4)167
Ow4—H4b···Ob5ii0.861.992.749 (4)147
Ow4—H4b···Ow4v0.862.593.041 (6)114
Ow4—H4a···Ow8vi0.932.082.949 (5)154
Ow4—H4a···Ot12vi0.932.763.060 (4)100
Ow5—H5b···Ow7iv0.882.082.889 (5)152
Ow6—H6b···Ob70.911.912.804 (4)170
Ow7—H7b···Ob10vii0.962.042.958 (4)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x+1, y+2, z; (vi) x+1, y+1, z; (vii) x1, y, z1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds