metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-2,2′-[o-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato}dicopper(II) N,N′-di­methyl­formamide disolvate

aDepartment of Chemistry, Xiaogan University, Xiaogan, Hubei 432000, People's Republic of China
*Correspondence e-mail: dy9802@126.com

(Received 8 December 2007; accepted 26 February 2008; online 29 February 2008)

The title compound, [Cu2(C20H14N2O2)2]·2C3H7NO, consists of a centrosymmetric dimer composed of two copper(II) ions and two tetra­dentate salphen ligands {H2salphen is 2,2′-[o-phenyl­enebis(nitrilo­methyl­idyne)]diphenol}, and two dimethyl­formamide solvent mol­ecules. The CuII atom is bonded to two N imino atoms and three phenolate O atoms of salphen. One deprotonated phenol group of each ligand bridges two Cu atoms, forming the dimer. The geometry about the five-coordinate Cu atom can best be described as slightly distorted recta­ngular pyramidal. The crystal structure is stabilized by ππ inter­actions [centroid-centroid distance 3.779 (2) Å] and C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Suzuki et al. (1997[Suzuki, M., Ishikawa, T., Harada, A., Ohba, S., Sakamoto, M. & Nishida, Y. (1997). Polyhedron, 16, 2553-2561.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C20H14N2O2)2]·2C3H7NO

  • Mr = 901.94

  • Monoclinic, P 21 /n

  • a = 8.1864 (5) Å

  • b = 14.792 (1) Å

  • c = 16.9584 (11) Å

  • β = 93.252 (1)°

  • V = 2050.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 294 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (20081). SADABS. University of Göttingen, Germany.]) Tmin = 0.811, Tmax = 0.898

  • 13976 measured reflections

  • 4468 independent reflections

  • 3126 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.129

  • S = 0.98

  • 4468 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.907 (2)
Cu1—O2 1.909 (2)
Cu1—N1 1.946 (2)
Cu1—N2 1.950 (2)
Cu1—O1i 2.783 (11).
Symmetry code: (i) -x-3, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O3 0.93 2.44 3.244 (4) 145
C5—H5⋯O3 0.93 2.54 3.333 (4) 144
C23—H23⋯O2ii 0.93 2.58 3.457 (5) 158
C7—H7⋯O3iii 0.93 2.41 3.333 (4) 170
C2—H2⋯O3iii 0.93 2.47 3.389 (4) 172
C21—H21A⋯O3 0.96 2.36 2.756 (5) 104
Symmetry codes: (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The stucture of the title compound, [Cu(salphen)]2˙2DMF, (DMF= N,N'-dimethylformamide), (I), is shown in Fig.1.

The salphen derivatives and their manganese complexes have been synthesized and characterized(Suzuki et al.,1997).

Herein, we report the crystal structure of such a compound. As shown in Fig.1, the molecular structure of the title compound is constructed of a centrosymmetric dimer in which the copper(II) atoms are linked by µ-phenoxo bridges from one of the phenolic oxygen atoms of each salphen ligand to the opposite metal center. The distance of Cu1···Cu1(2 - x,-y,-z) separation and the angles of Cu1–O1–Cu1(2 - x,-y,-z)are 3.436 Å, and 92.19°, respectively. Two nitrogen atoms and two oxygen atoms from salphen ligands occupy the coordination sites about each copper. The apical Cu–O (phenoxo) and Cu–N (imine) (see Table 2) bond distances are somewhat shorter than the long equatorial Cu1—O1 distance. The basal atoms about the two copper atoms are coplanar; consequently, the environment around each copper atom can be described as a distorted triangular pyramid.

The centroid-centroid distance between the C8—C13 benzene ring (centroid Cg1) belonging to one salicylaldehyde ring system in one dimer and the C15—C20 benzene ring (centroid Cg2) of the salicylaldehyde ring system from the neighboring dimer at (2 - x, -y, -z) is 3.779 (2), and the dihedral angles (between planes Cg1 and Cg2) and (between planes Cg1- Cg2 vector and the normal to the C8—C13 ring) are 10.82 and 16.52°, respectively; these values indicate the existence of significant π-π stacking interactions between adjacent rings, as shown in Fig.2, which stabilizes the crystal structure together with the hydrogen bonds.

Related literature top

For related literature, see: Suzuki et al. (1997).

Experimental top

[Cu(C20H14N2O2)]2 .2DMF was prepared as followings: to a solution of H2salphen 0.158 mg(0.5 mmol) in methanol (20 mL) and DMF(20 mL) was added Cu(OAc)2˙2H2O(0.113 g, 0.5 mmol). After the mixture was stirred for half an hour, the solution was filtered. The filtrate was kept for several days at ambient temperature, and green-black block crystals were obtained.

Refinement top

The H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C), and C–H distances of 0.93–0.96 Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing diagram of (I).
Bis{µ-2,2'-[o-phenylenebis(nitrilomethylidyne)]diphenolato}dicopper(II) N,N'-dimethylformamide disolvate top
Crystal data top
[Cu2(C20H14N2O2)2]·2C3H7NOF(000) = 932
Mr = 901.94Dx = 1.461 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3178 reflections
a = 8.1864 (5) Åθ = 2.8–23.0°
b = 14.792 (1) ŵ = 1.10 mm1
c = 16.9584 (11) ÅT = 294 K
β = 93.252 (1)°Block, black
V = 2050.2 (2) Å30.20 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4468 independent reflections
Radiation source: fine-focus sealed tube3126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ϕ and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1010
Tmin = 0.811, Tmax = 0.898k = 1418
13976 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0609P)2]
where P = (Fo2 + 2Fc2)/3
4468 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu2(C20H14N2O2)2]·2C3H7NOV = 2050.2 (2) Å3
Mr = 901.94Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.1864 (5) ŵ = 1.10 mm1
b = 14.792 (1) ÅT = 294 K
c = 16.9584 (11) Å0.20 × 0.10 × 0.10 mm
β = 93.252 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4468 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3126 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.898Rint = 0.083
13976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 0.98Δρmax = 0.52 e Å3
4468 reflectionsΔρmin = 0.36 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.87999 (4)0.02801 (2)0.07623 (2)0.03962 (15)
C10.7432 (3)0.2022 (2)0.05569 (18)0.0394 (7)
C20.6560 (4)0.2775 (2)0.0271 (2)0.0506 (8)
H20.59410.27420.02050.061*
C30.6622 (5)0.3569 (2)0.0699 (2)0.0614 (10)
H30.60530.40750.05080.074*
C40.7528 (5)0.3612 (2)0.1410 (3)0.0688 (11)
H40.75470.41460.17000.083*
C50.8397 (4)0.2880 (2)0.1695 (2)0.0546 (9)
H50.90140.29210.21710.065*
C60.8359 (3)0.2075 (2)0.12719 (18)0.0392 (7)
C70.6479 (4)0.0977 (2)0.04292 (18)0.0399 (7)
H70.58580.14520.06470.048*
C80.6304 (4)0.0124 (2)0.08095 (17)0.0412 (7)
C90.7215 (4)0.0655 (2)0.05630 (19)0.0419 (7)
C100.6853 (4)0.1464 (2)0.0970 (2)0.0509 (8)
H100.73990.19910.08120.061*
C110.5710 (4)0.1499 (3)0.1597 (2)0.0585 (10)
H110.55000.20460.18530.070*
C120.4865 (4)0.0729 (3)0.1852 (2)0.0566 (9)
H120.41120.07530.22830.068*
C130.5161 (4)0.0058 (2)0.1460 (2)0.0495 (9)
H130.45880.05730.16270.059*
C140.9997 (4)0.1198 (2)0.21836 (19)0.0473 (8)
H141.00890.17180.24920.057*
C151.0785 (4)0.0411 (2)0.2491 (2)0.0478 (8)
C161.0733 (4)0.0430 (2)0.2097 (2)0.0483 (9)
C171.1600 (5)0.1157 (3)0.2469 (2)0.0654 (11)
H171.15910.17200.22260.078*
C181.2455 (5)0.1043 (3)0.3184 (3)0.0746 (12)
H181.30260.15290.34110.090*
C191.2486 (5)0.0225 (3)0.3570 (2)0.0787 (14)
H191.30610.01590.40550.094*
C201.1659 (5)0.0486 (3)0.3230 (2)0.0652 (11)
H201.16710.10380.34930.078*
C210.7335 (6)0.1052 (3)0.4145 (3)0.0950 (15)
H21A0.82990.09980.38520.142*
H21B0.65120.06430.39320.142*
H21C0.75970.09050.46890.142*
C220.5134 (5)0.2143 (3)0.4363 (3)0.0993 (17)
H22A0.49180.27800.43260.149*
H22B0.50930.19530.49020.149*
H22C0.43250.18200.40420.149*
C230.7679 (5)0.2604 (3)0.3829 (2)0.0601 (10)
H230.72430.31840.38000.072*
N10.7417 (3)0.11587 (16)0.01899 (14)0.0367 (6)
N20.9162 (3)0.12659 (17)0.15158 (14)0.0384 (6)
N30.6731 (4)0.1958 (2)0.40887 (18)0.0592 (8)
O10.8363 (3)0.06591 (14)0.00094 (13)0.0492 (6)
O20.9963 (3)0.05820 (15)0.14172 (14)0.0524 (6)
O30.9070 (3)0.25103 (17)0.36246 (15)0.0639 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0424 (2)0.0340 (2)0.0420 (2)0.00078 (17)0.00157 (16)0.00026 (17)
C10.0368 (16)0.0327 (17)0.0494 (18)0.0021 (13)0.0080 (13)0.0017 (14)
C20.052 (2)0.0390 (19)0.060 (2)0.0029 (16)0.0039 (16)0.0066 (17)
C30.069 (2)0.035 (2)0.080 (3)0.0043 (17)0.001 (2)0.0036 (19)
C40.094 (3)0.033 (2)0.080 (3)0.002 (2)0.004 (2)0.011 (2)
C50.067 (2)0.044 (2)0.052 (2)0.0055 (17)0.0006 (17)0.0067 (17)
C60.0384 (16)0.0331 (18)0.0468 (18)0.0044 (13)0.0090 (13)0.0004 (14)
C70.0396 (16)0.0368 (18)0.0431 (17)0.0010 (14)0.0015 (13)0.0054 (14)
C80.0402 (17)0.0428 (19)0.0410 (18)0.0072 (14)0.0065 (13)0.0002 (15)
C90.0402 (17)0.0417 (19)0.0445 (18)0.0069 (15)0.0090 (14)0.0039 (15)
C100.054 (2)0.043 (2)0.057 (2)0.0049 (16)0.0113 (17)0.0072 (17)
C110.059 (2)0.060 (3)0.058 (2)0.0212 (19)0.0127 (18)0.0195 (19)
C120.048 (2)0.072 (3)0.049 (2)0.0140 (19)0.0005 (16)0.012 (2)
C130.0421 (19)0.057 (2)0.049 (2)0.0032 (16)0.0006 (15)0.0002 (17)
C140.0434 (18)0.054 (2)0.0449 (19)0.0027 (16)0.0038 (15)0.0066 (16)
C150.0367 (17)0.060 (2)0.0468 (19)0.0023 (15)0.0010 (14)0.0082 (17)
C160.0377 (17)0.056 (2)0.051 (2)0.0013 (15)0.0059 (15)0.0180 (17)
C170.067 (2)0.060 (3)0.068 (3)0.004 (2)0.001 (2)0.024 (2)
C180.068 (3)0.080 (3)0.075 (3)0.003 (2)0.006 (2)0.039 (3)
C190.071 (3)0.108 (4)0.055 (2)0.005 (3)0.016 (2)0.026 (3)
C200.062 (2)0.083 (3)0.049 (2)0.005 (2)0.0043 (18)0.007 (2)
C210.113 (4)0.057 (3)0.119 (4)0.005 (3)0.038 (3)0.011 (3)
C220.066 (3)0.095 (4)0.140 (5)0.001 (3)0.032 (3)0.015 (3)
C230.073 (3)0.047 (2)0.060 (2)0.001 (2)0.002 (2)0.0103 (19)
N10.0376 (13)0.0332 (14)0.0393 (14)0.0014 (11)0.0030 (11)0.0017 (11)
N20.0356 (13)0.0390 (15)0.0405 (14)0.0020 (11)0.0026 (11)0.0006 (12)
N30.0649 (19)0.0447 (19)0.070 (2)0.0021 (15)0.0183 (16)0.0075 (16)
O10.0563 (14)0.0337 (12)0.0564 (14)0.0036 (11)0.0077 (11)0.0049 (11)
O20.0599 (15)0.0405 (13)0.0557 (14)0.0052 (11)0.0063 (11)0.0072 (11)
O30.0575 (16)0.0729 (18)0.0617 (16)0.0080 (14)0.0076 (13)0.0121 (14)
Geometric parameters (Å, º) top
Cu1—O11.907 (2)C12—C131.355 (5)
Cu1—O21.909 (2)C12—H120.9300
Cu1—N11.946 (2)C13—H130.9300
Cu1—N21.950 (2)C14—N21.293 (4)
Cu1—O1i2.783 (11)C14—C151.416 (4)
C1—C21.395 (4)C14—H140.9300
C1—C61.396 (4)C15—C201.411 (5)
C1—N11.420 (4)C15—C161.412 (5)
C2—C31.380 (5)C16—O21.302 (4)
C2—H20.9300C16—C171.416 (4)
C3—C41.381 (6)C17—C181.375 (6)
C3—H30.9300C17—H170.9300
C4—C51.369 (5)C18—C191.375 (6)
C4—H40.9300C18—H180.9300
C5—C61.389 (4)C19—C201.360 (6)
C5—H50.9300C19—H190.9300
C6—N21.416 (4)C20—H200.9300
C7—N11.294 (4)C21—N31.431 (5)
C7—C81.421 (4)C21—H21A0.9600
C7—H70.9300C21—H21B0.9600
C8—C131.409 (4)C21—H21C0.9600
C8—C91.423 (5)C22—N31.438 (5)
C9—O11.312 (4)C22—H22A0.9600
C9—C101.405 (4)C22—H22B0.9600
C10—C111.376 (5)C22—H22C0.9600
C10—H100.9300C23—O31.216 (4)
C11—C121.389 (5)C23—N31.321 (5)
C11—H110.9300C23—H230.9300
O1—Cu1—O288.35 (10)N2—C14—H14116.8
O1—Cu1—N194.06 (10)C15—C14—H14116.8
O2—Cu1—N1173.09 (10)C20—C15—C16119.3 (3)
O1—Cu1—N2177.59 (9)C20—C15—C14117.4 (4)
O2—Cu1—N293.78 (10)C16—C15—C14123.3 (3)
N1—Cu1—N283.69 (10)O2—C16—C15124.8 (3)
C2—C1—C6119.9 (3)O2—C16—C17118.0 (3)
C2—C1—N1125.1 (3)C15—C16—C17117.2 (3)
C6—C1—N1115.0 (3)C18—C17—C16121.1 (4)
C3—C2—C1119.6 (3)C18—C17—H17119.4
C3—C2—H2120.2C16—C17—H17119.4
C1—C2—H2120.2C17—C18—C19121.5 (4)
C2—C3—C4120.0 (3)C17—C18—H18119.3
C2—C3—H3120.0C19—C18—H18119.3
C4—C3—H3120.0C20—C19—C18118.8 (4)
C5—C4—C3120.9 (4)C20—C19—H19120.6
C5—C4—H4119.5C18—C19—H19120.6
C3—C4—H4119.5C19—C20—C15122.1 (4)
C4—C5—C6120.0 (3)C19—C20—H20119.0
C4—C5—H5120.0C15—C20—H20119.0
C6—C5—H5120.0N3—C21—H21A109.5
C5—C6—C1119.5 (3)N3—C21—H21B109.5
C5—C6—N2125.2 (3)H21A—C21—H21B109.5
C1—C6—N2115.2 (3)N3—C21—H21C109.5
N1—C7—C8126.3 (3)H21A—C21—H21C109.5
N1—C7—H7116.8H21B—C21—H21C109.5
C8—C7—H7116.8N3—C22—H22A109.5
C13—C8—C7117.5 (3)N3—C22—H22B109.5
C13—C8—C9119.2 (3)H22A—C22—H22B109.5
C7—C8—C9123.3 (3)N3—C22—H22C109.5
O1—C9—C10118.9 (3)H22A—C22—H22C109.5
O1—C9—C8124.2 (3)H22B—C22—H22C109.5
C10—C9—C8116.9 (3)O3—C23—N3126.1 (4)
C11—C10—C9121.8 (3)O3—C23—H23116.9
C11—C10—H10119.1N3—C23—H23116.9
C9—C10—H10119.1C7—N1—C1122.1 (3)
C10—C11—C12121.0 (3)C7—N1—Cu1124.6 (2)
C10—C11—H11119.5C1—N1—Cu1113.06 (19)
C12—C11—H11119.5C14—N2—C6122.3 (3)
C13—C12—C11118.6 (3)C14—N2—Cu1124.7 (2)
C13—C12—H12120.7C6—N2—Cu1112.94 (19)
C11—C12—H12120.7C23—N3—C21119.5 (3)
C12—C13—C8122.4 (4)C23—N3—C22122.2 (3)
C12—C13—H13118.8C21—N3—C22118.3 (3)
C8—C13—H13118.8C9—O1—Cu1126.3 (2)
N2—C14—C15126.4 (3)C16—O2—Cu1126.9 (2)
Symmetry code: (i) x3, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O30.932.443.244 (4)145
C5—H5···O30.932.543.333 (4)144
C23—H23···O2ii0.932.583.457 (5)158
C7—H7···O3iii0.932.413.333 (4)170
C2—H2···O3iii0.932.473.389 (4)172
C21—H21A···O30.962.362.756 (5)104
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C20H14N2O2)2]·2C3H7NO
Mr901.94
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)8.1864 (5), 14.792 (1), 16.9584 (11)
β (°) 93.252 (1)
V3)2050.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.811, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
13976, 4468, 3126
Rint0.083
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.129, 0.98
No. of reflections4468
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.36

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.907 (2)Cu1—N21.950 (2)
Cu1—O21.909 (2)Cu1—O1i2.783 (11)
Cu1—N11.946 (2)
Symmetry code: (i) x3, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O30.932.443.244 (4)145.1
C5—H5···O30.932.543.333 (4)143.9
C23—H23···O2ii0.932.583.457 (5)157.6
C7—H7···O3iii0.932.413.333 (4)170.0
C2—H2···O3iii0.932.473.389 (4)171.8
C21—H21A···O30.962.362.756 (5)104.0
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Xiaogan University (Z2008012).

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (20081). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, M., Ishikawa, T., Harada, A., Ohba, S., Sakamoto, M. & Nishida, Y. (1997). Polyhedron, 16, 2553–2561.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds