Download citation
Download citation
link to html
Discandium(III) titanate(IV), Sc2TiO5, prepared by the flux method, has a pseudobrookite-type structure. The Sc and Ti atoms are partially disordered on the two octahedrally coordinated metal (M) sites (Wyckoff designations 8f and 4c in space group Cmcm). The most probable cation distribution suggests the approximate structural formula [8f](Sc0.6,Ti0.4)2[4c](Sc0.8Ti0.2)O5, in agreement with earlier observations of a preference of Ti for the more distorted 8f site in isotypic AIII2BIVO5 compounds. The average M-O bond lengths for the 8f and 4c sites are 2.059 and 2.095 Å, respectively. The strongly distorted octahedra share edges to form trioctahedral units, which are linked into infinite double chains along c. Further sharing of octahedral edges results in a three-dimensional framework. All atoms are on special positions. An Al-bearing variety of Sc2TiO5 has Al preferentially incorporated on the 4c site.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803003544/br6082sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803003544/br6082Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](Please check) = 0.000 Å
  • R factor = 0.016
  • wR factor = 0.048
  • Data-to-parameter ratio = 15.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Shape Software, 1999) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

discandium(III) titanate(IV) top
Crystal data top
Sc2TiO5F(000) = 416
Mr = 217.82Dx = 3.605 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 454 reflections
a = 3.851 (1) Åθ = 2.0–32.6°
b = 10.131 (2) ŵ = 5.13 mm1
c = 10.287 (2) ÅT = 293 K
V = 401.34 (15) Å3Plate, colorless
Z = 40.10 × 0.10 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
435 independent reflections
Radiation source: fine-focus sealed tube416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.008
φ and ω scansθmax = 32.5°, θmin = 4.0°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
h = 55
Tmin = 0.628, Tmax = 0.883k = 1515
728 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.02P)2 + 0.83P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max < 0.001
S = 1.20Δρmax = 0.85 e Å3
435 reflectionsΔρmin = 0.85 e Å3
28 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0143 (12)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.00000.36444 (3)0.43775 (3)0.00474 (12)0.40
Sc10.00000.36444 (3)0.43775 (3)0.00474 (12)0.60
Ti20.00000.30752 (4)0.75000.00549 (13)0.20
Sc20.00000.30752 (4)0.75000.00549 (13)0.80
O10.00000.45339 (14)0.61424 (15)0.0146 (3)
O20.50000.23222 (19)0.75000.0088 (3)
O30.00000.19241 (13)0.57087 (13)0.0096 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.00496 (17)0.00393 (17)0.00533 (17)0.0000.0000.00004 (9)
Sc10.00496 (17)0.00393 (17)0.00533 (17)0.0000.0000.00004 (9)
Ti20.0059 (2)0.0061 (2)0.0044 (2)0.0000.0000.000
Sc20.0059 (2)0.0061 (2)0.0044 (2)0.0000.0000.000
O10.0159 (7)0.0184 (7)0.0095 (6)0.0000.0000.0059 (5)
O20.0078 (8)0.0112 (8)0.0075 (7)0.0000.0000.000
O30.0114 (6)0.0092 (6)0.0082 (6)0.0000.0000.0002 (4)
Geometric parameters (Å, º) top
Ti1—O1i1.9215 (15)Sc2—O1iv2.0333 (14)
Ti1—O3ii2.0117 (6)Sc2—O12.0333 (14)
Ti1—O3iii2.0117 (6)Sc2—O22.0711 (9)
Ti1—O12.0269 (16)Sc2—O2v2.0711 (9)
Ti1—O2ii2.1655 (10)Sc2—O32.1807 (14)
Ti1—O32.2164 (14)Sc2—O3iv2.1807 (14)
O1i—Ti1—O3ii105.23 (4)Ti1i—O1—Ti2152.78 (9)
O1i—Ti1—O3iii105.23 (4)Ti1—O1—Ti2106.98 (7)
O3ii—Ti1—O3iii146.32 (8)Ti2—O2—Sc2vi136.78 (10)
O1i—Ti1—O179.76 (7)Ti2—O2—Ti2vi136.78 (10)
O3ii—Ti1—O199.60 (4)Ti2—O2—Ti1ii99.588 (9)
O3iii—Ti1—O199.60 (4)Sc2vi—O2—Ti1ii99.588 (9)
O1i—Ti1—O2ii100.73 (7)Ti2vi—O2—Ti1ii99.588 (9)
O3ii—Ti1—O2ii80.28 (4)Ti2—O2—Sc1ii99.588 (9)
O3iii—Ti1—O2ii80.28 (4)Sc2vi—O2—Sc1ii99.588 (9)
O1—Ti1—O2ii179.51 (6)Ti2vi—O2—Sc1ii99.588 (9)
O1i—Ti1—O3158.00 (6)Ti2—O2—Sc1vii99.588 (9)
O3ii—Ti1—O378.59 (4)Sc2vi—O2—Sc1vii99.588 (9)
O3iii—Ti1—O378.59 (4)Ti2vi—O2—Sc1vii99.588 (9)
O1—Ti1—O378.24 (5)Ti1ii—O2—Sc1vii126.23 (9)
O2ii—Ti1—O3101.27 (6)Sc1ii—O2—Sc1vii126.23 (9)
O1iv—Ti2—O186.76 (9)Ti2—O2—Ti1vii99.588 (9)
O1iv—Ti2—O2105.53 (4)Sc2vi—O2—Ti1vii99.588 (9)
O1—Ti2—O2105.53 (4)Ti2vi—O2—Ti1vii99.588 (9)
O1iv—Ti2—O2v105.53 (4)Ti1ii—O2—Ti1vii126.23 (9)
O1—Ti2—O2v105.53 (4)Sc1ii—O2—Ti1vii126.23 (9)
O2—Ti2—O2v136.78 (10)Sc1ii—O3—Sc1iii146.32 (8)
O1iv—Ti2—O3165.71 (6)Ti1ii—O3—Sc1iii146.32 (8)
O1—Ti2—O378.95 (6)Sc1ii—O3—Ti1iii146.32 (8)
O2—Ti2—O378.64 (3)Ti1ii—O3—Ti1iii146.32 (8)
O2v—Ti2—O378.64 (3)Sc1ii—O3—Ti2100.97 (4)
O1iv—Ti2—O3iv78.95 (6)Ti1ii—O3—Ti2100.97 (4)
O1—Ti2—O3iv165.71 (6)Sc1iii—O3—Ti2100.97 (4)
O2—Ti2—O3iv78.64 (3)Ti1iii—O3—Ti2100.97 (4)
O2v—Ti2—O3iv78.64 (3)Sc1ii—O3—Ti1101.41 (4)
O3—Ti2—O3iv115.35 (8)Ti1ii—O3—Ti1101.41 (4)
Sc1i—O1—Ti1100.24 (7)Sc1iii—O3—Ti1101.41 (4)
Ti1i—O1—Ti1100.24 (7)Ti1iii—O3—Ti1101.41 (4)
Sc1i—O1—Ti2152.78 (9)Ti2—O3—Ti195.83 (6)
Symmetry codes: (i) x, y+1, z+1; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x, y, z+3/2; (v) x+1, y, z; (vi) x1, y, z; (vii) x1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds