Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
MgSeO4·6H2O is isostructural with its sulfate analogue and the corresponding cobalt(II) salt. The structure is based on alternating layers of Mg(H2O)6 octahedra and SeO4 tetrahedra parallel to (001), connected via hydrogen bonds. All atoms are on general positions except Mg1 and Mg2 (site symmetries 2 and \overline 1, respectively). The average Mg-O and Se-O bond lengths are 2.066 and 1.639 Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801020864/br6040sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801020864/br6040Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](Se-O) = 0.001 Å
  • R factor = 0.019
  • wR factor = 0.055
  • Data-to-parameter ratio = 18.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Magnesium selenate(VI) hexahydrate, MgSeO4·6H2O, crystallizes in the monoclinic structure type of its sulfate analogue MgSO4·6H2O (C2/c; Zalkin et al., 1964), known in nature as the mineral hexahydrite. It is also isostructural with the selenates CoIISeO4·6H2O (Ojkova et al., 1992) and FeIISeO4·6H2O (ICDD-PDF 51–1819). In contrast, both NiIISeO4·6H2O (Snyman & Pistorius, 1964; Fuess, 1970; Ptasiewicz-Bak et al., 1993) and ZnSeO4·6H2O (Hajek & Cepelak, 1965; Stadnicka et al., 1988; Koleva & Stoilova, 1995) are tetragonal with space group P41212. Interestingly, the substitution of only about 4at% NiII for Mg in MgSeO4·6H2O causes the structure to become tetragonal (Stoilova et al., 1995). No data are available on hypothetical MIISeO4·6H2O compounds where M = V, Cr, Mn, Cu, Ca, Ru or Cd.

The occurrence of both monoclinic and tetragonal modifications has also been reported for the MII–sulfate hexahydrates (e.g. Kutoglu, 1973; Angel & Finger, 1988; Gerkin & Reppart, 1988). In nature, monoclinic and tetragonal NiIISO4·6H2O are known as the minerals nickelhexahydrite and retgersite, respectively (Mandarino, 1999). The monoclinic structure type is apparently also found for the fluoroberyllate hexahydrates MIIBeF4·6H2O where M = Co, Ni, Zn (Crouzet & Aleonard, 1969; Tedenac et al., 1969).

The unit-cell volume of the title compound is about 5.2% larger than that of its sulfate analogue (Zalkin et al., 1964). This percentage compares favourably with the volume difference of 5.1% between the isostructural oxysalt pentahydrates CuSeO4·5H2O and CuSO4·5H2O (Kolitsch, 2001).

The polyhedral arrangement in the structure of MgSeO4·6H2O is characterized by alternating layers of Mg(H2O)6 octahedra and SeO4 tetrahedra oriented parallel to the (001) plane (Figs. 1 and 2). The average Mg—O and Se—O bond lengths of 2.066 and 1.639 Å, respectively, are close to expected values. The connection between adjacent polyhedra is achieved via medium-strong to weak hydrogen bonds accepted by the oxygen ligands of the SeO4 group (Table 2). Atom H62, which is involved in the longest hydrogen bond [OW6···OW7ii = 3.0671 (19) Å], shows the largest displacement parameter (if freely refined) of all hydrogen atoms, and it is also the only H atom which donates a hydrogen bond to a water molecule. A determination of the single-crystal unit-cell parameters at 120 K indicated no structural change in the title compound.

The dehydration of MgSeO4·6H2O has been studied by Stoilova & Koleva (1995a,b) who observed the penta-, tetra-, di- and monohydrate, as well as anhydrous magnesium selenate, and found that all compounds are isostructural with their sulfate analogues.

Experimental top

The title compound was prepared by controlled evaporation at room temperature of an aqueous solution containing selenic acid and magnesium carbonate. Colourless crude columnar crystals up to several cm in length formed. A single large crystal of the sulfite MgSeO3·6H2O (Andersen & Lindqvist, 1984) accompanied these crystals.

Refinement top

All OW—H distances were restrained to a length of 0.90 (2) Å, and H atoms were constrained to have a fixed Uiso of 0.06 Å2. (Note: freely refined O—H distances ranged between 0.68 and 0.85 Å; the largest isotropic displacement parameters were shown by the H atoms bonded to OW6.)

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: HKL SCALEPACK (Otwinowski & Minor. 1997); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Shape Software, 1999) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Polyhedral view of MgSeO4·6H2O along [010]. Layers of Mg(H2O)6 octahedra (turquois) parallel to (001) alternate with layers of SeO4 tetrahedra (yellow and marked with crosses). The unit cell is outlined.
[Figure 2] Fig. 2. Anisotropic displacement ellipsoids (50% probability level) of the atoms in the two Mg(H2O)6 octahedra and the SeO4 tetrahedron.
'magnesium selenate(VI) hexahydrate' top
Crystal data top
MgSeO4·6H2OF(000) = 1104
Mr = 275.37Dx = 1.974 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.224 (1) ÅCell parameters from 2899 reflections
b = 7.370 (1) Åθ = 2.0–30.0°
c = 24.866 (2) ŵ = 4.15 mm1
β = 98.41 (1)°T = 293 K
V = 1853.5 (3) Å3Fragment, colourless
Z = 80.15 × 0.08 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
2705 independent reflections
Radiation source: fine-focus sealed tube2510 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ψ and ω scansθmax = 30.0°, θmin = 3.3°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
h = 1414
Tmin = 0.575, Tmax = 0.733k = 1010
5214 measured reflectionsl = 3534
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.027P)2 + 1.70P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.004
2705 reflectionsΔρmax = 0.48 e Å3
148 parametersΔρmin = 0.39 e Å3
12 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (2)
Crystal data top
MgSeO4·6H2OV = 1853.5 (3) Å3
Mr = 275.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 10.224 (1) ŵ = 4.15 mm1
b = 7.370 (1) ÅT = 293 K
c = 24.866 (2) Å0.15 × 0.08 × 0.08 mm
β = 98.41 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2705 independent reflections
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
2510 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.733Rint = 0.010
5214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01912 restraints
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.48 e Å3
2705 reflectionsΔρmin = 0.39 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se0.133134 (14)0.051178 (18)0.375932 (6)0.02280 (7)
Mg10.00000.55734 (9)0.25000.02230 (14)
Mg20.00000.50000.50000.02481 (15)
O10.00439 (15)0.05561 (16)0.32896 (6)0.0437 (3)
O20.20993 (12)0.24717 (16)0.38015 (5)0.0346 (3)
O30.23457 (12)0.11099 (16)0.36311 (5)0.0312 (2)
O40.08780 (13)0.00989 (18)0.43555 (5)0.0348 (3)
OW50.13620 (16)0.55724 (16)0.31969 (6)0.0397 (3)
OW60.11414 (13)0.75465 (18)0.27932 (6)0.0361 (3)
OW70.11127 (12)0.35396 (16)0.28048 (5)0.0302 (2)
OW80.08178 (12)0.70830 (17)0.54804 (5)0.0374 (3)
OW90.03766 (15)0.6828 (2)0.43755 (6)0.0491 (4)
OW100.18678 (13)0.4564 (2)0.47797 (6)0.0427 (3)
H510.160 (3)0.657 (3)0.3357 (10)0.060*
H520.149 (3)0.465 (3)0.3421 (10)0.060*
H610.078 (2)0.842 (3)0.2987 (9)0.060*
H620.1954 (17)0.771 (4)0.2739 (10)0.060*
H710.069 (2)0.259 (3)0.2950 (10)0.060*
H720.159 (2)0.386 (4)0.3051 (9)0.060*
H810.140 (2)0.694 (4)0.5751 (8)0.060*
H820.037 (2)0.801 (3)0.5523 (11)0.060*
H910.003 (2)0.785 (3)0.4375 (11)0.060*
H920.1114 (19)0.702 (4)0.4187 (10)0.060*
H1010.199 (3)0.380 (3)0.4542 (9)0.060*
H1020.261 (2)0.476 (4)0.4984 (11)0.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se0.02295 (9)0.01662 (9)0.02709 (9)0.00057 (5)0.00220 (6)0.00064 (5)
Mg10.0251 (3)0.0179 (3)0.0232 (3)0.0000.0014 (3)0.000
Mg20.0237 (3)0.0226 (3)0.0267 (3)0.0005 (3)0.0013 (3)0.0022 (3)
O10.0422 (7)0.0266 (6)0.0528 (8)0.0041 (5)0.0246 (6)0.0035 (5)
O20.0346 (6)0.0206 (5)0.0454 (7)0.0065 (4)0.0048 (5)0.0045 (5)
O30.0327 (6)0.0262 (5)0.0343 (6)0.0077 (5)0.0034 (4)0.0029 (5)
O40.0406 (7)0.0297 (6)0.0359 (6)0.0016 (5)0.0111 (5)0.0005 (5)
OW50.0568 (9)0.0248 (6)0.0314 (6)0.0049 (5)0.0138 (6)0.0015 (4)
OW60.0329 (6)0.0288 (6)0.0463 (7)0.0037 (5)0.0051 (5)0.0110 (5)
OW70.0325 (6)0.0238 (5)0.0348 (6)0.0019 (4)0.0072 (4)0.0053 (4)
OW80.0339 (6)0.0316 (6)0.0421 (7)0.0075 (5)0.0097 (5)0.0135 (5)
OW90.0420 (7)0.0433 (8)0.0542 (8)0.0176 (6)0.0187 (6)0.0214 (6)
OW100.0272 (6)0.0559 (9)0.0441 (7)0.0026 (6)0.0020 (5)0.0197 (6)
Geometric parameters (Å, º) top
Se—O11.6274 (13)Mg2—OW102.0870 (14)
Se—O21.6401 (11)Mg2—OW10ii2.0870 (14)
Se—O31.6439 (11)OW5—H510.855 (17)
Se—O41.6449 (12)OW5—H520.876 (17)
Mg1—OW5i2.0582 (13)OW6—H610.855 (17)
Mg1—OW52.0582 (13)OW6—H620.832 (17)
Mg1—OW62.0632 (13)OW7—H710.872 (17)
Mg1—OW6i2.0632 (13)OW7—H720.870 (17)
Mg1—OW72.0899 (12)OW8—H810.836 (16)
Mg1—OW7i2.0899 (12)OW8—H820.835 (17)
Mg2—OW8ii2.0471 (12)OW9—H910.862 (17)
Mg2—OW82.0471 (12)OW9—H920.840 (17)
Mg2—OW9ii2.0493 (13)OW10—H1010.839 (17)
Mg2—OW92.0493 (13)OW10—H1020.859 (18)
O1—Se—O2110.95 (6)OW8ii—Mg2—OW1092.45 (5)
O1—Se—O3110.02 (7)OW8—Mg2—OW1087.55 (5)
O2—Se—O3110.06 (6)OW9ii—Mg2—OW1091.15 (7)
O1—Se—O4110.22 (8)OW9—Mg2—OW1088.85 (7)
O2—Se—O4107.50 (7)OW8ii—Mg2—OW10ii87.55 (5)
O3—Se—O4108.01 (6)OW8—Mg2—OW10ii92.45 (5)
OW5i—Mg1—OW5179.96 (8)OW9ii—Mg2—OW10ii88.85 (7)
OW5i—Mg1—OW687.12 (6)OW9—Mg2—OW10ii91.15 (7)
OW5—Mg1—OW692.91 (6)OW10—Mg2—OW10ii180.0
OW5i—Mg1—OW6i92.91 (6)Mg1—OW5—H51120.1 (17)
OW5—Mg1—OW6i87.12 (6)Mg1—OW5—H52123.6 (19)
OW6—Mg1—OW6i90.37 (8)H51—OW5—H52112 (3)
OW5i—Mg1—OW788.16 (6)Mg1—OW6—H61120.9 (18)
OW5—Mg1—OW791.81 (5)Mg1—OW6—H62131 (2)
OW6—Mg1—OW790.65 (5)H61—OW6—H62108 (3)
OW6i—Mg1—OW7178.56 (5)Mg1—OW7—H71117.5 (18)
OW5i—Mg1—OW7i91.81 (5)Mg1—OW7—H72117.1 (19)
OW5—Mg1—OW7i88.16 (6)H71—OW7—H72103 (2)
OW6—Mg1—OW7i178.56 (5)Mg2—OW8—H81123.6 (19)
OW6i—Mg1—OW7i90.65 (5)Mg2—OW8—H82120.2 (19)
OW7—Mg1—OW7i88.35 (7)H81—OW8—H82110 (2)
OW8ii—Mg2—OW8180.00 (6)Mg2—OW9—H91122.6 (18)
OW8ii—Mg2—OW9ii87.97 (6)Mg2—OW9—H92126.0 (19)
OW8—Mg2—OW9ii92.03 (6)H91—OW9—H92104 (2)
OW8ii—Mg2—OW992.03 (6)Mg2—OW10—H101121.7 (19)
OW8—Mg2—OW987.97 (6)Mg2—OW10—H102125 (2)
OW9ii—Mg2—OW9180.00 (6)H101—OW10—H102109 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW5—H51···O3iii0.86 (2)1.95 (2)2.7997 (17)170 (3)
OW5—H52···O20.88 (2)1.92 (2)2.7783 (17)165 (3)
OW6—H61···O1iii0.86 (2)1.89 (2)2.7339 (18)169 (3)
OW6—H62···OW7iv0.83 (2)2.31 (2)3.0671 (19)152 (2)
OW7—H71···O10.87 (2)1.83 (2)2.6962 (17)174 (3)
OW7—H72···O3v0.87 (2)1.93 (2)2.7784 (17)165 (3)
OW8—H81···O3vi0.84 (2)1.95 (2)2.7763 (17)169 (3)
OW8—H82···O4ii0.84 (2)1.95 (2)2.7737 (18)171 (3)
OW9—H91···O4iii0.86 (2)1.87 (2)2.7346 (19)178 (3)
OW9—H92···O2v0.84 (2)1.96 (2)2.8008 (18)175 (3)
OW10—H101···O20.84 (2)2.10 (2)2.9190 (19)164 (3)
OW10—H102···O4vi0.86 (2)2.09 (2)2.924 (2)164 (3)
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z; (vi) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaMgSeO4·6H2O
Mr275.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)10.224 (1), 7.370 (1), 24.866 (2)
β (°) 98.41 (1)
V3)1853.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)4.15
Crystal size (mm)0.15 × 0.08 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.575, 0.733
No. of measured, independent and
observed [I > 2σ(I)] reflections
5214, 2705, 2510
Rint0.010
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.055, 1.06
No. of reflections2705
No. of parameters148
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.39

Computer programs: COLLECT (Nonius, 2001), HKL SCALEPACK (Otwinowski & Minor. 1997), HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ATOMS (Shape Software, 1999) and ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Se—O11.6274 (13)Mg1—OW62.0632 (13)
Se—O21.6401 (11)Mg1—OW72.0899 (12)
Se—O31.6439 (11)Mg2—OW8ii2.0471 (12)
Se—O41.6449 (12)Mg2—OW9ii2.0493 (13)
Mg1—OW5i2.0582 (13)Mg2—OW102.0870 (14)
O1—Se—O2110.95 (6)OW6—Mg1—OW790.65 (5)
O1—Se—O3110.02 (7)OW6i—Mg1—OW7178.56 (5)
O2—Se—O3110.06 (6)OW7—Mg1—OW7i88.35 (7)
O1—Se—O4110.22 (8)OW8ii—Mg2—OW8180.00 (6)
O2—Se—O4107.50 (7)OW8ii—Mg2—OW9ii87.97 (6)
O3—Se—O4108.01 (6)OW8—Mg2—OW9ii92.03 (6)
OW5i—Mg1—OW5179.96 (8)OW8ii—Mg2—OW1092.45 (5)
OW5i—Mg1—OW687.12 (6)OW8—Mg2—OW1087.55 (5)
OW5—Mg1—OW692.91 (6)OW9ii—Mg2—OW1091.15 (7)
OW6—Mg1—OW6i90.37 (8)OW9—Mg2—OW1088.85 (7)
OW5i—Mg1—OW788.16 (6)OW8—Mg2—OW10ii92.45 (5)
OW5—Mg1—OW791.81 (5)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW5—H51···O3iii0.855 (17)1.953 (18)2.7997 (17)170 (3)
OW5—H52···O20.876 (17)1.922 (18)2.7783 (17)165 (3)
OW6—H61···O1iii0.855 (17)1.890 (18)2.7339 (18)169 (3)
OW6—H62···OW7iv0.832 (17)2.307 (19)3.0671 (19)152 (2)
OW7—H71···O10.872 (17)1.828 (17)2.6962 (17)174 (3)
OW7—H72···O3v0.870 (17)1.929 (18)2.7784 (17)165 (3)
OW8—H81···O3vi0.836 (16)1.951 (17)2.7763 (17)169 (3)
OW8—H82···O4ii0.835 (17)1.946 (17)2.7737 (18)171 (3)
OW9—H91···O4iii0.862 (17)1.873 (17)2.7346 (19)178 (3)
OW9—H92···O2v0.840 (17)1.963 (17)2.8008 (18)175 (3)
OW10—H101···O20.839 (17)2.103 (18)2.9190 (19)164 (3)
OW10—H102···O4vi0.859 (18)2.09 (2)2.924 (2)164 (3)
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z; (vi) x+1/2, y+1/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds