Download citation
Download citation
link to html
Vanadium nickel antimonide, VNi0.26 (2)Sb, adopts a partly filled NiAs-type structure. It has an ordered atomic arrangement, with V atoms coordinated octahedrally [V-Sb 2.8073 (3) Å] and Ni atoms coordinated trigonal bipyramidally [Ni-Sb 2.4553 (3)-2.7221 (3) Å] by Sb atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802007547/br6047sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802007547/br6047Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](V-Sb) = 0.0003 Å
  • R factor = 0.058
  • wR factor = 0.115
  • Data-to-parameter ratio = 9.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
DIFMN_02 Alert C The minimum difference density is < -0.1*ZMAX*0.75 _refine_diff_density_min given = -4.485 Test value = -3.825 DIFMN_03 Alert C The minimum difference density is < -0.1*ZMAX*0.75 The relevant atom site should be identified.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Ternary vanadium antimonides VFeSb, VCoSb, and VNiSb have been reported in a cubic form (F43m, MgAgAs-type, a ternary ordered variant of CaF2) and a hexagonal form (P63/mmc, Ni2In-type, a filled variant of NiAs) (Evers et al., 1997; Krypyakevich & Markiv, 1963; Noda et al., 1979). Although these are simple structures, the atomic distribution in these compounds is often uncertain. An ordered arrangement has now been proposed for the cubic forms, but it remains to be established for the hexagonal forms (Evers et al., 1997). In hexagonal VFeSb and VCoSb, the transition metal atoms were assumed to be disordered over the 2a and 2 d sites, whereas Sb occupies the 2c site (Noda et al., 1979). Examination of cell parameters suggested that hexagonal VNiSb may really be a defect structure of composition V0.6NiSb, but lack of single-crystal data has prevented definitive conclusions from being drawn (Evers et al., 1997). Contributing further to the complexity of the V—Ni—Sb system, we now report an alternative defect hexagonal structure, VNi0.26 (2)Sb.

In VNi0.26 (2)Sb, the V atoms occupy all octahedral interstices between hexagonal close packed (hcp) layers of Sb atoms (Fig. 1). Alternatively, the V atoms form trigonal prisms, half of which are centred by Sb atoms (Fig. 2). The remaining half of these trigonal prisms are then partially occupied at 0.26 (2) with Ni atoms. The c/a ratio of 1.280 is substantially contracted from the ideal value of 1.63, giving rise to strong metal-metal bonding [V–V 2.7221 (3) Å] along the c direction, as is typical of NiAs-type structures. The ordering of the transition metal atoms is consistent with longer distances to Sb from the larger V atom [V–Sb 2.8073 (3) Å (× 6)] and shorter ones from the smaller Ni atom [Ni–Sb 2.4553 (3) Å (× 3), 2.7221 (3) Å (× 2)]. These distances are comparable to those found in binary VSb (2.816 Å; Grison & Beck, 1962) and Ni1 + xSb (~2.3, \sim2.6 Å for the Ni atoms in the 2 d site) (Chen et al., 1978; Kjekshus & Walseth, 1969).

The cell parameters for VNi0.26 (2)Sb are larger by ~0.03 Å than those for hexagonal VFeSb, VCoSb, and V0.6NiSb (Evers et al., 1997; Noda et al., 1979). In contrast, a is smaller by ~0.03 Å and c is nearly identical when compared to the cell parameters in VSb (Grison & Beck, 1962) and V1 + xSb x = 0.4–0.5) (Bouwma et al., 1973; Meissner & Schubert, 1965). This suggests that VNi0.26 (2)Sb can indeed be regarded as being derived from VSb with insertion of small amounts of Ni. In contrast, some degree of disorder is probably present in the other ternary antimonides, with a proportion of the V atoms occupying the smaller 2 d site.

Experimental top

A 0.25 g mixture of elemental vanadium, nickel, and antimony in a 9:1:7 molar ratio (V, 84 mg, 1.64 mmol, 99.5%, Cerac; Ni, 10 mg, 0.18 mmol, 99.9%, Cerac; Sb, 156 mg, 1.28 mmol, 99.995%, Aldrich) was reacted, in an attempt to prepare a target compound V9NiSb7 analogous to Nb9PdAs7 (Wang & Mar, 2001). The reactants were heated in an evacuated fused-silica tube at 1273 K for 3 d, cooled to 873 K over 1 d, and then cooled to room temperature over 1 d. Small black prismatic crystals were obtained which contained all three elements as determined by semiquantitative EDX (energy-dispersive X-ray) analysis on a Hitachi F2700 scanning electron microscope.

Refinement top

Weissenberg photography on the selected crystal confirmed that it was single, gave preliminary cell parameters, and revealed hexagonal symmetry. Space group P63/mmc was chosen upon recognition of the relationship to the NiAs-type structure and was verified by the systematic absences. The ambiguity lies in the distribution of V, Ni, and Sb in the three sites 2a (0,0,0; 0,0,1/2); 2c (1/3,2/3,1/4; 2/3,1/3,3/4), and 2 d (1/3,2/3,3/4; 2/3,1/3,1/4). All possible combinations were tested, but the only feasible model placed V in 2a, Sb in 2c, and Ni partially occupied in 2 d. When all occupancies were allowed to refine, they converged to values of 0.99 (24) for V, 0.27 (7) for Ni, and 1.00 (24) for Sb. In the final refinement, the occupancies were fixed at 1.00 for V and Sb, but converged to 0.26 (2) for Ni. The largest residual (Δρmin = -4.485 e Å-3) in the final difference electron-density map is located 1.36 Å from a V site.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT 6.02 (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. VNi0.26 (2)Sb viewed approximately down the c axis, showing VSb6 octahedra. Here and in Fig. 2, the colour key is: V blue, Ni green, Sb red.
[Figure 2] Fig. 2. VNi0.26 (2)Sb viewed perpendicular to the c axis, showing NiSb5 trigonal bipyramids and SbV6 trigonal prisms. Displacement ellipsoids are drawn at the 50% probability level.
vanadium nickel antimonide top
Crystal data top
VNi01.26SbDx = 7.332 Mg m3
Mr = 188.25Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 929 reflections
Hall symbol: -P 6c 2cθ = 3.7–32.2°
a = 4.2527 (5) ŵ = 23.53 mm1
c = 5.4443 (6) ÅT = 295 K
V = 85.27 (2) Å3Prism, black
Z = 20.19 × 0.16 × 0.14 mm
F(000) = 163
Data collection top
Bruker Platform/SMART 1000 CCD
diffractometer
78 independent reflections
Radiation source: fine-focus sealed tube78 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scans (0.2°)θmax = 32.5°, θmin = 5.5°
Absorption correction: numerical
(SHELXTL; Sheldrick, 1997)
h = 56
Tmin = 0.046, Tmax = 0.143k = 66
1099 measured reflectionsl = 88
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.058Secondary atom site location: difference Fourier map
wR(F2) = 0.115 w = 1/[σ2(Fo2) + 5.7913P]
where P = (Fo2 + 2Fc2)/3
S = 1.33(Δ/σ)max = 0.003
78 reflectionsΔρmax = 1.67 e Å3
8 parametersΔρmin = 4.49 e Å3
Crystal data top
VNi01.26SbZ = 2
Mr = 188.25Mo Kα radiation
Hexagonal, P63/mmcµ = 23.53 mm1
a = 4.2527 (5) ÅT = 295 K
c = 5.4443 (6) Å0.19 × 0.16 × 0.14 mm
V = 85.27 (2) Å3
Data collection top
Bruker Platform/SMART 1000 CCD
diffractometer
78 independent reflections
Absorption correction: numerical
(SHELXTL; Sheldrick, 1997)
78 reflections with I > 2σ(I)
Tmin = 0.046, Tmax = 0.143Rint = 0.045
1099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0588 parameters
wR(F2) = 0.1150 restraints
S = 1.33Δρmax = 1.67 e Å3
78 reflectionsΔρmin = 4.49 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V0.00000.00000.00000.0204 (12)
Ni0.66670.33330.25000.012 (4)0.26 (2)
Sb0.33330.66670.25000.0327 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V0.0210 (17)0.0210 (17)0.019 (2)0.0105 (8)0.0000.000
Ni0.010 (4)0.010 (4)0.015 (6)0.005 (2)0.0000.000
Sb0.0421 (11)0.0421 (11)0.0139 (9)0.0211 (6)0.0000.000
Geometric parameters (Å, º) top
V—Vi2.7221 (3)Ni—Sbviii2.7221 (3)
V—Vii2.7221 (3)Ni—Vxii2.8073 (3)
V—Sbiii2.8073 (3)Ni—Vxiii2.8073 (3)
V—Sb2.8073 (3)Ni—Vx2.8073 (3)
V—Ni2.8073 (3)Ni—Vxiv2.8073 (3)
V—Sbiv2.8073 (3)Ni—Vi2.8073 (3)
V—Niv2.8073 (3)Sb—Nixv2.4553 (3)
V—Niiv2.8073 (3)Sb—Niv2.4553 (3)
V—Nivi2.8073 (3)Sb—Nixi2.7221 (3)
V—Sbvii2.8073 (3)Sb—Niviii2.7221 (3)
V—Sbviii2.8073 (3)Sb—Vxvi2.8073 (3)
V—Sbix2.8073 (3)Sb—Vxiii2.8073 (3)
Ni—Sbx2.4553 (3)Sb—Vxv2.8073 (3)
Ni—Sbvii2.4553 (3)Sb—Vxiv2.8073 (3)
Ni—Sb2.4553 (3)Sb—Vi2.8073 (3)
Ni—Sbxi2.7221 (3)
Vi—V—Vii180.0Sbvii—Ni—Vxiii150.999 (4)
Vi—V—Sbiii119.001 (4)Sb—Ni—Vxiii64.068 (1)
Vii—V—Sbiii60.999 (4)Sbxi—Ni—Vxiii60.999 (4)
Vi—V—Sb60.999 (4)Sbviii—Ni—Vxiii119.001 (4)
Vii—V—Sb119.001 (4)V—Ni—Vxiii128.136 (2)
Sbiii—V—Sb81.523 (5)Vxii—Ni—Vxiii98.477 (5)
Vi—V—Ni60.999 (4)Sbx—Ni—Vx64.068 (1)
Vii—V—Ni119.001 (4)Sbvii—Ni—Vx64.068 (1)
Sbiii—V—Ni128.136 (2)Sb—Ni—Vx150.999 (4)
Sb—V—Ni51.864 (2)Sbxi—Ni—Vx119.001 (4)
Vi—V—Sbiv119.001 (4)Sbviii—Ni—Vx60.999 (4)
Vii—V—Sbiv60.999 (4)V—Ni—Vx98.477 (5)
Sbiii—V—Sbiv98.477 (5)Vxii—Ni—Vx58.003 (8)
Sb—V—Sbiv180.0Vxiii—Ni—Vx128.136 (2)
Ni—V—Sbiv128.136 (2)Sbx—Ni—Vxiv64.068 (1)
Vi—V—Niv60.999 (4)Sbvii—Ni—Vxiv150.999 (4)
Vii—V—Niv119.001 (4)Sb—Ni—Vxiv64.068 (1)
Sbiii—V—Niv58.003 (8)Sbxi—Ni—Vxiv119.001 (4)
Sb—V—Niv51.864 (2)Sbviii—Ni—Vxiv60.999 (4)
Ni—V—Niv98.477 (5)V—Ni—Vxiv98.477 (5)
Sbiv—V—Niv128.136 (2)Vxii—Ni—Vxiv128.136 (2)
Vi—V—Niiv119.001 (4)Vxiii—Ni—Vxiv58.003 (8)
Vii—V—Niiv60.999 (4)Vx—Ni—Vxiv98.477 (5)
Sbiii—V—Niiv51.864 (2)Sbx—Ni—Vi150.999 (4)
Sb—V—Niiv128.136 (2)Sbvii—Ni—Vi64.068 (1)
Ni—V—Niiv180.0Sb—Ni—Vi64.068 (1)
Sbiv—V—Niiv51.864 (2)Sbxi—Ni—Vi60.999 (4)
Niv—V—Niiv81.523 (5)Sbviii—Ni—Vi119.001 (4)
Vi—V—Nivi119.001 (4)V—Ni—Vi58.003 (8)
Vii—V—Nivi60.999 (4)Vxii—Ni—Vi98.477 (5)
Sbiii—V—Nivi121.997 (8)Vxiii—Ni—Vi98.477 (5)
Sb—V—Nivi128.136 (2)Vx—Ni—Vi128.136 (2)
Ni—V—Nivi81.523 (5)Vxiv—Ni—Vi128.136 (2)
Sbiv—V—Nivi51.864 (2)Nixv—Sb—Niv120.0
Niv—V—Nivi180.0Nixv—Sb—Ni120.0
Niiv—V—Nivi98.477 (5)Niv—Sb—Ni120.0
Vi—V—Sbvii60.999 (4)Nixv—Sb—Nixi90.0
Vii—V—Sbvii119.001 (4)Niv—Sb—Nixi90.0
Sbiii—V—Sbvii180.0Ni—Sb—Nixi90.0
Sb—V—Sbvii98.477 (5)Nixv—Sb—Niviii90.0
Ni—V—Sbvii51.864 (2)Niv—Sb—Niviii90.0
Sbiv—V—Sbvii81.523 (5)Ni—Sb—Niviii90.0
Niv—V—Sbvii121.997 (8)Nixi—Sb—Niviii180.0
Niiv—V—Sbvii128.136 (2)Nixv—Sb—V150.999 (4)
Nivi—V—Sbvii58.003 (8)Niv—Sb—V64.068 (1)
Vi—V—Sbviii119.001 (4)Ni—Sb—V64.068 (1)
Vii—V—Sbviii60.999 (4)Nixi—Sb—V119.001 (4)
Sbiii—V—Sbviii98.477 (5)Niviii—Sb—V60.999 (4)
Sb—V—Sbviii81.523 (5)Nixv—Sb—Vxvi64.068 (1)
Ni—V—Sbviii58.003 (8)Niv—Sb—Vxvi64.068 (1)
Sbiv—V—Sbviii98.477 (5)Ni—Sb—Vxvi150.999 (4)
Niv—V—Sbviii128.136 (2)Nixi—Sb—Vxvi60.999 (4)
Niiv—V—Sbviii121.997 (8)Niviii—Sb—Vxvi119.001 (4)
Nivi—V—Sbviii51.864 (2)V—Sb—Vxvi128.136 (2)
Sbvii—V—Sbviii81.523 (5)Nixv—Sb—Vxiii64.068 (1)
Vi—V—Sbix60.999 (4)Niv—Sb—Vxiii150.999 (4)
Vii—V—Sbix119.001 (4)Ni—Sb—Vxiii64.068 (1)
Sbiii—V—Sbix81.523 (5)Nixi—Sb—Vxiii60.999 (4)
Sb—V—Sbix98.477 (5)Niviii—Sb—Vxiii119.001 (4)
Ni—V—Sbix121.997 (8)V—Sb—Vxiii128.136 (2)
Sbiv—V—Sbix81.523 (5)Vxvi—Sb—Vxiii98.477 (5)
Niv—V—Sbix51.864 (2)Nixv—Sb—Vxv64.068 (1)
Niiv—V—Sbix58.003 (8)Niv—Sb—Vxv64.068 (1)
Nivi—V—Sbix128.136 (2)Ni—Sb—Vxv150.999 (4)
Sbvii—V—Sbix98.477 (5)Nixi—Sb—Vxv119.001 (4)
Sbviii—V—Sbix180.0Niviii—Sb—Vxv60.999 (4)
Sbx—Ni—Sbvii120.0V—Sb—Vxv98.477 (5)
Sbx—Ni—Sb120.0Vxvi—Sb—Vxv58.003 (8)
Sbvii—Ni—Sb120.0Vxiii—Sb—Vxv128.136 (2)
Sbx—Ni—Sbxi90.0Nixv—Sb—Vxiv64.068 (1)
Sbvii—Ni—Sbxi90.0Niv—Sb—Vxiv150.999 (4)
Sb—Ni—Sbxi90.0Ni—Sb—Vxiv64.068 (1)
Sbx—Ni—Sbviii90.0Nixi—Sb—Vxiv119.001 (4)
Sbvii—Ni—Sbviii90.0Niviii—Sb—Vxiv60.999 (4)
Sb—Ni—Sbviii90.0V—Sb—Vxiv98.477 (5)
Sbxi—Ni—Sbviii180.0Vxvi—Sb—Vxiv128.136 (2)
Sbx—Ni—V150.999 (4)Vxiii—Sb—Vxiv58.003 (8)
Sbvii—Ni—V64.068 (1)Vxv—Sb—Vxiv98.477 (5)
Sb—Ni—V64.068 (1)Nixv—Sb—Vi150.999 (4)
Sbxi—Ni—V119.001 (4)Niv—Sb—Vi64.068 (1)
Sbviii—Ni—V60.999 (4)Ni—Sb—Vi64.068 (1)
Sbx—Ni—Vxii64.068 (1)Nixi—Sb—Vi60.999 (4)
Sbvii—Ni—Vxii64.068 (1)Niviii—Sb—Vi119.001 (4)
Sb—Ni—Vxii150.999 (4)V—Sb—Vi58.003 (8)
Sbxi—Ni—Vxii60.999 (4)Vxvi—Sb—Vi98.477 (5)
Sbviii—Ni—Vxii119.001 (4)Vxiii—Sb—Vi98.477 (5)
V—Ni—Vxii128.136 (2)Vxv—Sb—Vi128.136 (2)
Sbx—Ni—Vxiii64.068 (1)Vxiv—Sb—Vi128.136 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2; (iii) x, y+1, z; (iv) x, y, z; (v) x1, y, z; (vi) x+1, y, z; (vii) x, y1, z; (viii) x+1, y+1, z; (ix) x1, y1, z; (x) x+1, y, z; (xi) x+1, y+1, z+1; (xii) x+1, y, z+1/2; (xiii) x+1, y+1, z+1/2; (xiv) x+1, y+1, z; (xv) x, y+1, z; (xvi) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaVNi01.26Sb
Mr188.25
Crystal system, space groupHexagonal, P63/mmc
Temperature (K)295
a, c (Å)4.2527 (5), 5.4443 (6)
V3)85.27 (2)
Z2
Radiation typeMo Kα
µ (mm1)23.53
Crystal size (mm)0.19 × 0.16 × 0.14
Data collection
DiffractometerBruker Platform/SMART 1000 CCD
diffractometer
Absorption correctionNumerical
(SHELXTL; Sheldrick, 1997)
Tmin, Tmax0.046, 0.143
No. of measured, independent and
observed [I > 2σ(I)] reflections
1099, 78, 78
Rint0.045
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.115, 1.33
No. of reflections78
No. of parameters8
Δρmax, Δρmin (e Å3)1.67, 4.49

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 2000), SAINT 6.02 (Bruker, 2000), SHELXTL (Sheldrick, 1997), SHELXTL, ATOMS (Dowty, 1999).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds