metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new cobalt(II) complex with 5-(4-pyrid­yl)tetra­zole ligands

aDepartment of Chemistry, Nanjing Institute of Railway Technology, Suzhou 215137, People's Republic of China, and bSuzhou Institute of Trade & Commerce, Suzhou 215009, People's Republic of China
*Correspondence e-mail: szhzhuweifeng@yahoo.cn

(Received 28 September 2008; accepted 27 October 2008; online 31 October 2008)

A new mononuclear cobalt(II) complex, tetra­aqua­bis[5-(4-pyrid­yl)tetra­zolido-κN5]cobalt(II) dihydrate, [Co(C6H4N5)2(H2O)4]·2H2O, has been synthesized and structurally characterized. The CoII atom is coordinated by two N atoms from 5-(4-pyrid­yl)tetra­zole ligands (L), as well as four O atoms from coordinated water mol­ecules. The mol­ecule is centrosymmetric, with pairs of equivalent ligands lying trans to each other in a slightly distorted octa­hedral coordination geometry. A prominent feature of the complex is the formation of a three-dimensional supra­molecular network via O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

The corresponding complex with manganese(II) ion as the central metal atom (Lin et al., 2005[Lin, P., Clegg, W., Harrington, R. W. & Henderson, R. A. (2005). Dalton. Trans. pp. 2388-2394.]) has a similar structure to that of the title complex. For related literature, see: Detert & Schollmeier (1999[Detert, H. & Schollmeier, D. (1999). Synthesis, pp. 999-1004.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H4N5)2(H2O)4]·2H2O

  • Mr = 459.31

  • Triclinic, [P \overline 1]

  • a = 7.2087 (16) Å

  • b = 7.8002 (17) Å

  • c = 8.6702 (18) Å

  • α = 91.406 (3)°

  • β = 90.482 (3)°

  • γ = 100.953 (3)°

  • V = 478.45 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 294 (2) K

  • 0.20 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.763, Tmax = 0.890

  • 2456 measured reflections

  • 1684 independent reflections

  • 1562 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.12

  • 1684 reflections

  • 157 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2i 0.855 (10) 1.968 (10) 2.795 (3) 161.84 (3)
O1—H1B⋯O3ii 0.857 (10) 1.93 (1) 2.753 (3) 161.83 (3)
O2—H2A⋯N3iii 0.849 (10) 2.10 (1) 2.939 (3) 170.66 (3)
O2—H2B⋯O3iv 0.851 (3) 1.90 (1) 2.745 (3) 172.44 (3)
O3—H3A⋯N5v 0.853 (10) 1.99 (1) 2.840 (3) 177.52 (3)
O3—H3B⋯N4vi 0.849 (10) 1.942 (10) 2.780 (3) 168.93 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z; (v) x, y+1, z; (vi) -x, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A wide range of applications of tetrazoles have found in areas as diverse as coordination chemistry, medicinal chemistry and materials science. The study of complexes containing substituted tetrazole ligands is of interest to describe the ways in which tetrazoles bind to metal centres. However, in the title complex reported here, the substituted tetrazole ligands bind to metal centres by the N atoms from pyridyls. In this contribution, we chose 5-(4'-pyridyl)tetrazole (L) as organic ligands and synthesized a new mononuclear complex, namely (CoL2(H2O)4).H2O.

Single crystal X-ray diffraction analysis reveals that the vicinity of the cobalt(II) ion is constituted by two nitrogen atoms from the L ligands and four oxygen atoms from coordinated water moleculars. The molecule is centrosymmetric, so pairs of equivalent ligands lie trans to each other in a slightly distorted octahedral coordination geometry. Four oxygen atoms from coordinated water moleculars occupy the four equatorial positions while two nitrogen atoms, N(1) and N(1 A) from the L ligands are in the axial sites. A diagram of the molecule is shown in Fig. 1. The complex is further connected into a three dimensional supramolecular structure via O—H···O and O—H···N hydrogen bonds, which is shown in Fig. 2.

Related literature top

The corresponding complex with manganese(II) ion as the central metal atom (Lin et al., 2005) has a similar structure to that of the title complex. For related literature, see: Detert & Schollmeier (1999).

Experimental top

The synthesis of the L ligand [L =5-(4'-pyridyl)tetrazole] was according to the previously published literature (Detert et al., 1999). A solution of CoCl2.(H2O)6 (0.0238 g, 0.1 mmol) in 10 ml water was added to the solution of L (0.0310 g, 0.2 mmol) in 5 ml water, the mixture was heated with stirring. After 3 h, the mixture was cooled to room temperature and filtered. The filtrate was allowed to stand in air at room temperature for several days. Red crystals suitable for X-ray diffraction were obtained. Calculated for C12H20CoN10O6: C 31.35, H 4.35, O 15.65, Co 12.83, N 30.48%; found: C 31.32, H 4.40%.

Refinement top

To obtain a better refinement result, eight atoms, namely C(1), H(1), C(2), H(2), C(4), H(4), C(5) and H(5) have been restrained, and all the distance of C—H were fixed at 0.93 Å, with Uiso(H) = 1.19Ueq(C). Other hydrogen atoms were positioned geometrically and refined using a riding model.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title complex with 30% thermal ellipsoids. The H atoms are omitted for clarity.
[Figure 2] Fig. 2. The packing diagram of the title complex.
tetraaquabis[5-(4-pyridyl)tetrazolido-κN5]cobalt(II) dihydrate top
Crystal data top
[Co(C6H4N5)2(H2O)4]·2H2OZ = 1
Mr = 459.31F(000) = 237
Triclinic, P1Dx = 1.594 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2087 (16) ÅCell parameters from 1859 reflections
b = 7.8002 (17) Åθ = 2.7–26.3°
c = 8.6702 (18) ŵ = 0.95 mm1
α = 91.406 (3)°T = 294 K
β = 90.482 (3)°Block, red
γ = 100.953 (3)°0.20 × 0.20 × 0.14 mm
V = 478.45 (18) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1684 independent reflections
Radiation source: fine-focus sealed tube1562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
h = 58
Tmin = 0.763, Tmax = 0.890k = 89
2456 measured reflectionsl = 107
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.035P)2 + 2.1646P]
where P = (Fo2 + 2Fc2)/3
1684 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.49 e Å3
9 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Co(C6H4N5)2(H2O)4]·2H2Oγ = 100.953 (3)°
Mr = 459.31V = 478.45 (18) Å3
Triclinic, P1Z = 1
a = 7.2087 (16) ÅMo Kα radiation
b = 7.8002 (17) ŵ = 0.95 mm1
c = 8.6702 (18) ÅT = 294 K
α = 91.406 (3)°0.20 × 0.20 × 0.14 mm
β = 90.482 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1684 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
1562 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.890Rint = 0.013
2456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0319 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.49 e Å3
1684 reflectionsΔρmin = 0.28 e Å3
157 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.00000.02432 (16)
O10.6737 (2)0.6584 (2)0.16137 (19)0.0330 (4)
O20.7102 (3)0.3451 (2)0.0278 (2)0.0372 (4)
N10.3835 (3)0.3267 (2)0.1789 (2)0.0285 (4)
N20.2607 (3)0.0110 (3)0.6942 (2)0.0334 (5)
N30.2040 (3)0.1406 (3)0.7653 (2)0.0371 (5)
N40.1459 (3)0.2640 (3)0.6620 (2)0.0376 (5)
N50.1617 (3)0.1980 (3)0.5206 (2)0.0343 (5)
C10.3706 (4)0.3835 (3)0.3237 (3)0.0353 (6)
H10.39750.50340.34410.042*
C20.3196 (4)0.2748 (3)0.4445 (3)0.0372 (6)
H20.31200.32130.54350.045*
C30.2795 (3)0.0948 (3)0.4185 (3)0.0265 (5)
C40.2848 (5)0.0366 (3)0.2677 (3)0.0443 (7)
H40.25420.08230.24330.053*
C50.3357 (5)0.1551 (3)0.1530 (3)0.0445 (7)
H50.33660.11270.05190.053*
C60.2333 (3)0.0290 (3)0.5441 (3)0.0271 (5)
O30.0218 (2)0.5988 (2)0.25348 (19)0.0332 (4)
H1A0.670 (4)0.7610 (19)0.197 (3)0.044 (8)*
H1B0.782 (3)0.629 (4)0.170 (4)0.073 (12)*
H2A0.736 (4)0.276 (3)0.040 (2)0.043 (8)*
H2B0.794 (3)0.372 (4)0.096 (3)0.056 (10)*
H3A0.066 (4)0.662 (3)0.332 (2)0.040 (8)*
H3B0.018 (4)0.4918 (15)0.272 (3)0.052 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0335 (3)0.0211 (2)0.0174 (2)0.00208 (17)0.00210 (16)0.00325 (16)
O10.0416 (10)0.0277 (9)0.0283 (9)0.0039 (7)0.0052 (7)0.0036 (7)
O20.0474 (11)0.0395 (10)0.0289 (10)0.0169 (8)0.0099 (8)0.0130 (8)
N10.0362 (10)0.0248 (10)0.0229 (10)0.0014 (8)0.0022 (8)0.0034 (8)
N20.0459 (12)0.0276 (11)0.0247 (11)0.0016 (9)0.0018 (9)0.0068 (8)
N30.0489 (13)0.0325 (11)0.0279 (11)0.0019 (9)0.0012 (9)0.0104 (9)
N40.0499 (13)0.0291 (11)0.0313 (12)0.0004 (9)0.0018 (9)0.0121 (9)
N50.0469 (12)0.0264 (11)0.0267 (11)0.0010 (9)0.0011 (9)0.0078 (8)
C10.0497 (15)0.0245 (12)0.0282 (13)0.0019 (10)0.0027 (11)0.0028 (10)
C20.0527 (16)0.0340 (14)0.0217 (12)0.0001 (11)0.0022 (11)0.0016 (10)
C30.0282 (11)0.0259 (12)0.0245 (11)0.0026 (9)0.0013 (9)0.0063 (9)
C40.077 (2)0.0223 (13)0.0296 (14)0.0022 (12)0.0049 (13)0.0022 (10)
C50.077 (2)0.0301 (14)0.0217 (12)0.0012 (13)0.0043 (12)0.0026 (10)
C60.0280 (11)0.0275 (12)0.0254 (11)0.0040 (9)0.0000 (9)0.0057 (9)
O30.0422 (10)0.0260 (9)0.0292 (9)0.0002 (8)0.0012 (7)0.0040 (7)
Geometric parameters (Å, º) top
Co1—O1i2.0855 (16)N3—N41.304 (3)
Co1—O12.0855 (16)N4—N51.339 (3)
Co1—O22.1220 (17)N5—C61.331 (3)
Co1—O2i2.1220 (17)C1—C21.372 (3)
Co1—N12.1520 (19)C1—H10.9300
Co1—N1i2.1521 (19)C2—C31.391 (3)
O1—H1A0.855 (10)C2—H20.9300
O1—H1B0.857 (10)C3—C41.377 (3)
O2—H2A0.849 (10)C3—C61.471 (3)
O2—H2B0.851 (10)C4—C51.378 (4)
N1—C51.331 (3)C4—H40.9300
N1—C11.331 (3)C5—H50.9300
N2—C61.334 (3)O3—H3A0.853 (10)
N2—N31.342 (3)O3—H3B0.849 (10)
O1i—Co1—O290.42 (7)N4—N3—N2109.21 (19)
O1—Co1—O289.58 (7)N3—N4—N5109.94 (19)
O1i—Co1—O2i89.58 (7)C6—N5—N4104.62 (19)
O1—Co1—O2i90.42 (7)N1—C1—C2123.5 (2)
O1i—Co1—N189.50 (7)N1—C1—H1118.2
O1—Co1—N190.50 (7)C2—C1—H1118.2
O2—Co1—N187.51 (7)C1—C2—C3119.9 (2)
O2i—Co1—N192.49 (7)C1—C2—H2120.1
O1i—Co1—N1i90.50 (7)C3—C2—H2120.1
O1—Co1—N1i89.50 (7)C4—C3—C2116.5 (2)
O2—Co1—N1i92.49 (7)C4—C3—C6121.0 (2)
O2i—Co1—N1i87.51 (7)C2—C3—C6122.5 (2)
Co1—O1—H1A130.6 (18)C3—C4—C5119.8 (2)
Co1—O1—H1B112 (2)C3—C4—H4120.1
H1A—O1—H1B114.2 (17)C5—C4—H4120.1
Co1—O2—H2A123.1 (17)N1—C5—C4123.7 (2)
Co1—O2—H2B118.7 (18)N1—C5—H5118.2
H2A—O2—H2B115.9 (17)C4—C5—H5118.2
C5—N1—C1116.5 (2)N5—C6—N2111.4 (2)
C5—N1—Co1121.48 (16)N5—C6—C3123.4 (2)
C1—N1—Co1121.77 (16)N2—C6—C3125.1 (2)
C6—N2—N3104.82 (19)H3A—O3—H3B114.8 (16)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N2ii0.86 (1)1.97 (1)2.795 (3)162 (1)
O1—H1B···O3iii0.86 (1)1.93 (1)2.753 (3)162 (1)
O2—H2A···N3iv0.85 (1)2.10 (1)2.939 (3)171 (1)
O2—H2B···O3i0.85 (1)1.90 (1)2.745 (3)172 (1)
O3—H3A···N5v0.85 (1)1.99 (1)2.840 (3)178 (1)
O3—H3B···N4vi0.85 (1)1.94 (1)2.780 (3)169 (1)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x, y+1, z; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C6H4N5)2(H2O)4]·2H2O
Mr459.31
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.2087 (16), 7.8002 (17), 8.6702 (18)
α, β, γ (°)91.406 (3), 90.482 (3), 100.953 (3)
V3)478.45 (18)
Z1
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.20 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick 1996)
Tmin, Tmax0.763, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
2456, 1684, 1562
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.12
No. of reflections1684
No. of parameters157
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.28

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N2i0.855 (10)1.968 (10)2.795 (3)161.84 (3)
O1—H1B···O3ii0.857 (10)1.93 (1)2.753 (3)161.83 (3)
O2—H2A···N3iii0.849 (10)2.10 (1)2.939 (3)170.66 (3)
O2—H2B···O3iv0.851 (3)1.90 (1)2.745 (3)172.44 (3)
O3—H3A···N5v0.853 (10)1.99 (1)2.840 (3)177.52 (3)
O3—H3B···N4vi0.849 (10)1.942 (10)2.780 (3)168.93 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x, y, z+1.
 

Acknowledgements

The authors thank the the Natural Science Foundation of Jiangsu for financial support.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDetert, H. & Schollmeier, D. (1999). Synthesis, pp. 999–1004.  CSD CrossRef Google Scholar
First citationLin, P., Clegg, W., Harrington, R. W. & Henderson, R. A. (2005). Dalton. Trans. pp. 2388-2394.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds