Download citation
Download citation
link to html
CdAs2O6 is isotypic with other metaarsenates MAs2O6 (M = Ca, Mn, Ni, Co, Hg, Pb) and adopts the PbSb2O6 structure type. The Cd and As atoms are situated on positions with site symmetry (\overline 3m) and (32), respectively. They are coordinated octahedrally by O atoms with distances d(Cd-O) = 2.302 (2) Å and d(As-O) = 1.826 (1) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801003865/br6007sup1.cif
Contains datablocks I, CdAs2O6

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801003865/br6007Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](As-O) = 0.001 Å
  • R factor = 0.018
  • wR factor = 0.042
  • Data-to-parameter ratio = 20.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry




Comment top

Like other metaarsenates MIIAs2O6 reported by Magnèli (1941) [structure refinements: M = Ca, Pb (Losilla et al., 1995); Mn, Ni, Co (Nakua & Greedan, 1995); Hg (Weil, 2000; Mormann & Jeitschko, 2000], CdAs2O6 crystallizes in the PbSb2O6 structure type (Wells, 1984), which is based on a hexagonal array of O atoms. Layers of octahedral interstices alternate along the c axis of which two-thirds are filled by As atoms and one-third by M atoms. The AsO6 octahedra are connected by edge sharing to form honeycomb sheets with the composition [As2O6]2- (Fig. 1). The M atoms are situated below and above the vacant sites of the [As2O6]2- layers, which leads to isolated MO6 octahedra with site symmetry (3.m) for the M atoms. As atoms have site symmetry (3.2) (Fig. 2). The resulting distances of d(Cd—O) = 2.302 (2) Å and d(As—O) = 1.826 (1) Å compare well with d(Cd—O) = 2.31 Å and d(As—O) = 1.82 Å calculated from the radii for six-coordinated Cd and As and three-coordinated oxygen given by Shannon (1976).

Experimental top

Single crystals of CdAs2O6 were prepared by chemical transport reaction of microcrystalline material in sealed and evacuated silica ampoules using PtCl2 as transport agent (993 K 953 K, 14 d). Microcrystalline CdAs2O6 was synthesized by solid-state reaction of the binary oxides in closed silica ampoules at 953 K for 5 d.

Refinement top

The crystal shape was optimized by minimizing the internal R value of ψ scan data for ten selected reflections using the program HABITUS (Herrendorf, 1993). The habit so derived was used for the numerical absorption correction.

Computing details top

Data collection: STADI4 (Stoe & Cie, 1995); cell refinement: STADI4 (Stoe & Cie, 1995); data reduction: STADI4; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1995); software used to prepare material for publication: SHELX97.

Figures top
[Figure 1] Fig. 1. Projection of the structure along [001] (left) and [100] (right). CdO6 octahedra are red and AsO6 octahedra are yellow.
[Figure 2] Fig. 2. The unit cell with anisotropic displacement ellipsoids at the 90% probability level; Cd atoms are red and As atoms are yellow.
Cadmium metaarsenate(V) top
Crystal data top
As2CdO6Dx = 6.059 Mg m3
Mr = 358.24Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31MCell parameters from 25 reflections
a = 4.8269 (10) Åθ = 9.4–17.7°
c = 4.866 (1) ŵ = 22.22 mm1
V = 98.18 (4) Å3T = 293 K
Z = 1Prismatic, brown
F(000) = 1620.33 × 0.31 × 0.22 mm
Data collection top
Siemens–Stoe AED-2
diffractometer
240 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 40.0°, θmin = 4.2°
ω/2θ scansh = 88
Absorption correction: numerical
(HABITUS; Herrendorf, 1993)
k = 88
Tmin = 0.019, Tmax = 0.129l = 88
2446 measured reflections3 standard reflections every 120 min
240 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0116P)2 + 0.3303P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max < 0.001
S = 1.23Δρmax = 1.27 e Å3
240 reflectionsΔρmin = 0.88 e Å3
12 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.267 (15)
Crystal data top
As2CdO6Z = 1
Mr = 358.24Mo Kα radiation
Trigonal, P31Mµ = 22.22 mm1
a = 4.8269 (10) ÅT = 293 K
c = 4.866 (1) Å0.33 × 0.31 × 0.22 mm
V = 98.18 (4) Å3
Data collection top
Siemens–Stoe AED-2
diffractometer
240 reflections with I > 2σ(I)
Absorption correction: numerical
(HABITUS; Herrendorf, 1993)
Rint = 0.046
Tmin = 0.019, Tmax = 0.1293 standard reflections every 120 min
2446 measured reflections intensity decay: none
240 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01812 parameters
wR(F2) = 0.0420 restraints
S = 1.23Δρmax = 1.27 e Å3
240 reflectionsΔρmin = 0.88 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.00000.00000.00641 (13)
As10.33330.66670.50000.00374 (13)
O10.6243 (4)0.00000.2913 (3)0.0062 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.00700 (14)0.00700 (14)0.00522 (16)0.00350 (7)0.0000.000
As10.00321 (14)0.00321 (14)0.00480 (16)0.00161 (7)0.0000.000
O10.0067 (4)0.0042 (5)0.0068 (6)0.0021 (3)0.0023 (4)0.000
Geometric parameters (Å, º) top
Cd1—O1i2.3019 (17)As1—O1x1.8256 (11)
Cd1—O1ii2.3019 (17)As1—O1xi1.8256 (11)
Cd1—O1iii2.3019 (17)As1—O1ii1.8256 (11)
Cd1—O1iv2.3019 (17)As1—As1xii2.7868 (6)
Cd1—O1v2.3019 (17)As1—As1xiii2.7868 (6)
Cd1—O1vi2.3019 (17)As1—As1viii2.7868 (6)
As1—O1vii1.8256 (11)O1—As1viii1.8256 (11)
As1—O1viii1.8256 (11)O1—As1xiv1.8256 (11)
As1—O1ix1.8256 (11)O1—Cd1xv2.3019 (17)
O1i—Cd1—O1ii180.00 (10)O1ix—As1—O1ii96.45 (11)
O1i—Cd1—O1iii93.94 (6)O1x—As1—O1ii92.05 (6)
O1ii—Cd1—O1iii86.06 (6)O1xi—As1—O1ii80.49 (8)
O1i—Cd1—O1iv93.94 (6)O1vii—As1—As1xii40.25 (4)
O1ii—Cd1—O1iv86.06 (6)O1viii—As1—As1xii95.57 (5)
O1iii—Cd1—O1iv86.06 (6)O1ix—As1—As1xii40.25 (4)
O1i—Cd1—O1v86.06 (6)O1x—As1—As1xii131.77 (6)
O1ii—Cd1—O1v93.94 (6)O1xi—As1—As1xii131.77 (6)
O1iii—Cd1—O1v93.94 (6)O1ii—As1—As1xii95.57 (5)
O1iv—Cd1—O1v180.00 (6)O1vii—As1—As1xiii95.57 (5)
O1i—Cd1—O1vi86.06 (6)O1viii—As1—As1xiii40.25 (4)
O1ii—Cd1—O1vi93.94 (6)O1ix—As1—As1xiii131.77 (6)
O1iii—Cd1—O1vi180.00 (6)O1x—As1—As1xiii40.25 (4)
O1iv—Cd1—O1vi93.94 (6)O1xi—As1—As1xiii95.57 (5)
O1v—Cd1—O1vi86.06 (6)O1ii—As1—As1xiii131.77 (6)
O1vii—As1—O1viii96.45 (11)As1xii—As1—As1xiii120.0
O1vii—As1—O1ix80.49 (8)O1vii—As1—As1viii131.77 (6)
O1viii—As1—O1ix92.05 (6)O1viii—As1—As1viii131.77 (6)
O1vii—As1—O1x92.05 (6)O1ix—As1—As1viii95.57 (5)
O1viii—As1—O1x80.49 (8)O1x—As1—As1viii95.57 (5)
O1ix—As1—O1x168.86 (10)O1xi—As1—As1viii40.25 (4)
O1vii—As1—O1xi168.86 (10)O1ii—As1—As1viii40.25 (4)
O1viii—As1—O1xi92.05 (6)As1xii—As1—As1viii120.0
O1ix—As1—O1xi92.05 (6)As1xiii—As1—As1viii120.0
O1x—As1—O1xi96.45 (11)As1viii—O1—As1xiv99.51 (8)
O1vii—As1—O1ii92.05 (6)As1viii—O1—Cd1xv126.97 (5)
O1viii—As1—O1ii168.86 (10)As1xiv—O1—Cd1xv126.97 (5)
Symmetry codes: (i) xy1, x1, z; (ii) x+y+1, x+1, z; (iii) x1, y, z; (iv) y, xy1, z; (v) y, x+y+1, z; (vi) x+1, y, z; (vii) y, xy, z; (viii) x+1, y+1, z+1; (ix) y, x+y+1, z+1; (x) x, y+1, z; (xi) xy, x, z+1; (xii) x, y+1, z+1; (xiii) x+1, y+2, z+1; (xiv) x, y1, z; (xv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaAs2CdO6
Mr358.24
Crystal system, space groupTrigonal, P31M
Temperature (K)293
a, c (Å)4.8269 (10), 4.866 (1)
V3)98.18 (4)
Z1
Radiation typeMo Kα
µ (mm1)22.22
Crystal size (mm)0.33 × 0.31 × 0.22
Data collection
DiffractometerSiemens–Stoe AED-2
diffractometer
Absorption correctionNumerical
(HABITUS; Herrendorf, 1993)
Tmin, Tmax0.019, 0.129
No. of measured, independent and
observed [I > 2σ(I)] reflections
2446, 240, 240
Rint0.046
(sin θ/λ)max1)0.904
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.042, 1.23
No. of reflections240
No. of parameters12
Δρmax, Δρmin (e Å3)1.27, 0.88

Computer programs: STADI4 (Stoe & Cie, 1995), STADI4, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ATOMS (Dowty, 1995), SHELX97.

Selected bond lengths (Å) top
Cd1—O1i2.3019 (17)As1—O1ii1.8256 (11)
Symmetry codes: (i) xy1, x1, z; (ii) y, xy, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds