metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1152-m1153

Bis[tris­­(ethane-1,2-di­amine)nickel(II)] octa­cyanidomolybdate(IV) dihydrate

aSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China, and bInstitute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com

(Received 12 June 2008; accepted 3 August 2008; online 13 August 2008)

The title complex, [NiII(C2H8N2)3]2[MoIV(CN)8]·2H2O, crystallized from a mixture of ethane-1,2-diamine (en), octa­cyano­molybdate(IV), [Mo(CN)8]4−, and the transition metal ion Ni2+. In the crystal structure, the Mo polyhedron has a square-anti­prismatic shape, while the geometry around the Ni atom is distorted octa­hedral. The complex ions and water mol­ecules are linked by hydrogen bonds.

Related literature

For information on molybdenum–octa­cyanido complexes see: Mathonière et al. (2005[Mathonière, C., Podgajny, R., Guionneau, P., Labrugere, C. & Sieklucka, B. (2005). Chem. Mater. 17, 442-449.]); Przychodzeń et al. (2004[Przychodzeń, P., Lewiński, K., Bałanda, M., Pełka, R., Rams, M., Wasiutyński, T., Guyard-Duhayon, C. & Sieklucka, B. (2004). Inorg. Chem. 43, 2967-2974.]); Zhou et al. (2008[Zhou, H., Chen, Y.-Y., Yuan, A.-H. & Shen, X.-P. (2008). Inorg. Chem. Commun. 11, 363-366.]). For related literature, see: Chang et al. (2002[Chang, F., Sun, H.-L., Kou, H.-Z. & Gao, S. (2002). Inorg. Chem. Commun. 5, 660-663.]); Leipoldt et al. (1974[Leipoldt, J. G., Bok, L. D. C. & Cilliers, P. J. (1974). Z. Anorg. Allg. Chem. 409, 343-344.]); Li et al. (2003[Li, D.-F., Zheng, L.-M., Wang, X.-Y., Huang, J., Gao, S. & Tang, W.-X. (2003). Chem. Mater. 15, 2094-2098.]); Podgajny et al. (2001[Podgajny, R., Dromzée, Y., Kruczała, K. & Sieklucka, B. (2001). Polyhedron, 20, 685-694.]); Przychodzeń et al. (2006[Przychodzeń, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234-2260.]); Sieklucka et al. (2002[Sieklucka, B., Podgajny, R., Korzeniak, T., Przychodzeń, P. & Kania, R. (2002). C. R. Chim. 5, 639-649.], 2005[Sieklucka, B., Podgajny, R., Przychodzeń, P. & Korzeniak, T. (2005). Coord. Chem. Rev. 249, 2203-2221.]); Withers et al. (2005[Withers, J. R., Ruschmann, Ch., Bojang, P., Parkin, S. & Holmes, S. M. (2005). Inorg. Chem. 44, 352-358.]); Yuan et al. (2000[Yuan, A.-H., Zou, J.-Z., Li, B.-L., Zha, Z.-G., Duan, C.-Y., Liu, Y.-J., Xu, Z. & Keizer, S. (2000). Chem. Commun. 14, 1297-1298.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H8N2)3]2[Mo(CN)8]·2H2O

  • Mr = 818.18

  • Monoclinic, P 21

  • a = 10.1765 (3) Å

  • b = 12.2178 (2) Å

  • c = 15.8932 (3) Å

  • β = 106.683 (1)°

  • V = 1892.89 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 153 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Rigaku R-AXIS Spider diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.67, Tmax = 0.72

  • 15991 measured reflections

  • 6779 independent reflections

  • 6292 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.122

  • S = 1.09

  • 6779 reflections

  • 433 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.92 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2876 Friedel pairs

  • Flack parameter: 0.024 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9A⋯N8i 0.92 2.27 3.140 (8) 159
N9—H9B⋯N3ii 0.92 2.41 3.179 (7) 141
N10—H10A⋯N3iii 0.92 2.20 3.111 (8) 170
N10—H10B⋯N5iii 0.92 2.58 3.252 (8) 130
N11—H11A⋯N3iii 0.92 2.37 3.219 (8) 153
N12—H12A⋯N7iv 0.92 2.35 3.141 (8) 144
N12—H12B⋯N5iii 0.92 2.25 3.126 (8) 159
N13—H13A⋯N7iv 0.92 2.53 3.434 (8) 167
N13—H13B⋯N3ii 0.92 2.25 3.056 (8) 146
N14—H14A⋯N8i 0.92 2.24 3.066 (8) 149
N14—H14B⋯O3iii 0.92 2.18 3.099 (15) 176
N15—H15A⋯O1 0.92 2.51 3.290 (16) 143
N15—H15B⋯O4v 0.92 2.48 3.342 (16) 156
N16—H16A⋯O4 0.92 2.18 3.023 (16) 152
N17—H17A⋯O4 0.92 2.17 3.040 (17) 157
N17—H17B⋯O5v 0.92 2.28 3.097 (14) 148
N18—H18A⋯N6i 0.92 2.26 3.177 (10) 178
N18—H18B⋯N4 0.92 2.40 3.216 (8) 148
N19—H19A⋯N2i 0.92 2.63 3.246 (8) 125
N19—H19B⋯O4v 0.92 2.30 3.187 (15) 163
N20—H20A⋯O3 0.92 2.25 3.165 (12) 172
N20—H20B⋯N4 0.92 2.43 3.306 (10) 159
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x-1, y, z-1; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) x, y, z-1; (v) [-x, y+{\script{1\over 2}}, -z+1].

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, there is a continuing interest in donor-acceptor systems based on octacyano-complexes [M(CN)8]3-/4- (M = Mo, W and Nb) as building blocks for constructing either ion-paired or cyano-bridged bimetallic assemblies because of their unique structures and physicochemical properties (Przychodzeń et al., 2006; Sieklucka et al., 2005; Sieklucka et al., 2002). While it was very difficult to crystallize octacyanometalate networks by slow diffusion or hydrothermal methods, we began to explore the utility of amine ligands to direct and limit the number of cyano linkages formed between transition metal centers. Bidentate amines such as 1,2-diaminoethane (en), 1,2-diaminopropane (pn), and 1,3-propanediamine (tn), are found extensive use in the preparation of so-called 'expanded Prussian blue solids', but only several octacyanometalate derivatives are known up to date (Li et al., 2003; Podgajny et al., 2001; Withers et al., 2005; Chang et al., 2002; Yuan et al., 2000).

Each Mo atom is eight-coordinated, where all eight cyanide groups are terminal ones (Fig. 1). The Mo(IV) polyhedron has a square-antiprismatic shape (D4d symmetry). The octacyanomolybdate moiety [Mo(CN)8]4- is characterized by the average Mo—C distance of 2.161 Å and practically linear Mo—CN bonds with the bond angles ranging from 176.8 (4)° to 179.6 (4)°. Crystal structure data of octacyanometalate moiety Mo(IV) (SAPR-8, D4d symmetry) is in very good agreement with the great majority of mononuclear [Mo(CN)8]4- complexes (Zhou et al., 2008; Mathonière et al., 2005; Przychodzeń et al., 2004).

In [Ni(en)3]2+cation, the geometry around Ni(1) is octahedron (D3 symmetry). The average Ni(1)—N bond distance for the [Ni(1)(en)3]2+centers is 2.122 Å. The octahedral environment of [Ni(en)3]2+is comparable with those found for other Ni complexes previously reported with amine and polyamine ligands (Withers et al., 2005; Chang et al., 2002; Yuan et al., 2000).

The striking aspect of the structure lies in the coordination environment of [Ni(en)3]2+cation. Each Ni atom chelates to three en molecules, and no positions are provided for CN groups of [Mo(CN)8]4- thus avoiding the formation of cyano-bridge. Packing diagram of the title complex is shown in figure 2. There are additional water molecules (O1, O2, O3, O4, O5) in the structure, which might be connected via difference map.

Related literature top

For information on molybdenum–octacyano complexes see: Mathonière et al. (2005); Przychodzeń et al. (2004); Zhou et al. (2008). For related literature, see: Chang et al. (2002); Leipoldt et al. (1974); Li et al. (2003); Podgajny et al. (2001); Przychodzeń et al. (2006); Sieklucka et al. (2002, 2005); Withers et al. (2005); Yuan et al. (2000).

Experimental top

For the preparation of the title complex, pale yellow crystals of suitable for X-ray single-crystal structure determination were grown at room temperature by slow diffusion of an aqueous solution of NiCl2.H2O (0.2 mmol) and ethane-1,2-amine (en, 0.6 mmol) and anaqueous solution of K4[Mo(CN)8].2H2O (Leipoldt et al., 1974) (0.1 mmol) for six weeks. The resulting crystals were collected, washed with H2O and dried in air. Anal. Calc. for C20H52MoN20Ni2O2: C, 29.36; H, 6.41; N, 34.24; Ni, 14.35; Mo, 11.73. Found: C, 29.50; H, 6.38; N, 34.11; Ni, 14.40; Mo, 11.77.

Refinement top

All non-H atoms were refined anisotropically. The H atoms on nitrogen atoms were located from the difference Fourier maps, and the H atoms of water molecules were not located in the difference map and placed in theory positions.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title complex showing 30% probability thermal motion ellipsoid. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of the title complex. Water molecules are omitted for clarity.
Bis[tris(ethane-1,2-diamine)nickel(II)] octacyanidomolybdate(IV) dihydrate top
Crystal data top
[Ni(C2H8N2)3]2[Mo(CN)8]·2H2OF(000) = 852
Mr = 818.18Dx = 1.435 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4517 reflections
a = 10.1765 (3) Åθ = 2.1–25.5°
b = 12.2178 (2) ŵ = 1.36 mm1
c = 15.8932 (3) ÅT = 153 K
β = 106.683 (1)°Pale, yellow
V = 1892.89 (7) Å30.30 × 0.26 × 0.24 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
6779 independent reflections
Radiation source: sealed tube6292 reflections with I > \2s(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.67, Tmax = 0.72k = 1513
15991 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.07P)2 + 1.99P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
6779 reflectionsΔρmax = 0.48 e Å3
433 parametersΔρmin = 0.92 e Å3
1 restraintAbsolute structure: Flack (1983), 2876 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.024 (19)
Crystal data top
[Ni(C2H8N2)3]2[Mo(CN)8]·2H2OV = 1892.89 (7) Å3
Mr = 818.18Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.1765 (3) ŵ = 1.36 mm1
b = 12.2178 (2) ÅT = 153 K
c = 15.8932 (3) Å0.30 × 0.26 × 0.24 mm
β = 106.683 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6779 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
6292 reflections with I > \2s(I)
Tmin = 0.67, Tmax = 0.72Rint = 0.048
15991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.122Δρmax = 0.48 e Å3
S = 1.09Δρmin = 0.92 e Å3
6779 reflectionsAbsolute structure: Flack (1983), 2876 Friedel pairs
433 parametersAbsolute structure parameter: 0.024 (19)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7021 (6)0.2552 (5)0.9316 (4)0.0195 (12)
C20.8354 (6)0.2524 (6)0.7410 (4)0.0241 (13)
C30.8353 (6)0.3887 (5)0.8634 (4)0.0189 (12)
C40.6661 (7)0.4211 (6)0.7016 (4)0.0278 (14)
C50.5555 (6)0.4260 (6)0.8268 (4)0.0199 (12)
C60.5563 (6)0.2339 (6)0.6619 (4)0.0289 (14)
C70.4715 (7)0.2262 (5)0.7999 (4)0.0264 (14)
C80.7056 (7)0.1166 (6)0.8070 (4)0.0287 (14)
C90.0508 (5)0.2749 (6)0.1559 (4)0.0248 (14)
H9C0.01610.21620.13100.030*
H9D0.01060.32350.19190.030*
C100.1825 (7)0.2257 (6)0.2122 (4)0.0271 (14)
H10C0.24690.28450.24060.032*
H10D0.16380.17980.25880.032*
C110.1076 (6)0.0854 (5)0.1054 (4)0.0243 (13)
H11C0.11460.13820.15110.029*
H11D0.04420.02590.13380.029*
C120.2488 (7)0.0386 (5)0.0584 (4)0.0253 (14)
H12C0.23980.01890.01650.030*
H12D0.28960.00500.10170.030*
C130.2762 (8)0.4470 (6)0.0335 (5)0.0325 (15)
H13C0.21830.48680.00320.039*
H13D0.29010.49490.08050.039*
C140.4120 (7)0.4211 (6)0.0306 (6)0.0356 (17)
H14C0.47350.38760.00050.043*
H14D0.45550.48910.05940.043*
C150.0575 (8)0.5073 (7)0.6690 (5)0.0371 (17)
H15C0.01420.46910.62290.045*
H15D0.01810.52760.71700.045*
C160.1786 (7)0.4333 (7)0.7037 (5)0.0345 (16)
H16C0.23310.46020.76200.041*
H16D0.14530.35900.71170.041*
C170.3069 (7)0.4275 (7)0.4299 (5)0.0364 (17)
H17C0.35470.41930.38420.044*
H17D0.30460.35510.45750.044*
C180.3033 (7)0.8036 (6)0.5511 (5)0.0324 (15)
H18C0.24750.84420.58250.039*
H18D0.33320.85630.51290.039*
C190.4256 (7)0.7580 (6)0.6159 (5)0.0330 (17)
H19C0.46030.81260.66310.040*
H19D0.49810.74600.58670.040*
C200.1658 (7)0.4669 (7)0.3898 (5)0.0370 (17)
H20C0.11420.41260.34660.044*
H20D0.16800.53660.35860.044*
Mo10.66541 (4)0.28850 (4)0.79163 (3)0.01679 (12)
N10.7199 (6)0.2377 (5)1.0040 (4)0.0301 (12)
N20.9261 (6)0.2312 (6)0.7138 (4)0.0340 (13)
N30.9209 (5)0.4433 (5)0.9004 (4)0.0268 (12)
N40.6622 (7)0.4940 (6)0.6546 (4)0.0396 (15)
N50.4988 (6)0.5007 (5)0.8419 (4)0.0284 (12)
N60.5011 (6)0.2020 (7)0.5923 (4)0.0424 (17)
N70.3659 (6)0.1947 (6)0.8043 (4)0.0324 (14)
N80.7278 (6)0.0243 (5)0.8114 (4)0.0334 (13)
N90.0806 (5)0.3382 (4)0.0843 (3)0.0198 (10)
H9A0.11970.40440.10510.024*
H9B0.00110.35110.04010.024*
N100.2435 (5)0.1588 (5)0.1566 (3)0.0233 (11)
H10A0.20060.09180.14630.028*
H10B0.33510.14740.18440.028*
N110.0556 (6)0.1416 (5)0.0374 (3)0.0250 (12)
H11A0.03190.09110.00140.030*
H11B0.02010.18360.06370.030*
N120.3389 (5)0.1272 (4)0.0107 (3)0.0205 (11)
H12A0.38090.16140.04760.025*
H12B0.40590.09830.03580.025*
N130.2079 (6)0.3480 (4)0.0718 (4)0.0240 (11)
H13A0.25090.31750.10970.029*
H13B0.11790.36190.10200.029*
N140.3906 (5)0.3450 (5)0.0966 (4)0.0260 (11)
H14A0.37340.38330.14210.031*
H14B0.46790.30310.11890.031*
N150.1003 (6)0.6013 (5)0.6341 (4)0.0349 (14)
H15A0.13930.64910.67910.042*
H15B0.02500.63520.59710.042*
N160.2683 (6)0.4264 (5)0.6456 (4)0.0305 (13)
H16A0.24690.36470.61110.037*
H16B0.35830.42100.67890.037*
N170.0968 (5)0.4836 (5)0.4593 (4)0.0298 (13)
H17A0.07280.41750.47840.036*
H17B0.01880.52520.43840.036*
N180.3814 (5)0.5073 (5)0.4973 (4)0.0286 (13)
H18A0.41370.56420.47090.034*
H18B0.45500.47380.53630.034*
N190.2186 (6)0.7195 (6)0.4965 (4)0.0381 (15)
H19A0.24330.71160.44550.046*
H19B0.12800.74050.48170.046*
N200.4008 (6)0.6538 (6)0.6563 (4)0.0379 (15)
H20A0.37530.66770.70630.046*
H20B0.47980.61260.67160.046*
Ni10.22011 (7)0.24205 (6)0.03593 (5)0.01682 (16)
Ni20.24281 (8)0.56721 (7)0.56448 (5)0.02290 (19)
O10.1546 (14)0.8476 (13)0.7207 (9)0.043 (5)0.395 (18)
H1B0.23450.84880.75680.052*0.395 (18)
H1C0.15000.89440.68040.052*0.395 (18)
O20.7361 (13)0.6346 (12)0.5413 (9)0.041 (5)0.410 (18)
H2D0.67250.65870.56120.050*0.410 (18)
H2A0.74180.67430.49860.050*0.410 (18)
O30.3445 (12)0.7066 (11)0.8378 (7)0.032 (4)0.392 (16)
H3B0.27210.74500.82890.038*0.392 (16)
H3C0.33390.64670.86230.038*0.392 (16)
O40.1011 (13)0.2511 (13)0.5281 (9)0.044 (5)0.399 (17)
H4A0.10790.19290.55830.052*0.399 (17)
H4C0.13160.23970.48450.052*0.399 (17)
O50.1340 (13)0.1064 (12)0.6782 (9)0.042 (4)0.404 (17)
H5A0.07360.12210.70370.050*0.404 (17)
H5C0.21340.11610.71360.050*0.404 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (3)0.018 (3)0.018 (3)0.005 (2)0.007 (2)0.000 (2)
C20.022 (3)0.021 (3)0.027 (3)0.008 (2)0.004 (2)0.001 (2)
C30.027 (3)0.010 (3)0.020 (3)0.002 (2)0.007 (2)0.007 (2)
C40.034 (3)0.026 (4)0.021 (3)0.006 (3)0.003 (3)0.010 (3)
C50.015 (2)0.024 (3)0.022 (3)0.002 (2)0.007 (2)0.005 (2)
C60.026 (3)0.036 (4)0.024 (3)0.014 (3)0.004 (3)0.008 (3)
C70.031 (3)0.019 (3)0.028 (3)0.008 (3)0.006 (3)0.004 (3)
C80.038 (4)0.026 (4)0.024 (3)0.007 (3)0.013 (3)0.006 (3)
C90.013 (2)0.037 (4)0.029 (3)0.001 (2)0.013 (2)0.009 (3)
C100.040 (4)0.024 (4)0.020 (3)0.007 (3)0.012 (3)0.007 (3)
C110.029 (3)0.023 (3)0.021 (3)0.002 (2)0.007 (2)0.007 (2)
C120.036 (3)0.017 (3)0.026 (3)0.002 (2)0.014 (3)0.002 (2)
C130.039 (4)0.024 (4)0.041 (4)0.006 (3)0.021 (3)0.002 (3)
C140.025 (3)0.027 (4)0.062 (5)0.006 (3)0.023 (3)0.000 (3)
C150.042 (4)0.038 (4)0.037 (4)0.008 (3)0.020 (3)0.013 (3)
C160.032 (4)0.036 (4)0.038 (4)0.008 (3)0.014 (3)0.009 (3)
C170.034 (4)0.042 (4)0.035 (4)0.015 (3)0.014 (3)0.011 (3)
C180.043 (4)0.021 (4)0.034 (3)0.001 (3)0.013 (3)0.010 (3)
C190.032 (3)0.030 (4)0.038 (4)0.016 (3)0.010 (3)0.022 (3)
C200.031 (3)0.045 (5)0.031 (4)0.003 (3)0.001 (3)0.009 (3)
Mo10.0170 (2)0.0178 (2)0.0146 (2)0.0064 (2)0.00296 (16)0.0014 (2)
N10.044 (3)0.021 (3)0.023 (3)0.003 (3)0.006 (2)0.007 (2)
N20.027 (3)0.042 (4)0.038 (3)0.014 (3)0.016 (2)0.009 (3)
N30.026 (3)0.023 (3)0.029 (3)0.003 (2)0.004 (2)0.001 (2)
N40.039 (3)0.049 (4)0.030 (3)0.013 (3)0.009 (3)0.007 (3)
N50.028 (3)0.030 (3)0.028 (3)0.005 (2)0.009 (2)0.003 (2)
N60.028 (3)0.073 (5)0.024 (3)0.015 (3)0.003 (2)0.003 (3)
N70.025 (3)0.047 (4)0.028 (3)0.020 (3)0.011 (2)0.007 (3)
N80.045 (3)0.023 (3)0.036 (3)0.005 (3)0.018 (3)0.005 (2)
N90.028 (3)0.014 (2)0.020 (3)0.003 (2)0.011 (2)0.000 (2)
N100.027 (3)0.020 (3)0.024 (3)0.001 (2)0.009 (2)0.003 (2)
N110.028 (3)0.026 (3)0.020 (3)0.001 (2)0.007 (2)0.006 (2)
N120.020 (2)0.017 (3)0.024 (3)0.003 (2)0.005 (2)0.003 (2)
N130.032 (3)0.019 (3)0.026 (3)0.002 (2)0.017 (2)0.004 (2)
N140.014 (2)0.028 (3)0.036 (3)0.003 (2)0.007 (2)0.005 (2)
N150.041 (3)0.036 (4)0.032 (3)0.014 (3)0.018 (3)0.007 (3)
N160.025 (3)0.042 (4)0.021 (3)0.000 (2)0.001 (2)0.000 (2)
N170.017 (2)0.037 (3)0.030 (3)0.000 (2)0.001 (2)0.005 (2)
N180.010 (2)0.048 (4)0.028 (3)0.002 (2)0.007 (2)0.007 (3)
N190.038 (3)0.047 (4)0.028 (3)0.001 (3)0.006 (3)0.006 (3)
N200.035 (3)0.060 (5)0.020 (3)0.011 (3)0.011 (3)0.014 (3)
Ni10.0161 (3)0.0141 (3)0.0214 (4)0.0003 (3)0.0072 (3)0.0002 (3)
Ni20.0217 (4)0.0281 (4)0.0188 (4)0.0018 (3)0.0057 (3)0.0039 (3)
O10.038 (7)0.048 (9)0.032 (7)0.007 (6)0.008 (6)0.005 (6)
O20.032 (6)0.044 (9)0.034 (7)0.002 (5)0.014 (5)0.015 (6)
O30.029 (6)0.046 (8)0.024 (6)0.017 (5)0.014 (5)0.006 (5)
O40.038 (7)0.044 (9)0.044 (8)0.001 (6)0.003 (6)0.005 (6)
O50.037 (7)0.051 (9)0.038 (7)0.012 (6)0.012 (6)0.013 (6)
Geometric parameters (Å, º) top
C1—N11.133 (8)C19—N201.479 (10)
C1—Mo12.185 (6)C19—H19C0.9900
C2—N21.155 (9)C19—H19D0.9900
C2—Mo12.153 (6)C20—N171.483 (9)
C3—N31.121 (8)C20—H20C0.9900
C3—Mo12.158 (6)C20—H20D0.9900
C4—N41.156 (9)N9—Ni12.148 (5)
C4—Mo12.162 (6)N9—H9A0.9200
C5—N51.142 (9)N9—H9B0.9200
C5—Mo12.178 (7)N10—Ni12.123 (6)
C6—N61.156 (9)N10—H10A0.9200
C6—Mo12.148 (7)N10—H10B0.9200
C7—N71.162 (9)N11—Ni12.132 (5)
C7—Mo12.154 (6)N11—H11A0.9200
C8—N81.148 (9)N11—H11B0.9200
C8—Mo12.141 (7)N12—Ni12.120 (5)
C9—N91.478 (8)N12—H12A0.9200
C9—C101.506 (8)N12—H12B0.9200
C9—H9C0.9900N13—Ni12.121 (5)
C9—H9D0.9900N13—H13A0.9200
C10—N101.466 (8)N13—H13B0.9200
C10—H10C0.9900N14—Ni12.135 (5)
C10—H10D0.9900N14—H14A0.9200
C11—N111.498 (8)N14—H14B0.9200
C11—C121.528 (9)N15—Ni22.103 (6)
C11—H11C0.9900N15—H15A0.9200
C11—H11D0.9900N15—H15B0.9200
C12—N121.479 (8)N16—Ni22.120 (6)
C12—H12C0.9900N16—H16A0.9200
C12—H12D0.9900N16—H16B0.9200
C13—N131.440 (9)N17—Ni22.149 (5)
C13—C141.496 (11)N17—H17A0.9200
C13—H13C0.9900N17—H17B0.9200
C13—H13D0.9900N18—Ni22.129 (5)
C14—N141.465 (9)N18—H18A0.9200
C14—H14C0.9900N18—H18B0.9200
C14—H14D0.9900N19—Ni22.131 (7)
C15—N151.399 (9)N19—H19A0.9200
C15—C161.500 (10)N19—H19B0.9200
C15—H15C0.9900N20—Ni22.118 (6)
C15—H15D0.9900N20—H20A0.9200
C16—N161.476 (9)N20—H20B0.9200
C16—H16C0.9900O1—H1B0.8500
C16—H16D0.9900O1—H1C0.8501
C17—C201.474 (10)O2—H2D0.8499
C17—N181.485 (9)O2—H2A0.8500
C17—H17C0.9900O3—H3B0.8500
C17—H17D0.9900O3—H3C0.8500
C18—N191.457 (9)O4—H4A0.8499
C18—C191.479 (10)O4—H4C0.8500
C18—H18C0.9900O5—H5A0.8500
C18—H18D0.9900O5—H5C0.8500
N1—C1—Mo1179.4 (5)C9—N9—Ni1107.0 (4)
N2—C2—Mo1178.8 (6)C9—N9—H9A110.3
N3—C3—Mo1177.9 (5)Ni1—N9—H9A110.3
N4—C4—Mo1177.1 (7)C9—N9—H9B110.3
N5—C5—Mo1176.7 (6)Ni1—N9—H9B110.3
N6—C6—Mo1177.7 (7)H9A—N9—H9B108.6
N7—C7—Mo1178.6 (6)C10—N10—Ni1108.7 (4)
N8—C8—Mo1176.8 (6)C10—N10—H10A110.0
N9—C9—C10108.7 (5)Ni1—N10—H10A110.0
N9—C9—H9C109.9C10—N10—H10B110.0
C10—C9—H9C109.9Ni1—N10—H10B110.0
N9—C9—H9D109.9H10A—N10—H10B108.3
C10—C9—H9D109.9C11—N11—Ni1105.9 (4)
H9C—C9—H9D108.3C11—N11—H11A110.6
N10—C10—C9108.9 (5)Ni1—N11—H11A110.6
N10—C10—H10C109.9C11—N11—H11B110.6
C9—C10—H10C109.9Ni1—N11—H11B110.6
N10—C10—H10D109.9H11A—N11—H11B108.7
C9—C10—H10D109.9C12—N12—Ni1109.4 (4)
H10C—C10—H10D108.3C12—N12—H12A109.8
N11—C11—C12107.2 (5)Ni1—N12—H12A109.8
N11—C11—H11C110.3C12—N12—H12B109.8
C12—C11—H11C110.3Ni1—N12—H12B109.8
N11—C11—H11D110.3H12A—N12—H12B108.2
C12—C11—H11D110.3C13—N13—Ni1105.2 (4)
H11C—C11—H11D108.5C13—N13—H13A110.7
N12—C12—C11109.5 (5)Ni1—N13—H13A110.7
N12—C12—H12C109.8C13—N13—H13B110.7
C11—C12—H12C109.8Ni1—N13—H13B110.7
N12—C12—H12D109.8H13A—N13—H13B108.8
C11—C12—H12D109.8C14—N14—Ni1108.6 (4)
H12C—C12—H12D108.2C14—N14—H14A110.0
N13—C13—C14110.4 (6)Ni1—N14—H14A110.0
N13—C13—H13C109.6C14—N14—H14B110.0
C14—C13—H13C109.6Ni1—N14—H14B110.0
N13—C13—H13D109.6H14A—N14—H14B108.3
C14—C13—H13D109.6C15—N15—Ni2112.7 (5)
H13C—C13—H13D108.1C15—N15—H15A109.0
N14—C14—C13108.9 (5)Ni2—N15—H15A109.0
N14—C14—H14C109.9C15—N15—H15B109.0
C13—C14—H14C109.9Ni2—N15—H15B109.0
N14—C14—H14D109.9H15A—N15—H15B107.8
C13—C14—H14D109.9C16—N16—Ni2110.1 (5)
H14C—C14—H14D108.3C16—N16—H16A109.6
N15—C15—C16108.9 (6)Ni2—N16—H16A109.6
N15—C15—H15C109.9C16—N16—H16B109.6
C16—C15—H15C109.9Ni2—N16—H16B109.6
N15—C15—H15D109.9H16A—N16—H16B108.1
C16—C15—H15D109.9C20—N17—Ni2106.0 (4)
H15C—C15—H15D108.3C20—N17—H17A110.5
N16—C16—C15113.3 (6)Ni2—N17—H17A110.5
N16—C16—H16C108.9C20—N17—H17B110.5
C15—C16—H16C108.9Ni2—N17—H17B110.5
N16—C16—H16D108.9H17A—N17—H17B108.7
C15—C16—H16D108.9C17—N18—Ni2108.2 (4)
H16C—C16—H16D107.7C17—N18—H18A110.1
C20—C17—N18109.3 (6)Ni2—N18—H18A110.1
C20—C17—H17C109.8C17—N18—H18B110.1
N18—C17—H17C109.8Ni2—N18—H18B110.1
C20—C17—H17D109.8H18A—N18—H18B108.4
N18—C17—H17D109.8C18—N19—Ni2110.6 (4)
H17C—C17—H17D108.3C18—N19—H19A109.5
N19—C18—C19112.6 (6)Ni2—N19—H19A109.5
N19—C18—H18C109.1C18—N19—H19B109.5
C19—C18—H18C109.1Ni2—N19—H19B109.5
N19—C18—H18D109.1H19A—N19—H19B108.1
C19—C18—H18D109.1C19—N20—Ni2108.7 (4)
H18C—C18—H18D107.8C19—N20—H20A109.9
C18—C19—N20114.4 (6)Ni2—N20—H20A109.9
C18—C19—H19C108.7C19—N20—H20B109.9
N20—C19—H19C108.7Ni2—N20—H20B109.9
C18—C19—H19D108.7H20A—N20—H20B108.3
N20—C19—H19D108.7N12—Ni1—N1391.7 (2)
H19C—C19—H19D107.6N12—Ni1—N1094.1 (2)
C17—C20—N17109.5 (6)N13—Ni1—N10170.7 (2)
C17—C20—H20C109.8N12—Ni1—N1182.2 (2)
N17—C20—H20C109.8N13—Ni1—N1193.2 (2)
C17—C20—H20D109.8N10—Ni1—N1194.9 (2)
N17—C20—H20D109.8N12—Ni1—N1494.4 (2)
H20C—C20—H20D108.2N13—Ni1—N1481.8 (2)
C8—Mo1—C680.5 (3)N10—Ni1—N1490.5 (2)
C8—Mo1—C272.2 (3)N11—Ni1—N14173.8 (2)
C6—Mo1—C280.0 (2)N12—Ni1—N9171.5 (2)
C8—Mo1—C778.1 (3)N13—Ni1—N993.6 (2)
C6—Mo1—C773.7 (2)N10—Ni1—N981.6 (2)
C2—Mo1—C7143.0 (3)N11—Ni1—N990.8 (2)
C8—Mo1—C3113.5 (2)N14—Ni1—N992.9 (2)
C6—Mo1—C3143.0 (2)N15—Ni2—N2092.3 (2)
C2—Mo1—C372.9 (2)N15—Ni2—N1679.8 (3)
C7—Mo1—C3141.0 (2)N20—Ni2—N1692.9 (3)
C8—Mo1—C4140.7 (3)N15—Ni2—N18171.3 (3)
C6—Mo1—C472.3 (3)N20—Ni2—N1892.1 (2)
C2—Mo1—C475.5 (3)N16—Ni2—N1892.4 (2)
C7—Mo1—C4118.8 (3)N15—Ni2—N1995.6 (3)
C3—Mo1—C476.7 (2)N20—Ni2—N1982.4 (3)
C8—Mo1—C5145.4 (2)N16—Ni2—N19173.3 (3)
C6—Mo1—C5108.9 (3)N18—Ni2—N1992.5 (3)
C2—Mo1—C5141.3 (2)N15—Ni2—N1794.4 (2)
C7—Mo1—C573.1 (2)N20—Ni2—N17172.6 (2)
C3—Mo1—C579.6 (2)N16—Ni2—N1791.4 (2)
C4—Mo1—C572.0 (3)N18—Ni2—N1781.7 (2)
C8—Mo1—C174.3 (2)N19—Ni2—N1793.8 (2)
C6—Mo1—C1144.0 (2)H1B—O1—H1C109.5
C2—Mo1—C1114.9 (2)H2D—O2—H2A109.5
C7—Mo1—C176.4 (2)H3B—O3—H3C109.5
C3—Mo1—C172.0 (2)H4A—O4—H4C109.5
C4—Mo1—C1141.3 (2)H5A—O5—H5C109.5
C5—Mo1—C180.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···N8i0.922.273.140 (8)159
N9—H9B···N3ii0.922.413.179 (7)141
N10—H10A···N3iii0.922.203.111 (8)170
N10—H10B···N5iii0.922.583.252 (8)130
N11—H11A···N3iii0.922.373.219 (8)153
N12—H12A···N7iv0.922.353.141 (8)144
N12—H12B···N5iii0.922.253.126 (8)159
N13—H13A···N7iv0.922.533.434 (8)167
N13—H13B···N3ii0.922.253.056 (8)146
N14—H14A···N8i0.922.243.066 (8)149
N14—H14B···O3iii0.922.183.099 (15)176
N15—H15A···O10.922.513.290 (16)143
N15—H15B···O4v0.922.483.342 (16)156
N16—H16A···O40.922.183.023 (16)152
N17—H17A···O40.922.173.040 (17)157
N17—H17B···O5v0.922.283.097 (14)148
N18—H18A···N6i0.922.263.177 (10)178
N18—H18B···N40.922.403.216 (8)148
N19—H19A···N2i0.922.633.246 (8)125
N19—H19B···O4v0.922.303.187 (15)163
N20—H20A···O30.922.253.165 (12)172
N20—H20B···N40.922.433.306 (10)159
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1, y, z1; (iii) x+1, y1/2, z+1; (iv) x, y, z1; (v) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C2H8N2)3]2[Mo(CN)8]·2H2O
Mr818.18
Crystal system, space groupMonoclinic, P21
Temperature (K)153
a, b, c (Å)10.1765 (3), 12.2178 (2), 15.8932 (3)
β (°) 106.683 (1)
V3)1892.89 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.67, 0.72
No. of measured, independent and
observed [I > \2s(I)] reflections
15991, 6779, 6292
Rint0.048
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.122, 1.09
No. of reflections6779
No. of parameters433
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.92
Absolute structureFlack (1983), 2876 Friedel pairs
Absolute structure parameter0.024 (19)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···N8i0.922.273.140 (8)158.7
N9—H9B···N3ii0.922.413.179 (7)140.6
N10—H10A···N3iii0.922.203.111 (8)170.1
N10—H10B···N5iii0.922.583.252 (8)130.4
N11—H11A···N3iii0.922.373.219 (8)153.3
N12—H12A···N7iv0.922.353.141 (8)144.0
N12—H12B···N5iii0.922.253.126 (8)159.0
N13—H13A···N7iv0.922.533.434 (8)167.2
N13—H13B···N3ii0.922.253.056 (8)146.3
N14—H14A···N8i0.922.243.066 (8)149.4
N14—H14B···O3iii0.922.183.099 (15)175.5
N15—H15A···O10.922.513.290 (16)143.0
N15—H15B···O4v0.922.483.342 (16)156.2
N16—H16A···O40.922.183.023 (16)152.4
N17—H17A···O40.922.173.040 (17)157.3
N17—H17B···O5v0.922.283.097 (14)148.4
N18—H18A···N6i0.922.263.177 (10)178.4
N18—H18B···N40.922.403.216 (8)147.6
N19—H19A···N2i0.922.633.246 (8)124.7
N19—H19B···O4v0.922.303.187 (15)163.1
N20—H20A···O30.922.253.165 (12)171.9
N20—H20B···N40.922.433.306 (10)159.1
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1, y, z1; (iii) x+1, y1/2, z+1; (iv) x, y, z1; (v) x, y+1/2, z+1.
 

Acknowledgements

The work is supported by the University Natural Science Foundation of Jiangsu Province (No. 07KJB150030).

References

First citationChang, F., Sun, H.-L., Kou, H.-Z. & Gao, S. (2002). Inorg. Chem. Commun. 5, 660–663.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLeipoldt, J. G., Bok, L. D. C. & Cilliers, P. J. (1974). Z. Anorg. Allg. Chem. 409, 343–344.  CrossRef CAS Web of Science Google Scholar
First citationLi, D.-F., Zheng, L.-M., Wang, X.-Y., Huang, J., Gao, S. & Tang, W.-X. (2003). Chem. Mater. 15, 2094–2098.  Web of Science CSD CrossRef CAS Google Scholar
First citationMathonière, C., Podgajny, R., Guionneau, P., Labrugere, C. & Sieklucka, B. (2005). Chem. Mater. 17, 442–449.  Google Scholar
First citationPodgajny, R., Dromzée, Y., Kruczała, K. & Sieklucka, B. (2001). Polyhedron, 20, 685–694.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrzychodzeń, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234–2260.  Google Scholar
First citationPrzychodzeń, P., Lewiński, K., Bałanda, M., Pełka, R., Rams, M., Wasiutyński, T., Guyard-Duhayon, C. & Sieklucka, B. (2004). Inorg. Chem. 43, 2967–2974.  Web of Science PubMed Google Scholar
First citationRigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieklucka, B., Podgajny, R., Korzeniak, T., Przychodzeń, P. & Kania, R. (2002). C. R. Chim. 5, 639–649.  CrossRef CAS Google Scholar
First citationSieklucka, B., Podgajny, R., Przychodzeń, P. & Korzeniak, T. (2005). Coord. Chem. Rev. 249, 2203–2221.  Web of Science CrossRef CAS Google Scholar
First citationWithers, J. R., Ruschmann, Ch., Bojang, P., Parkin, S. & Holmes, S. M. (2005). Inorg. Chem. 44, 352–358.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYuan, A.-H., Zou, J.-Z., Li, B.-L., Zha, Z.-G., Duan, C.-Y., Liu, Y.-J., Xu, Z. & Keizer, S. (2000). Chem. Commun. 14, 1297–1298.  Web of Science CSD CrossRef Google Scholar
First citationZhou, H., Chen, Y.-Y., Yuan, A.-H. & Shen, X.-P. (2008). Inorg. Chem. Commun. 11, 363–366.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1152-m1153
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds